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Abstract

In [8], Sobolev-typep(·) → q(·)-theorems were proved for the Riesz potential op-
eratorIα in the weighted Lebesgue generalized spacesLp(·)(Rn, ρ) with the variable
exponentp(x) and a two-parameter power weight fixed to an arbitrary finite pointx0

and to infinity, under an additional condition relating the weight exponents atx0 and
at infinity. We show in this note that those theorems are valid without this additional
condition. Similar theorems for a spherical analogue of the Riesz potential operator in
the corresponding weighted spacesLp(·)(Sn, ρ) on the unit sphereSn in Rn+1 are also
improved in the same way.
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1. Introduction

We consider the Riesz potential operator

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dy, 0 < α < n, (1.1)
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in the weighted Lebesgue generalized spacesLp(·)(Rn, ρ) with a variable exponentp(x) de-
fined by the norm

‖f‖Lp(·)(Rn,ρ) = inf

{
λ > 0 :

∫

Rn

ρ(x)

( |f(x)|
λ

)p(x)

dx ≤ 1

}
, (1.2)

where
ρ(x) = ργ0,γ∞(x) = |x|γ0(1 + |x|)γ∞−γ0 . (1.3)

We refer to [5], [6], [4], [3] for the basics of the spacesLp(·) with variable exponent.
We assume that the exponentp(x) satisfies the standard conditions

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ Rn, (1.4)

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Rn, (1.5)

and also the following condition at infinity

|p∗(x)− p∗(y)| ≤ A∞
ln 1

|x−y|
, |x− y| ≤ 1

2
, x, y ∈ Rn, (1.6)

wherep∗(x) = p
(

x
|x|2

)
. Conditions (1.5) and (1.6) taken together are equivalent to the

following global condition

|p(x)− p(y)| ≤ C

ln

(
2
√

1+|x|2
√

1+|y|2
|x−y|

) , x, y ∈ Rn. (1.7)

Let
1

q(x)
=

1

p(x)
− α

n
.

The following statement was proved in [8].

Theorem 1.1.Under assumptions (1.4), (1.5), (1.6) and the condition

p+ <
n

α
(1.8)

the operatorIα is bounded from the spaceLp(·)(Rn, ργ0,γ∞) into the spaceLq(·)(Rn, ρµ0,µ∞),
where

µ0 =
q(0)

p(0)
γ0 and µ∞ =

q(∞)

p(∞)
γ∞, (1.9)

if
αp(0)− n < γ0 < n[p(0)− 1], αp(∞)− n < γ∞ < n[p(∞)− 1], (1.10)

and the exponentsγ0 andγ∞ are related to each other by the equality

q(0)

p(0)
γ0 +

q(∞)

p(∞)
γ∞ =

q(∞)

p(∞)
[(n + α)p(∞)− 2n]. (1.11)
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The goal of this note is to prove that Theorem 1.1 is valid without the additional condition
(1.11). We consider also a similar statement for the spherical potential operators

(Kαf)(x) =

∫

Sn

f(σ)

|x− σ|n−α
dσ, x ∈ Sn, 0 < α < n, (1.12)

in the corresponding weighted spacesLp(·)(Sn, ρ) on the unit sphereSn in Rn+1.

2. Preliminaries

We need the following theorem for bounded domains proved in [7].

Theorem 2.1.Let Ω be a bounded domain inRn andx0 ∈ Ω and letp(x) satisfy condi-
tions (1.4), (1.5) and (1.8) inΩ. Then the following estimate

‖Iαf‖Lq(·)(Ω,|x−x0|µ) ≤ C ‖f‖Lp(·)(Ω,|x−x0|γ) (2.1)

is valid, if
αp(x0)− n < γ < n[p(x0)− 1] (2.2)

and

µ ≥ q(x0)

p(x0)
γ. (2.3)

3. The case of the spatial potential operator

We prove the following theorem

Theorem A. Under assumptions (1.4), (1.5), (1.6) and (1.8), the operatorIα is bounded
from the spaceLp(·)(Rn, ργ0,γ∞) into the spaceLq(·)(Rn, ρµ0,µ∞), where

µ0 =
q(0)

p(0)
γ0 and µ∞ =

q(∞)

p(∞)
γ∞, (3.1)

if
αp(0)− n < γ0 < n[p(0)− 1], αp(∞)− n < γ∞ < n[p(∞)− 1]. (3.2)

Proof. Let‖f‖Lp(·)(Rn,ρ) ≤ 1. To estimate the integral
∫
Rn

ρµ0,µ∞(x)|Iαf(x)|q(x)dx, we

split it, as in [8], in the following way
∫

Rn

ρµ0,µ∞(x)|Iαf(x)|q(x)dx ≤ c (A++ + A+− + A−+ + A−−) ,
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where

A++ =

∫

|x|<1

|x|µ0

∣∣∣∣∣∣∣

∫

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx, A+− =

∫

|x|<1

|x|µ0

∣∣∣∣∣∣∣

∫

|y|>1

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx,

and

A−+ =

∫

|x|>1

|x|µ∞
∣∣∣∣∣∣∣

∫

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx, A−− =

∫

|x|>1

|x|µ∞
∣∣∣∣∣∣∣

∫

|y|>1

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx.

The boundedness of the termsA++ andA−− was shown in [8] without condition (1.11). So
we only have to treat the termsA+− andA−+.

10. T h e t e r m A−+. We splitA−+ as

A−+ = A1 + A2,

where

A1 =

∫

1<|x|<2

|x|µ∞
∣∣∣∣∣∣∣

∫

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx

and

A2 =

∫

|x|>2

|x|µ∞
∣∣∣∣∣∣∣

∫

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx.

The term

A1 ≤ C

∫

1<|x|<2

|x|µ0

∣∣∣∣∣∣∣

∫

|y|<1

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx ≤ C

∫

|x|<2

|x|µ0

∣∣∣∣∣∣∣

∫

|y|<2

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx

is covered by Theorem 2.1. For the termA2 we have

|x− y| ≥ |x| − |y| ≥ |x|
2

.

Therefore,

A2 ≤ C

∫

|x|>2

|x|µ∞+(α−n)q(x)




∫

|y|<1

|f(y)| dy




q(x)

dx.

It follows from condition (1.6) (see also (1.7)) that

|p(x)− p(∞)| ≤ C

ln |x| , |x| ≥ 2
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and then the same is valid forq(x), so that

A2 ≤ C

∫

|x|>2

|x|µ∞+(α−n)q(∞)




∫

|y|<1

|f(y)| dy




q(x)

dx.

Observe that ∫

|y|<1

|f(y)| dy ≤ C‖f‖Lp(·)(Rn,ρ). (3.3)

Indeed, denoteg(y) = [ρ(y)]−
1

p(y) ; by the Ḧolder inequality for variableLp(·)-spaces we get
∫

|y|<1

|f(y)| dy =

∫

|y|<1

g(y)[ρ(y)]
1

p(y) |f(y)| dy

≤ k‖g‖Lp′(·)‖ρ 1
p f‖Lp(·) = k‖g‖Lp′(·)‖f‖Lp(·)(Rn,ρ). (3.4)

To arrive at (3.3), we have to show that‖g‖Lp′(·) < ∞. Under condition (1.4) one has

‖g‖Lp′(·) < ∞ ⇐⇒
∫

|y|<1

|g(y)|p′(y)dy < ∞. (3.5)

As is easily seen, the last integral is finite sinceγ0 < n[p(0)− 1]. Therefore, from (3.4) there
follows (3.3).

ThenA2 ≤ C < ∞ if we take into account thatµ∞ + (α − n)q(∞) < −n under the
conditionγ∞ < n[p(∞)− 1].

20. T h e t e r m A+− is estimated similarly toA−+: we splitA+− as

A+− = A3 + A4,

where

A3 =

∫

|x|<1

|x|µ0

∣∣∣∣∣∣∣

∫

1<|y|<2

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx

and

A4 =

∫

|x|<1

|x|µ0

∣∣∣∣∣∣∣

∫

|y|>2

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣

q(x)

dx.

The termA3 is covered by Theorem 2.1 similarly to the termA1 in 10. For the termA4, we
have|x− y| ≥ |y| − |x| ≥ |y|

2
. Then

∣∣∣∣∣∣∣

∫

|y|>2

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣
≤ C

∫

|y|>2

|f(y)| dy

|y|n−α
= C

∫

|y|>2

|f0(y)| dy

|y|n−α+ γ∞
p(∞)
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wheref0(y) = |y| γ∞
p(∞) f(y). It is easily seen thatf0(y) ∈ Lp(·)(Rn\B(0, 2)), since[ρ(y)]

1
p(y) f(y) ∈

Lp(·)(Rn) and[ρ(y)]
1

p(y) ∼ |y| γ∞
p(∞) for |y| ≥ 2 under the log-condition at infinity. Hence by

the Hölder inequality and the same log-condition at infinity,
∣∣∣∣∣∣∣

∫

|y|>2

f(y) dy

|x− y|n−α

∣∣∣∣∣∣∣
≤ C1‖f0‖Lp(·)(Rn\B(0,2))

∥∥∥|y|α−n− γ∞
p(∞)

∥∥∥
Lp′(·)(Rn\B(0,2))

≤ C‖f‖Lp(·)(Rn,ργ0,γ∞ )

∥∥∥|y|α−n− γ∞
p(∞)

∥∥∥
Lp′(·)(Rn\B(0,2))

≤ C
∥∥∥|y|α−n− γ∞

p(∞)

∥∥∥
Lp′(·)(Rn\B(0,2))

,

where the last norm is finite under the conditionαp(∞) − n < γ∞ (use the argument given
in (3.5) ). 2

Corollary 3.1. Let0 < α < n , p(x) satisfy conditions (1.4), (1.5), (1.6) and (1.8). Then
the operatorIα is bounded from the spaceLp(·)(Rn) into the spaceLq(·)(Rn), 1

q(x)
= 1

p(x)
− α

n
.

The statement of the corollary was proved in [1] and [2] under a weaker than (1.6) version
of the log-condition at infinity.

4. The case of the spherical potential operator

4.1 The spaceLp(·)(Sn, ρ)

We consider the weighted spaceLp(·)(Sn, ρβa,βb
) with a variable exponent on the unit sphere

Sn = {σ ∈ Rn+1 : |σ| = 1}, defined by the norm

‖f‖Lp(·)(Sn,ρβa,βb
) =



λ > 0 :

∫

Sn

|σ − a|βa · |σ − b|βb

∣∣∣∣
f(σ)

λ

∣∣∣∣
p(σ)

dσ ≤ 1



 ,

whereρβa,βb
(σ) = |σ − a|βa · |σ − b|βb anda ∈ Sn and b ∈ Sn are arbitrary points on

Sn, a 6= b.
We assume that0 < α < n and

1 < p− ≤ p(σ) ≤ p+ <
n

α
, σ ∈ Sn, (4.1)

|p(σ1)− p(σ2)| ≤ A

ln 3
|σ1−σ2|

, σ1 ∈ Sn, σ2 ∈ Sn. (4.2)

The following theorem is valid.

Theorem B. Let the functionp : Sn −→ [1,∞) satisfy conditions (4.1) and (4.2). The
spherical potential operatorKα is bounded from the spaceLp(·)(Sn, ρβa,βb

) with ρβa,βb
(σ) =

|σ−a|βa ·|σ−b|βb, wherea ∈ Sn andb ∈ Sn are arbitrary points on the unit sphereSn, a 6= b,
into the spaceLq(·)(Sn, ρβa,βb

) with ρνa,νb
(σ) = |σ − a|νa · |σ − b|νb, where 1

q(σ)
= 1

p(σ)
− α

n
,

and
αp(a)− n < βa < np(a)− n, αp(b)− n < βb < np(b)− n, (4.3)
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νa =
q(a)

p(a)
βa, νb =

q(b)

p(b)
βb. (4.4)

This theorem was proved in [8] under the additional assumption that the weight exponents
βa andβb are related to each other by the connection

q(a)

p(a)
βa =

q(b)

p(b)
βb. (4.5)

Now Theorem B without this condition follows from Theorem A by means of the stereo-
graphic projection exactly in the same way as in [8], Section 5.

Corollary 4.1. Under assumptions (4.1) and (4.2), the spherical potential operatorKα

is bounded fromLp(·)(Sn) into Lq(·)(Sn), 1
q(σ)

= 1
p(σ)

− α
n
.
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