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Abstract

In [8], Sobolev-typep(-) — q(-)-theorems were proved for the Riesz potential op-
eratorI® in the weighted Lebesgue generalized spat®s(R", p) with the variable
exponentp(xz) and a two-parameter power weight fixed to an arbitrary finite pejnt
and to infinity, under an additional condition relating the weight exponents aind
at infinity. We show in this note that those theorems are valid without this additional
condition. Similar theorems for a spherical analogue of the Riesz potential operator in
the corresponding weighted spadeé®’) (S", p) on the unit spher” in R**! are also
improved in the same way.
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1. Introduction

We consider the Riesz potential operator

Iaf(x):/R &dy, 0<a<mn, (1.2)

n |z =yl



in the weighted Lebesgue generalized spadés(R™, p) with a variable exponeni(z) de-
fined by the norm

p(z)
Nl o) g py = inf {/\ >0: /n p(x) (@) dr < 1} : (1.2)

P(E) = Pro oo (@) = |21 4[] )70 (1.3)
We refer to [5], [6], [4], [3] for the basics of the spacE¥’) with variable exponent.
We assume that the exponeift) satisfies the standard conditions

where

1<p_<pz)<p; <oo, zeR" (1.4)

1
;e =yl < 2 x,y € R", (1.5)

and also the following condition at infinity
Ao
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wherep,(z) = p (#) Conditions (1.5) and (1.6) taken together are equivalent to the
following global condition
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The following statement was proved in [8].
Theorem 1.1.Under assumptions (1.4), (1.5), (1.6) and the condition
n
P+ < — (1.8)
«

the operator/® is bounded from the spad@)(R", p., .,..) into the space.?")(R", p,,, ...),

where 0) (0)
q q
— 27 and 0 = Yoo, 1.9
ap(0) —n <o <nfp(0) = 1],  ap(c0) —n < Y < nfp(o0) — 1], (1.10)
and the exponentg and~,, are related to each other by the equality

q(0) q(0)  q(o0)
p(0)"° " p(o0) T T ploo)

2

[(n 4+ a)p(oo) — 2n]. (1.12)



The goal of this note is to prove that Theorem 1.1 is valid without the additional condition
(1.11). We consider also a similar statement for the spherical potential operators

(K*f)(z) :/%da, reS, 0<a<n, (1.12)
— 0
Sn
in the corresponding weighted spadé$)(S™, p) on the unit spherg” in R"+1,

2. Preliminaries

We need the following theorem for bounded domains proved in [7].

Theorem 2.1.Let() be a bounded domain iR™ andz, € 2 and letp(z) satisfy condi-
tions (1.4), (1.5) and (1.8) if. Then the following estimate

H[afHL‘I(‘)(QfomoW) <C HfHLP(‘)(Q,\xf:EOP) (21)
is valid, if
ap(zo) —n <y < nfp(zo) — 1] (2.2)
and
uz (2.3)
p(xo)

3. The case of the spatial potential operator

We prove the following theorem

Theorem A. Under assumptions (1.4), (1.5), (1.6) and (1.8), the operéatas bounded
from the spacd."")(R", p., ... ) into the spacd.?")(R", p,, ,...), where

_ 4(0) _ ()
Ho =gy 0 and  jio = p(oo) > (3.1)
if
ap(0) —n <y < nl[p(0) —1], ap(co) —n < Y < n[p(co) —1]. (3.2)

Proof. Let||f|| o) @n,) < 1. To estimate the integraf p, .. ()|1° f(x)|"®dz, we
RTL
splitit, as in [8], in the following way

[ brse @I @I < (A + A4 A,

Rn»



where

(x) q(x)
d
Ay = / || / de, A, = / | |H0 /Lﬂy_a dz,
[z =yl y’" « |z —y
lz|<1 lyl<1 lz]<1 ly|>1
and
(@) (=)
A, = / || / dz, /\x!“‘” / dx.
o v =y y!” ° o —y"— y\” o
|z|>1 ly|<1 |z|>1 ly|>1

The boundedness of the terms , and A__ was shown in [8] without condition (1.11). So
we only have to treat the term&, _ andA_, .

1°.The term A_,. WesplitA_, as

AL = A+ Ay,
where
q(z)
d
A — / . / fdy |
|z =y
1<|z|<2 ly|<1
and
q(z)
d
Ay = / || e / f(?/—)y_ do.
|z =yl
|z|>2 ly|<1
The term
q(z) q(z)
A <C / |J;|M0 / M de < C / |:E|“° / dr
o —y[r-e [z gl y|" ”
1<|z|<2 ly|<1 |z|<2 ly|<2

is covered by Theorem 2.1. For the tednwe have

x
o vl > fal [yl = 2

Therefore, :

q(z
= [ faprei |y | d.
|z[>2 yl<1

It follows from condition (1.6) (see also (1.7)) that

C

In|z|’

|p(z) = p(e0)] <

2] > 2
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and then the same is valid fofz), so that

q(x)
A, <0 / g Hematoo) / Fldy | de.
|z|>2 y|<1
Observe that
[ 1#@)1dy < 1l @3
ly|<1

Indeed, denote(y) = [p(y)]_ﬁ; by the Hlder inequality for variabld.”()-spaces we get

/If(y)ldy= /g(y)[p(y)]@lf(y)ldy

ly|<1 ly|<1
1
< kllgllwollor flleer = Fllgll o 11l @n ) - (3.4)
To arrive at (3.3), we have to show thgt||; /) < co. Under condition (1.4) one has
lallo <o0 = [ o)l Py < o (35)
lyl<1

As is easily seen, the last integral is finite singe< n[p(0) — 1]. Therefore, from (3.4) there
follows (3.3).

ThenA, < C < o if we take into account that., + (@ — n)g(co) < —n under the
conditiony,, < n[p(co) — 1].

2. The term A,_ isestimated similarly tol_,: we splitA, _ as

A+_ = A3 + 1447
where
q(z)
d
As = / |x|uo / M dr
’$ _ y’nfa
lz|<1 1<|y|<2
and
q(z)
d
A, — / o / fdy |
|z —y[r
|x|<1 ly|>2

The termAs; is covered by Theorem 2.1 similarly to the tertp in 1°. For the termA4,, we
have|x — y| > |y| — |=| > % Then

/ f(y) dy <C |f(y)|dy_c/ | fo(y)| dy

|[E _ y|n—a — |y|n—o¢ |y|n—a+%
ly[>2 ly|>2 ly|>2



wherefy(y) = |y\%f(y). Itis easily seen thaf(y) € L0 (R™\ B(0, 2)), since[p(y)]ﬁf(y) €
LPO(R™) and[p(y)]7@ ~ |y|#> for |y| > 2 under the log-condition at infinity. Hence by
the Holder inequality and the same log-condition at infinity,

oo
/ |$ y|n al = Cl”fOHLP()(Rn\B(OQ ) H|y‘ " p(0)

ly[>2

LP'()(R™\B(0,2))

([

< 0H|yla_”_%

,Pwo,%o)

< CHJC”LP(‘)(R" L' ()(R?\ B(0,2))

where the last norm is finite under the conditiop(co) — n < 7., (use the argument given

L' O (R™\B(0,2)) |

in (3.5)). O
Corollary 3.1. Let0 < a < n, p(z) satisfy conditions (1.4), (1 5) (1.6) and (1.8). Then
the operator/® is bounded from the spade() (R") into the spacd.«) (R™), % = ﬁ—%.

The statement of the corollary was proved in [1] and [2] under a weaker than (1.6) version
of the log-condition at infinity.

4. The case of the spherical potential operator

4.1 The space’!)(S", p)

We consider the weighted spaf&”) (S", ps, 5,) with a variable exponent on the unit sphere
S" = {0 € R"" : |o| = 1}, defined by the norm
p(o)
do <1,

wherepg, 5,(0) = |0 — a|’ - |0 — b|® anda € S" andb € S™ are arbitrary points on

S™, a #b.

We assume thdt < o < n and

M

Hf”LP()Sn PBa.By) {)\ >0: /‘U—a|ﬁa ’g_b’ﬂb

1<p-<po)<p;< g oes", (4.1)

Ip(o1) — pog)| < L3 O e S" 09 € S". (4.2)

lo1—o2|

The following theorem is valid.

Theorem B. Let the functiorp : S” — [1, 0o) satisfy conditions (4.1) and (4.2). The
spherical potential operatok ® is bounded from the spadé')(S", ps, 5,) With pgs, 5,(c) =
lo—al|’-|o—b|%, wherea € S" andb € S™ are arbitrary points on the unltsphe%‘ a 7é b,
::r:?j the spacel’")(S", pg, 5,) With p,, ., (0) = |0 — al"* - |0 — b", where_5 = 5 — &,

ap(a) —n < B, <np(a) —n, ap(b) —n < G, < np(b) —n, (4.3)



L), )
Ok o

This theorem was proved in [8] under the additional assumption that the weight exponents
(., and, are related to each other by the connection

aa) 5 _ alb)
pla) ™ p(b)

Now Theorem B without this condition follows from Theorem A by means of the stereo-
graphic projection exactly in the same way as in [8], Section 5.

Bp. (4.5)

Corollary 4.1. Under assumptions (4.1) and (4. 2) the spherical potential operator

is bounded fronL*")(S") into L1O(S"), &5 = % -2
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