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Abstract

We study the boundedness of the maximal operator in the spacesLp(·)(ρ, Ω)
over a bounded open set inRn with the weightρ(x) =

∏m
k=1 wk(|x−xk|),

xk ∈ Ω, wherewk has the property thatr
n

p(xk) wk(r) ∈ Φ0
n, whereΦ0

n is
a certain Zygmund-type class. The weight functionswk may oscillate be-
tween two power functions with different exponents. It is assumed that the
exponentp(x) satisfies the Dini–Lipschitz condition. The final statement
on the boundedness is given in terms of the index numbers of the functions
wk (similar in a sense to the Boyd indices for the Young functions defining
Orlich spaces).

Key Words and Phrases: maximal functions, weighted Lebesgue spaces, vari-
able exponent, potential operators, integral operators with fixed singularity
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1 Introduction

Nowadays there is an evident increase of interest to harmonic analysis problems
and operator theory in the generalized Lebesgue spaces with variable exponent
p(x) and the corresponding Sobolev spaces, we refer, in particular to surveys
[10], [13], [25], [7] and to [28], [14] for the basics on the spacesLp(·).

For the boundedness results of maximal operators we refer to L. Diening [5]
for bounded domains in
mathbbRn and to D.Cruz-Uribe, A.Fiorenza and C.J. Neugebauer [4] and A.Nekvinda
[21], [20] for unbounded domains, and to V.Kokilashvili and S.Samko [12] for
weighted boundedness on bounded domains.

We refer also to L.Diening [6] and D.Cruz-Uribe, A.Fiorenza, J.M.Martell,
and C.Perez [3] where there are also given new insights into the problems of
boundedness of singular and maximal operators in variable exponent spaces.

In [12] the power weights|x − x0|γ were considered and one of the main
points in the result obtained in [12] was that in condition onγ only the values of
p(x) at the pointx0 are of importance:

− n

p(x0)
< γ <

n

q(x0)

(under the usual log-condition onp(x)).
A problem of more general weights remains open. An explicit description of

weights for which the maximal operator is bounded in the spacesLp(·) is a chal-
lenging problem. What should be the correspondingAp(·)-condition? It is natural
to suppose that the Muckenhoupt condition written in the natural terms of the in-
verse Ḧolder inequality may be the corresponding characterization. Whether this
is or not, is an open question.

In this paper we prove weighted boundedness for the maximal operator in the
spacesLp(·)(Ω, ρ) for some class of general, that is, non-power weights, which
are ”attached” to a finite number of pointsxk ∈ Ω (radial type weights of the
Zygmund-Bary-Stechkin class). Weightsw in this class are almost increasing or
almost decreasing and may oscillate between two power functions with different
exponents and have non-coinciding upper and lower indicesmw and Mw (of
the type of Boyd indices). In comparison with the approach in [12], the main
problems arising are related to the situation when the indicesmw andMw do not
coincide, in particular whenmw is negative whileMw is positive.

The paper is organized as follows. In Section 2 we formulate the main result
- Theorem A - on the weighted boundedness of the maximal operator In Sec-
tion 3 we recall the notion of the upper and lower indices of almost increasing
non-negative functions and develop some properties of weights in the Zygmund-
Bary-Stechkin class, which we need to prove the main result. Section 4 contains
some technical lemmas related to the variable exponentp(x). Finally, Section 5
contains the proof of Theorem A.

We recall the main notation. ByΩ we denote an open bounded set inRn,
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n ≥ 1, andp(x) a function onΩ satisfying the conditions

1 < p∗ ≤ p(x) ≤ p∗ < ∞, x ∈ Ω (1.1)

and

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω. (1.2)

By Lp(·)(Ω, ρ) we denote the weighted Banach space of all measurable func-
tionsf : Ω → C such that

‖f‖Lp(·)(Ω,ρ) := ‖ρf‖p(·) = inf



λ > 0 :

∫

Ω

∣∣∣∣
ρ(x)f(x)

λ

∣∣∣∣
p(x)

dx ≤ 1



 < ∞.

(1.3)

Notation
a.d. =almost decreasing⇐⇒ f(x) ≥ Cf(y) for x ≤ y, C > 0;
a.i. =almost increasing⇐⇒ f(x) ≤ Cf(y) for x ≤ y, C > 0;
Ω is a open bounded set inRn;
|Ω| is the Lebesgue measure ofΩ;
χΩ is the characteristic function of a setΩ;
f ∼ g ⇐⇒ there existC1 > 0 andC2 > 0 such thatC1f(x) ≤ g(x) ≤
C2f(x).
Br(x) = {y ∈ Rn : |y − x| < r};
|Br(x)| = rn

n
|Sn−1| is the volume ofBr(x);

q(x) = p(x)
p(x)−1

, 1 < p(x) < ∞, 1
p(x)

+ 1
q(x)

≡ 1 ;
p∗ = inf

x∈Ω
p(x), p∗ = sup

x∈Ω
p(x);

q∗ = inf
x∈Ω

q(x) = p∗
p∗−1

, q∗ = sup
x∈Ω

q(x) = p∗
p∗−1

;

C, c may denote different positive constants.

2 Statement of the Main Results

Let

Mρf(x) = sup
r>0

ρ(x)

|Br(x)|
∫

Br(x)∩Ω

|f(y)|
ρ(y)

dy, (2.1)

where

ρ(x) =
m∏

k=1

wk(|x− xk|), xk ∈ Ω.

We writeM = M0 whenρ(t) ≡ 1.
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In [12] there was proved the boundedness of the operatorMρ in the case of
the power weightρ(x) = |x − x0|β, x0 ∈ Ω under the following (necessary and
sufficient) condition

− n

p(x0)
< β <

n

p(x0)
. (2.2)

In the main result of this paper, see Theorem A, we deal with a certain class
of weights which may oscillate between two power functions (radial Zygmund-
Bary-Stechkin type weights).

The Zygmund-Bari-Stechkin classΦ0
n of weights and the upper and lower

indices of weights (of the type of the Boyd indices) used in the theorem below
are defined in Section 3.

Theorem A . Let p(x) satisfy conditions (1.1), (1.2). The operatorM is
bounded inLp(x)(Ω, ρ) with the weightρ(x) =

∏m
k=1 wk(|x − xk|), xk ∈ Ω,

wherewk(r) are such functions thatr
n

p(xk) wk(r) ∈ Φ0
n, if

− n

p(xk)
< mwk

≤ Mwk
<

n

q(xk)
, k = 1, 2, ..., m. (2.3)

3 Preliminaries on Zygmund-Bary-Stechkin classes.

3.1 Index numbersmw and Mw of non-negative a. i. functions

Let

W = {w ∈ C([0, `]) : w(0) = 0, w(x) > 0 for x > 0, w(x) is a.i.}. (3.1)

The numbers

mw = sup
x>1

ln
(
lim inf

h→0

w(hx)
w(h)

)

ln x
= sup

0<x<1

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x
= lim

x→0

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x

and

Mw = sup
x>1

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x
= lim

x→∞

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x

(see [22], [24], [23]), are known asthe lower and upper indicesof the function
w(x) (compare these indices with the Matuszewska-Orlicz indices, see [17], p.
20; they are of the type of the Boyd indices, see [15], p. 75; [16], or [2], p. 149
about the Boyd indices). We have0 ≤ mw ≤ Mw ≤ ∞ for w ∈ W .

We call a functionw(x) equilibratedor non-oscillating, if Mw = mw.

Remark 3.1. The upper and lower indices may be also well defined for
functionsw(x) positive forx > 0 which do not necessarily belong toW , for
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example, if there is given a functionw(x) such thatwa(x) := xaw(x) is in W ,
then the indicesmwa andMwa of wa(x) are well defined and there also exist the
indicesmw andMw of w(x) and

mwa = a + mw, Mwa = a + Mw

in this case.
We find it convenient to introduce the following class of functions, the indices

mw andMw of which may be negative:

W̃ = {w : taw(t) ∈ W for some a ∈ R1}.

3.2 The Zygmund-Bary-Stechkin classΦ0
γ

Let γ > 0. The following classΦ0
γ was introduced and studied in [1] (with

integerγ); there are also known ”two-parametrical” classesΦβ
γ , 0 ≤ β < γ < ∞,

see [19], [18], [27] and [26], p. 253). Observe that in [30], [31] there were
considered more general classesΦ

a(x)
b(x) with limits which may ”oscillate”; the

classΦ0
γ corresponds to the case wherea(x) = x0 = 1 andb(x) = xγ.

Definition 3.2. ([1]) The Zygmund-Bary-Stechkin type classΦ0
γ, 0 < γ <

∞, is defined asΦβ
γ := Z0 ∩ Zγ, whereZ0 is the class of functionsw ∈ W

satisfying the condition ∫ h

0

w(x)

x
dx ≤ cw(h) (Z0)

andZγ is the class of functionsw ∈ W satisfying the condition

∫ `

h

w(x)

x1+γ
dx ≤ c

w(h)

hγ
, (Zγ)

wherec = c(w) > 0 does not depend onh ∈ (0, `].

In the sequel we refer to the above conditions as (Z0)- and (Zγ)-conditions.

We note that each of the inequalities (Z0) and (Zγ) is invertible if they both
are satisfied. Namely, the following statement holds.

Lemma 3.3.Letw(r) ∈ Φ0
γ, γ > 0. Then

h∫

0

w(r)

r
dr ∼ hγ

`∫

h

w(r)

r1+γ
dr ∼ w(h) (3.2)

the latter equivalence holding on any subinterval[0, `− δ], δ > 0.

The following statement is valid, see [22],[24] forγ = 1 and [11] for an
arbitraryγ > 0.
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Theorem 3.4.A functionw ∈ W belongs toZ0 if and only ifmw > 0 and it
belongs toZγ, γ > 0, if and only ifMw < γ, so that

w ∈ Φ0
γ ⇐⇒ 0 < mw ≤ Mw < γ. (3.3)

Besides this, forw ∈ Φ0
γ and anyε > 0 there exist constantsc1 = c1(ε) > 0 and

c2 = c2(ε) > 0 such that

c1t
Mw+ε ≤ w(t) ≤ c2t

mw−ε, 0 ≤ t ≤ `. (3.4)

The following properties are also valid

mw = sup{λ ∈ (0, 1) : t−λw(t) is a.i.}, (3.5)

Mw = inf{µ ∈ (0, 1) : t−µw(t) is a.d.}. (3.6)

Corollary 3.5. Letw(t), 0 < t ≤ `, be such a function thattaw(t) ∈ Z0 for
somea ∈ R1. Then for anyε > 0 there existc1 > 0 such that

w(t) ≤ c1t
mw−ε. (3.7)

Similarly, if taw(t) ∈ Zγ, then for anyε > 0 there existc2 > 0 such that

w(t) ≥ c2t
Mw+ε. (3.8)

(The indicesmw andMw may be negative in this case).

Remark 3.6. If w ∈ W̃ andmω > 0, thenw ∈ W .
Indeed, leta ∈ R1 be such thatwa(t) = taw(t) ∈ W . Then according to

(3.5) the function wa(t)

tmwa−ε is a.i. for anyε > 0. But mwa = mw + a, so that w(t)
tmw−ε

is a.i. In particular, the functionw itself is a.i., which means that it is inW .

Remark 3.7. Functionsw ∈ Zγ, γ > 0, satisfy the doubling condition

w(2r) ≤ Cw(r), 0 ≤ r ≤ ` (3.9)

which follows from the fact that the functionw(r)
rµ is a.d. for everyµ > Mw

according to (3.6) (observe thatMw is finite sinceMω < γ by Theorem 3.4).

We shall need the following lemma.

Lemma 3.8. Let w ∈ W̃ andMω < γ. Then tγ

[w(t)]λ
∈ Z0 if λMω < γ, that

is,
r∫

0

tγ−1dt

[w(t)]λ
≤ c

rγ

[w(r)]λ
, 0 < r ≤ `. (3.10)

Proof. Forw1(x) = xγ

[w(x)]λ
, from the definition of the lower index we easily

obtain
mw1 = γ − λMw.

Hencemw1 > 0. It is easily checked thatw1 ∈ W̃ , that is, there exists a numberb
such thattbw1(t) is a.i. Thenw1 ∈ W according to Remark 3.6 and consequently
w1 ∈ Z0 by Theorem 3.4. 2
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3.3 On radial Ap-weights generated by oscillating functions
w.

Let ρ(x) = [w(|x− x0|)]λ, whereλ ∈ R1, x ∈ Rn andx0 is a fixed point inRn

andw(r) is a function such thatraw(r) ∈ W for somea ∈ R1. The following
statement provides conditions in terms of the lower and upper indicesmw and
Mw of the functionw(r), under whichρ(x) = [w(|x− x0|)]λ is a Muckenhoupt
weight of the classAp. According to the definition of the weighted space given in
(1.3), we use the following definition of the classAp = Ap(Rn), p = const, 1 <
p < ∞,

Ap =



ρ : sup

Q


 1

|Q|
∫

Q

ρ(x)dx





 1

|Q|
∫

Q

[ρ(x)]1−qdx




p−1

< ∞


 (3.11)

wheresup is taken with respect to all cubes,1
p

+ 1
q

= 1, see e.g. [29] onAp-
weights.

Lemma 3.9. Let w ∈ W̃ , λ ∈ R1 and Ω a bounded domain inRn. Then
[w(|x− x0|)]λ ∈ Ap(Ω) if

[w(r)]λprn, [w(r)]−λqrn ∈ Z0. (3.12)

Condition (3.12) is equivalent to the following inequalities in terms of the lower
and upper indices of the functionw(r)

− n

λp
< mw ≤ Mw <

n

λq
when λ > 0 (3.13)

and
− n

|λ|q < mw ≤ Mw <
n

|λ|p when λ < 0. (3.14)

Proof. For radial weights theAp-condition (3.11) takes the form

r∫

0

[ρ(t)]ptn−1dt




r∫

0

[ρ(t)]−qtn−1dt




p−1

≤ Crnp, 0 < r ≤ ` = diam Ω,

(3.15)
whereC > 0 does not depend onr > 0, see [8], [9]. We rewrite this for
ρ(t) = [w(t)]λ as

r∫

0

w1(t)

t
dt




r∫

0

w2(t)

t
dt




p−1

≤ Crnp (3.16)

wherew1(t) = [w(t)]λptn, w2(t) = [w(t)]−λqtn. The feasibility of condition
(3.16) is obviously connected with validity ofZ0- condition of Subsection 3.2
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for functionsw1(t) andw2(t). By Theorem 3.4, the functionsw1(t) andw2(t)
satisfy this condition if and only if their lower indicesmw1 andmw2 are strictly
positive. To calculate these indices, suppose thatλ > 0. We have

mw1 = n + λpmw, mw2 = n− λpMw

and the positivity of these numbers leads to condition (3.13). Similarly the case
λ < 0 is considered.

Under condition (3.13) we then have

r∫

0

w1(t)

t
dt




r∫

0

w2(t)

t
dt




p−1

≤ cw1(r)[w2(r)]
p−1 = crnp.

Thus, (3.16) and consequently (3.15) are satisfied. 2

4 Preliminaries related to the variable exponent space

4.1 Some basics

We recall some basic facts for the variable exponent spacesLp(·)(Ω) and refer
e.g. to [14] for details. The Ḧolder inequality holds in the form

∫

Ω

|f(x)g(x)| dx ≤ k
∥∥f

∥∥
p(·) ·

∥∥g
∥∥

q(·) (4.1)

with k = 1
p∗

+ 1
q0

. The modularIp(f) =
∫
Ω

|f(x)|p(x) dx and the norm‖f‖p(·) are

simultaneously greater than one and simultaneously less than1:

∥∥f
∥∥p∗

p(·) ≤ Ip(f) ≤
∥∥f

∥∥p∗
p(·) if

∥∥f
∥∥

p(·) ≤ 1 (4.2)

and ∥∥f
∥∥p∗

p(·) ≤ Ip(f) ≤
∥∥f

∥∥p∗

p(·) if
∥∥f

∥∥
p(·) ≥ 1. (4.3)

From (4.2) and (4.3) it follows that

c1 ≤ ‖f‖p ≤ c2 =⇒ c3 ≤ Ip
Ω(f) ≤ c4 (4.4)

and
C1 ≤ Ip

Ω(f) ≤ C2 =⇒ C3 ≤ ‖f‖p ≤ C4 (4.5)

with c3 = min
(
cp∗
1 , cp∗

1

)
, c4 = max

(
cp∗
2 , cp∗

2

)
, C3 = min

(
C

1/p∗
1 , C

1/p∗
1

)
and

C4 = max
(
C

1/p∗
2 , C

1/p∗
2

)
.

The imbedding

Lp(x) ⊆ Lr(x), 1 ≤ r(x) ≤ p(x) ≤ p∗ < ∞
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is valid if |Ω| < ∞. In that case
∥∥f

∥∥
r(·) ≤ m

∥∥f
∥∥

p(·), m = a2 + (1− a1)|Ω|, (4.6)

wherea1 = inf
x∈Ω

r(x)
p(x)

anda1 = sup
x∈Ω

r(x)
p(x)

.

Lemma 4.1.LetΩ be a bounded set inRn, the exponentp satisfy conditions
(1.1), (1.2) and letw be any function such that there exist exponentsa, b ∈ R1

and the constantsc1 > 0 andc2 > 0 such thatc1r
a ≤ w(r) ≤ c2r

−b, 0 ≤ r ≤
` = diam(Ω). Then

1

C
[w(|x− x0|)]p(x0) ≤ [w(|x− x0|)]p(x) ≤ C[w(|x− x0|)]p(x0), (4.7)

whereC > 1 does not depend onx, x0 ∈ Ω.

Proof. Let
g(x, x0) = [w(|x− x0|)]p(x)−p(x0).

To show that1
C
≤ g(x, x0) ≤ C, that is,|ln g(x, x0)| ≤ C1, C1 = ln C, we

observe that|ln g(x, x0)| = |p(x)− p(x0)| · |lnw(|x− x0|)| Therefore,

|ln g(x, x0)| = |p(x)− p(x0)| · |ln w(|x− x0|)| ≤ A`
|ln w(|x− x0|)|

ln 2`
|x−x0|

which is bounded by the condition onw. 2

4.2 Auxiliary lemma for averages

Let

Mwλ

r f(x) =
[w(|x− x0|)]λ
|Br(x)|

∫

Br(x)

|f(y)|
[w(|y − x0|)]λ dy, x0 ∈ Ω, (4.8)

denote the weighted means related to the weighted maximal operator (2.1). In

(4.8) we assume thatf(y) = 0 for y 6∈ Ω. We writeMrf(x) := Mwλ

r f(x)
∣∣∣
λ=0

.

In general, it will be admitted thatλ may depend on the pointx ∈ Ω. Observe
that the function[w(t)]λ(x) is also of the type of the functionw(t), that is, it also
oscillates between two power functions.

Lemma 4.1 . Letw(r) ∈ Zn andλ(x) ≥ 0. Then the inequality

Mwλ

r (1) =
[w(|x− x0|)]λ(x)

|Br(x)|
∫

Br(x)

dy

[w(|y − x0|)]λ(x)
≤ c (4.9)

holds withc > 0 not depending onr > 0, x0 ∈ Rn and onx in any setD ⊆ Rn

on whichsup
x∈D

λ(x) < n
Mw

.
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Proof. We distinguish the cases|x− x0| ≥ 2r and|x− x0| ≤ 2r.
In the case|x− x0| ≥ 2r we have

|y − x0| ≥ |x− x0| − |y − x| ≥ |x− x0| − r ≥ 1

2
|x− x0|.

Since the functionw ∈ Zn ⊂ W is a.i., we havew(|y − x0|) ≥ cw
(

1
2
|x− x0|

)
.

Taking also into account the doubling property (3.9), we obtain

w(|y − x0|) ≥ cw(|x− x0|)

and then estimate (4.9) becomes evident sinceλ(x) ≥ 0.
Let |x− x0| ≤ 2r. Observe that in this case

B(x, r) ⊂ B(x0, 3r)

since|y − x| < r =⇒ |y − x0| ≤ |y − x|+ |x− x0| < 3r. Hence

Mwλ

r (1) ≤ [w(|x− x0|)]λ(x)

|Br(x)|
∫

B3r(x0)

dy

[w(|y − x0|)]λ(x)

=
[w(|x− x0|)]λ(x)

|Br(x)|
∫

B3r(0)

dy

[w(|y|)]λ(x)
= c

[w(|x− x0|)]λ(x)

rn

3r∫

0

ρn−1dρ

[w(ρ)]λ(x)
.

Then by Lemma 3.8 we get

Mw
r (1) ≤ c

(
w(|x− x0|)

w(3r)

)λ(x)

≤ c

(
w(2r)

w(3r)

)λ(x)

≤ c.

2

5 Proof of Theorem A

5.1 Reduction to the case of a single weight

Remark 5.1. It suffices to prove Theorem A for a single weightw(|x−x0|), x0 ∈
Ω, t

n
p(x0) w(t) ∈ Φ0

n.

Indeed, letΩ =
n⋃

k=1

Ωk whereΩk contains the pointxk in its interior and does

not containxj, j 6= k in its closure. Then

‖f‖
Lp(·)

(
Ω,

n∏
k=1

wk(|t−tk|)
) ∼

∑

k=1

‖f‖Lp(·)(Ωk,wk(|t−tk|)) (5.1)
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whenever1 ≤ p− ≤ p+ < ∞. This equivalence follows from the easily checked
modular equivalence

Ip
Ω

(
f(x)

n∏

k=1

wk(|x− xk|)
)
∼

∑

k=1

Ip
Ω (f(x)wk(|x− xk|)) ,

if we take (4.4) and (4.5) into account.
Then, because of (5.1), the statement of Remark 5.1 is obtained via introduc-

tion of the standard partition of unity1 =
n∑

k=1

ak(x), whereak(x) are smooth

functions equal to1 in a neighborhoodB(xk, ε) of the pointxk and equal to
0 outside its neighborhoodB(xk, 2ε), so thatak(x) [wk(|x− xj|)]±1 ≡ 0 in a
neighborhood of the pointxk, if k 6= j.

In what follows,Ω is an open bounded set inRn andx0 ∈ Ω.

5.2 A pointwise estimate for the weighted means

Theorem 5.2.Letp(x) satisfy conditions (1.1) and (1.2) and letw ∈ W . If

0 ≤ mw ≤ Mw <
n

q(x0)
, (5.2)

where 1
q(x)

= 1− 1
p(x)

, then


w(|x− x0|)

|Br(x)|
∫

Br(x)

|f(y)|dy

w(|y − x0|)




p(x)

≤ c


1 +

1

|Br(x)|
∫

Br(x)

|f(y)|p(y) dy




(5.3)
for all f ∈ L(p(·)(Ω) such that‖f‖p(·) ≤ 1, wherec = c(p, w) is a constant not
depending onx, r andx0.

Proof. From (5.2) and the continuity ofp(x) we conclude that there exists a
d > 0 such that

Mwq(x) < n for all |x− x0| ≤ d. (5.4)

Without loss of generality we assume thatd ≤ 1. Let

pr(x) = min
|y−x|≤r

p(y)

and 1
qr(x)

= 1− 1
pr(x)

. From (5.2) it is easily seen that

Mwqr(x) < n if |x− x0| ≤ d

2
and 0 < r ≤ d

4
. 2 (5.5)

2
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10 The case|x− x0| ≤ d
2 and 0 < r ≤ d

4 (the main case)

In this case, applying the Ḧolder inequality with the exponentspr(x) andqr(x)
to the integral on the right-hand side of the equality

∣∣∣∣Mr

( f(y)

w(|y − x0|)
)∣∣∣∣

p(x)

=
c

rnp(x)




∫

Br(x)

|f(y)|
w(|y − x0|) dy




p(x)

,

we get

∣∣∣∣Mr

(
f(y)

w(|y − x0|)
)∣∣∣∣

p(x)

≤

≤ c

rnp(x)




∫

Br(x)

|f(y)|pr(x) dy




p(x)
pr(x)

·




∫

Br(x)

dy

[w(|y − x0|)]qr(x)




p(x)
qr(x)

(5.6)

where the last integral converges, since for small|y − x0| one has

[w(|y − x0|)]qr(x) ≥ c|y − x0|(Mw+ε)qr(x)

where one may chooseε sufficiently small so that according to (5.4),|y −
x0|(Mw+ε)qr(x) ≥ |y − x0|n−δ for someδ > 0.

We may make use of estimate (4.9) in (5.6), sincew ∈ W andw ∈ Zn under
the conditionMw < n

q(x0)
< n according to Theorem 3.4. We obtain

∣∣∣∣Mr

(
f(y)

w(|y − x0|)
)∣∣∣∣

p(x)

≤ c
[w(|x− x0|)]−p(x)

r
np(x)
pr(x)




∫

Br(x)

|f(y)|pr(x) dy




p(x)
pr(x)

.

Here
∫

Br(x)

|f(y)|pr(x) dy ≤
∫

Br(x)

dy +

∫

Br(x)
{y : |f(y)| ≥ 1}

|f(y)|p(y) dy,

sincepr(x) ≤ p(y) for y ∈ Br(x). Sincep(x) is bounded, we see that

∣∣∣∣Mr

(
f(y))

w(|y − x0|)
)∣∣∣∣

p(x)

≤ c1
[w(|x− x0|)]−p(x)

r
np(x)
pr(x)


rn +

1

2

∫

Br(x)

|f(y)|p(y) dy




p(x)
pr(x)

.

12



Sincer ≤ d
2
≤ 1

2
and the second term in the brackets is also less than or equal to

1
2

, we arrive at the estimate

|Mw
r f |p(x) ≤ c

r
np(x)
pr(x)


rn +

∫

Br(x)

|f(y)|p(y) dy


 ≤

≤ c rn
pr(x)−p(x)

pr(x)


1 +

1

rn

∫

Br(x)

|f(y)|p(y) dy


 .

From here (4.2) follows, since

rn
pr(x)−p(x)

pr(x) ≤ c.

Indeed,

rn
pr(x)−p(x)

pr(x) = e
n
pr

[p(x)−pr(x)] ln 1
r ,

where ∣∣∣ n

pr

[
p(x)− pr(x)

]
ln

1

r

∣∣∣ ≤ n
∣∣p(x)− p(ξr)

∣∣ ln
1

r

with ξr ∈ Br(x), and then by (2.2),

∣∣∣ n

pr

[
p(x)− pr(x)

]
ln

1

r

∣∣∣ ≤ nA
ln 1

r

ln 1
|x−ξr|

≤ nA,

since|x− ξr| ≤ r.

20 The case|x− x0| ≥ d
2 , 0 < r ≤ d

4 .

This case is trivial, because

|y − x0| ≥ |x− x0| − |y − x| ≥ d

2
− d

4
=

d

4
.

Taking into account thatw(t)
t2

is almost decreasing, we then havew(|y − x0|) ≥
Cw

(
d
4

)
= const. Sincew(|x− x0|) ≤ Cw( diamΩ), it follows that

Mw
r f(x) ≤ cMrf(x),

and one may proceed as above for the caseβ = 0 (the condition|x− x0| ≤ d
2

is
not needed in this case).

13



30 The caser ≥ d
4 .

This case is also easy. It suffices to show thatMw
r f(x) is bounded. We have

Mw
r f(x) ≤ cw( diamΩ)(

d
4

)n




∫

|y−x0|≤ d
8

|f(y)|
w(|y − x0|) dy +

∫

|y−x0|≥ d
8

|f(y)|
w(|y − x0|) dy


 .

Here the first integral is estimated via the Hölder inequality with the exponents

p d
8

= min
|y−x0|≤ d

8

p(y) and q d
8

= p′d
8

which is possible sinceαq d
8

< n. The estimate of the second integral is trivial

since|y − x0| ≥ d
8

.

Corollary 5.3. Let 0 ≤ mw ≤ Mw < n
q(x0)

. If conditions (1.1), (1.2) are
satisfied, then

|Mwf(x)|p(x) ≤ c
(
1 +M [|f(·)|p(·)] (x)

)
(5.7)

for all f ∈ Lp(·)(Ω) such that‖f‖p(·) ≤ 1 .

Remark 5.4. In the non-weighted caseω(x) ≡ 1 the estimate (5.7) is known
to be valid if1 ≤ p(x) ≤ p∗ < ∞ instead of condition (1.1), see [5].

5.3 Proof of Theorem A itself

To prove Theorem A, we have to show that
∥∥Mwf

∥∥
p(·) ≤ c (5.8)

in some ball‖f‖p(·) ≤ R, which is equivalent to the inequality

Ip(Mwf) ≤ c for
∥∥f

∥∥
p(·) ≤ R.

According to (4.7) we obtain

Ip(Mwf) ≤ c

∫

Ω

w(|x− x0|)p(x0)

∣∣∣∣M
(

f(y)

w(|y − x0|)
)

(x)

∣∣∣∣
p(x)

dx.

(5.8) first forWe prove (5.8) first for

− n

p(x0)
< mw ≤ Mw <

n

q0

, (5.9)

14



where 1
q0

= p∗−1
p(x0)

. Observe that1
q0
≤ 1

q(x0)
so that the interval (5.9) formw,Mw

is somewhat narrower than the whole interval
(
− n

p(x0)
, n

q0

)
. After that we treat

the remaining case.

10 The case− n
p(x0)

< mw ≤ Mw < n
q0

.

Following the idea in [5], we represent this as

Ip(Mwf) ≤ c

∫

Ω

(
[w(|x− x0|)]p1(x0)

∣∣∣∣M
(

f(y)

w(|y − x0|)
)

(x)

∣∣∣∣
p1(x)

)p∗

dx,

(5.10)
where

p1(x) =
p(x)

p∗
.

Estimate (5.7) withw ≡ 1 says that

|Mψ(x)|p1(x) ≤ c
(
1 +M[

ψp1(·)](x)
)

(5.11)

(see Remark 5.4) for allψ ∈ Lp1(·)(Ω) with ‖ψ‖p1(·) ≤ 1 (or equivalently, for all
ψ with ‖ψ‖p1 ≤ C with fixedC < ∞).

We intend to chooseψ(x) = f(x)
w(|x−x0|) with f ∈ Lp(·) in (5.11). Let us show

that in this case

‖ψ‖p1 =

∥∥∥∥
f(x)

w(|x− x0|)

∥∥∥∥
p1

≤ C (5.12)

for all f ∈ Lp(·) with ‖f‖p ≤ c. Sincer
n

p(x0) w(r) ∈ Φ0
n, by Corollary 3.5 we

havew(|x− x0|) ≥ c|x− x0|Mw+ε, ε > 0 and then

∫

Ω

|ψ(x)|p1(x) dx ≤ c

∫

Ω

|f(x)| p(x)
p∗

|x− x0|(Mw+ε)p1(x0)
dx. (5.13)

To obtain (5.12), it remains to apply the Hölder inequality in (5.13) with the
exponentsp∗ andq∗ = p∗

p∗−1
and take into account that

Iq∗

(
1

|x− x0|(Mw+ε)p1(x0)

)
=

∫

Ω

dx

|x− x0|(Mw+ε)q0

where(Mw + ε)q0 < n under the choice of smallε < n
q0
−Mw.

In view of (5.12), we may apply estimate (5.11). Then (5.10) implies

Ip(Mwf) ≤ c

∫

Ω

(
[w(|x− x0|)]p1(x0)

[
1 +M

(∣∣∣∣
f(y)

w(|y − x0|)

∣∣∣∣
p1(y)

)])p∗

dx.
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By property (4.7), this yields

Ip(Mwf) ≤

≤ c

∫

Ω

{
[w(|x− x0|)]p(x0) +

[
[w(|x− x0|)]p1(x0)M

( |f(y)|p1(y)

[w(|y − x0|)]p1(x0)

)]p∗}
dx.

Here the integral of the first term is finite sincew(|x − x0|) ≤ |x − x0|mω−ε

according to (3.4) andmwp(x0) > −n. Hence

Ip(Mwf) ≤ c + c

∫

Ω

[
Mwp1(x0)

(|f(·)|p1(·))(x)
]p∗

dx (5.14)

in notation (2.1).
As is known [29], p. 201, the weighted maximal operatorMwp1 is bounded

in Lp∗ with a constantp∗ > 1 if the weight[w(|x−x0|)]p1(x0) is inAp∗ . According
to condition (3.13) of Lemma 3.9 this is the case if− n

p(x0)
< mw ≤ Mw < n

q0

which is satisfied in the case under consideration.
Therefore, by the boundedness of the weighted operatorMwp1(x0)

in Lp∗,
from (5.14) we get

Ip(Mwf) ≤ c + c

∫

Ω

|f(y)|p1(y)·p∗ dy = c + c

∫

Ω

|f(y)|p(y) dy < ∞. (5.15)

20 The remaining case
To get rid of the right-hand side bound in (5.9), we may split integration over

Ω into two parts, one over a small neighborhoodBδ = Bδ(x0) of the pointx0,
and another over its exteriorΩ\Bδ, and to chooseδ sufficiently small so that the
numberp∗(Bδ)−1

p(x0)
is arbitrarily close top(x0)−1

p(x0)
= 1

q(x0)
. To this end we put

Mw = χBδ
MwχBδ

+χBδ
MwχΩ\Bδ

+χΩ\Bδ
MwχBδ

+χΩ\Bδ
MwχΩ\Bδ

(5.16)

= : Mw
1 +Mw

2 +Mw
3 +Mw

4 .

Since the weight is strictly positive beyond any neighborhood of the pointx0, we
have

Mw
4 f(x) ≤ CMf(x). (5.17)

ForMω
3 we have

Mw
3 f(x) = sup

r>0

χΩ\Bδ(x0)(x)

|Br(x)|
∫

Br(x)∩Bδ(x0)∩Ω

w(|x− x0|)
w(|y − x0|) |f(y)| dy.

Here|x − x0| > r > |y − x0|. Observe that the functionwε(t) = w(t)
tMw+ε is a.d.

for anyε > 0 according to (3.6). Therefore

w(|x− x0|)
w(|y − x0|) =

wε(|x− x0|)
wε(|y − x0|) ·

|x− x0|Mw+ε

|y − x0|Mw + ε)
≤ C

|x− x0|Mw+ε

|y − x0|Mw + ε
.
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Hence
Mw

3 f(x) ≤ CMMw+εf(x) (5.18)

whereMMw+εf(x) is the weighted maximal function with the power weight
|x− x0|Mw+ε. Similarly we conclude that

Mw
2 f(x) ≤ CMmw−εf(x). (5.19)

Thus from (5.16) according to (5.17), (5.18) and (5.19) we have

Mwf(x) ≤ χBδ
MwχBδ

f(x)+Mf(x)+MMw+εf(x)+Mmw−εf(x). (5.20)

Here the operatorsM,MMw+ε andMmw−ε are bounded in the spaceLp(·)(Ω),
because the boundedness condition (2.2 is satisfied forβ = Mw + ε andβ =
mω − ε under a choice ofε sufficiently small.

It remains to prove the boundedness of the first term on the right-hand side of
(5.20). This is nothing else but the boundedness of the same operatorMw over
a small setΩδ = Bδ(x0) ∩ Ω. According to the previous case, this boundedness
holds if

− n

p(x0)
< mw ≤ Mw <

n

qδ

(5.21)

whereqδ = p∗(Ωδ)−1
p(x0)

and p∗(Ωδ) = min
x∈Ωδ

p(x). Let us show that, given the

condition− n
p(x0)

< mw ≤ Mw < n
q(x0)

, one can always chooseδ sufficiently
small such that (5.21) holds. GivenMw < n

q(x0)
, we have to chooseδ so that

Mw < n
qδ
≤ n

q(x0)
. We have

n

qδ

=
n

q(x0)
− a(δ), where a(δ) =

n

p(x0)
[p(x0)− p∗(Ωδ)] .

By the continuity ofp(x) we can chooseδ so thata(δ) < n
q(x0)

− Mw. Then
n
qδ

> Mw and condition (5.21) is fulfilled. Then the operatorMw is bounded in

the spaceLp(·)(Bδ) which completes the proof.
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[14] O. Kov́ačik and J. Ŕakosňik. On spacesLp(x) andW k,p(x). Czechoslovak
Math. J., 41(116):592–618, 1991.

[15] S.G. Krein, Yu.I. Petunin, and E.M. Semenov.Interpolation of linear op-
erators. Moscow: Nauka, 1978. 499 pages.

[16] S.G. Krein, Yu.I. Petunin, and E.M. Semenov.Interpolation of linear oper-
ators, volume 54 ofTranslations of Mathematical Monographs. American
Mathematical Society, Providence, R.I., 1982.

18



[17] L. Maligranda. Indices and interpolation.Dissertationes Math. (Rozprawy
Mat.), 234:49, 1985.

[18] Kh. M. Murdaev and S.G. Samko. Fractional integro-differentiation in the
weighted generalized Ḧolder spacesHω
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