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Abstract

We study the boundedness of the maximal operator in the spaces, )
over a bounded open setRi" with the weighto(z) = [ ;- wi(|z —xk|),
x;, € Q, wherew;, has the property thatﬁmwk(r) € @0, whered! is
a certain Zygmund-type class. The weight functiansmay oscillate be-
tween two power functions with different exponents. It is assumed that the
exponent(z) satisfies the Dini—Lipschitz condition. The final statement
on the boundedness is given in terms of the index numbers of the functions
wy, (similar in a sense to the Boyd indices for the Young functions defining
Orlich spaces).
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1 Introduction

Nowadays there is an evident increase of interest to harmonic analysis problems
and operator theory in the generalized Lebesgue spaces with variable exponent
p(z) and the corresponding Sobolev spaces, we refer, in particular to surveys
[10], [13], [25], [7] and to [28], [14] for the basics on the spad&s).

For the boundedness results of maximal operators we refer to L. Diening [5]
for bounded domains in
mathbbR™ and to D.Cruz-Uribe, A.Fiorenza and C.J. Neugebauer [4] and A.Nekvinda
[21], [20] for unbounded domains, and to V.Kokilashvili and S.Samko [12] for
weighted boundedness on bounded domains.

We refer also to L.Diening [6] and D.Cruz-Uribe, A.Fiorenza, J.M.Martell,
and C.Perez [3] where there are also given new insights into the problems of
boundedness of singular and maximal operators in variable exponent spaces.

In [12] the power weight$z — z,|” were considered and one of the main
points in the result obtained in [12] was that in conditiomoonly the values of
p(z) at the pointz, are of importance:

~ plao) == q(o)

(under the usual log-condition grniz)).

A problem of more general weights remains open. An explicit description of
weights for which the maximal operator is bounded in the spaé€sis a chal-
lenging problem. What should be the correspondipg,-condition? It is natural
to suppose that the Muckenhoupt condition written in the natural terms of the in-
verse Hblder inequality may be the corresponding characterization. Whether this
IS or not, is an open question.

In this paper we prove weighted boundedness for the maximal operator in the
spaced.?() (€, p) for some class of general, that is, non-power weights, which
are "attached” to a finite number of pointg € 2 (radial type weights of the
Zygmund-Bary-Stechkin class). Weightsn this class are almost increasing or
almost decreasing and may oscillate between two power functions with different
exponents and have non-coinciding upper and lower indiegsand M, (of
the type of Boyd indices). In comparison with the approach in [12], the main
problems arising are related to the situation when the indiggand M, do not
coincide, in particular whem,, is negative while\/,, is positive.

The paper is organized as follows. In Section 2 we formulate the main result
- Theorem A - on the weighted boundedness of the maximal operator In Sec-
tion 3 we recall the notion of the upper and lower indices of almost increasing
non-negative functions and develop some properties of weights in the Zygmund-
Bary-Stechkin class, which we need to prove the main result. Section 4 contains
some technical lemmas related to the variable expom@nt Finally, Section 5
contains the proof of Theorem A.

We recall the main notation. B2 we denote an open bounded sethif,

2



n > 1, andp(x) a function o} satisfying the conditions

l<p.<plx)<p<oo, €0 (1.1)
and
A 1 _
|z—y]

By L*0)(Q, p) we denote the weighted Banach space of all measurable func-
tions f : Q2 — C such that

1flzror,p) = llofllp) = inf {A >0 / ’w
Q

Notation

a.d. =almost decreasing=- f(z) > Cf(y) forz < y,C > 0;

a.i. =almost increasing=- f(x) < Cf(y) forz < y,C > 0;

Q2 is a open bounded set ";

|| is the Lebesgue measure@f

X« IS the characteristic function of a $ef

f~g <= thereexistC > 0andC,; > 0 such thatC; f(z) < g(z) <
Br(w) ={y € R": |y —a| <7}

p(z)
dr <13 < 0.

(1.3)

|B.(2)| = \S" !|'is the volume ofB, (z);

p 1 —
() ’1<p<)<ooy p(I)—i_m:l’
pe=1i nfp( ), p" = supp(x);
¢ = nf q(z) = 32 P, gt = supg(r) = B

€
C, c may denote different positive constants.

2 Statement of the Main Results

Let

: Pe) Wl
MEf (@) = sup (x)|B,,(4Q ) Y (2.1)

where
m
= Hwk(]:E — xyl), € Q.
k=1

We write M = M" whenp(t) = 1.



In [12] there was proved the boundedness of the operatoiin the case of
the power weighp(x) = |z — z0|%, 2o € Q under the following (necessary and
sufficient) condition

pao) = bl &2
In the main result of this paper, see Theorem A, we deal with a certain class
of weights which may oscillate between two power functions (radial Zygmund-
Bary-Stechkin type weights).

The Zygmund-Bari-Stechkin clask’ of weights and the upper and lower
indices of weights (of the type of the Boyd indices) used in the theorem below
are defined in Section 3.

Theorem A . Let p(x) satisfy conditions (1.1), (1.2). The operat® is
bounded inLP@) (€, p) with the weightp(z) = [, wi(lz — 2i]), 2 € Q,
wherewy (1) are such functions thatr@s wy (r) € @Y, if

<My < My, < ——— , k=1,2,..,m. (2.3)
Q(l"k)

p(wk)

3 Preliminaries on Zygmund-Bary-Stechkin classes.

3.1 Index numbersm,, and M, of non-negative a. i. functions
Let
W ={w e C([0,4]) : w(0) =0, w(z) >0 for z>0, w(x) isa.i}. (3.1)

The numbers

In <lim inf w(h"”)> In { lim sup w(hh:”) In  lim sup w(hhr)
h—0 w(h) h—0 w( ) . hs0 w( )
My = Sup = sup = lim
w>1 Inz 0<z<1 Inz a—0 Inz
and
: w(hx) . w(ha)
In (hl}{l jélp w(h) ) In (hr}? _S}(L]lp o )
M, = sup = lim
a>1 Inz T—00 Inz

(see [22], [24], [23]), are known ake lower and upper indicesf the function
w(z) (compare these indices with the Matuszewska-Orlicz indices, see [17], p.
20; they are of the type of the Boyd indices, see [15], p. 75; [16], or [2], p. 149
about the Boyd indices). We hate< m,, < M,, < oo for w e W.

We call a functionw(x) equilibratedor non-oscillating if A, = m,,.

Remark 3.1. The upper and lower indices may be also well defined for
functionsw(x) positive forz > 0 which do not necessarily belong i@, for
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example, if there is given a functian(z) such thatw,(z) := z*w(z) is in W,
then the indices,,, andM,,, of w,(z) are well defined and there also exist the
indicesm,, and M, of w(x) and

My, = @+ My, My, =a+ M,

in this case.
We find it convenient to introduce the following class of functions, the indices
m,, and M, of which may be negative:

W={w: t"w(t) €W forsome acR'}.

3.2 The Zygmund-Bary-Stechkin classb)

Lety > 0. The following classcbg was introduced and studied in [1] (with
integery); there are also known "two-parametrical” clasééso <<y < oo,

see [19], [18], [27] and [26], p. 253). Observe that in [30], [31] there were
considered more general cIas@Z%j)) with limits which may "oscillate”; the
class®? corresponds to the case whefe) = +° = 1 andb(x) = 7.

Definition 3.2. ([1]) The Zygmund-Bary-Stechkin type cla@,%, 0<vy<
o0, is defined asp? := 2° N Z,, where 2’ is the class of functions) € W
satisfying the condition

h
/ wdm < cw(h) (Z°)
0 T
andZ, is the class of functiong < 1/ satisfying the condition
" w(x) w(h)
| e < e (2,)

wherec = ¢(w) > 0 does not depend aine (0, /.

In the sequel we refer to the above conditionsZt§{and . )-conditions.

We note that each of the inequaliti€8’§ and . is invertible if they both
are satisfied. Namely, the following statement holds.

Lemma 3.3.Letw(r) € ®3, v > 0. Then

h L

/wmmwm/wwwwmm (32)

the latter equivalence holding on any subinterf@all — 6], 6 > 0.

The following statement is valid, see [22],[24] for= 1 and [11] for an
arbitraryy > 0.



Theorem 3.4.A functionw € W belongs taz? if and only ifm,, > 0 and it
belongs taz,, v > 0, if and only if A, < v, so that

we D) = 0<my <M, <. (3.3)

Besides this, fow € <I>2 and any= > 0 there exist constants = ¢;(¢) > 0 and
co = co(e) > 0 such that

ctMete <aw(t) < ept™E, 0<t <L (3.4)
The following properties are also valid

my =sup{A € (0,1): t w(t) isa.l, (3.5)

M, =inf{p € (0,1) : t *w(t) isa.d}. (3.6)

Corollary 3.5. Letw(t),0 < ¢ < ¢, be such a function thatw(t) € Z° for
somea € RY. Then for any > 0 there exist; > 0 such that

w(t) < e t™eTE, (3.7)
Similarly, ift*w(t) € Z,, then for anye > 0 there exist; > 0 such that
w(t) > cytMete, (3.8)

(The indicesn,, and M,, may be negative in this case).

Remark 3.6.1f w € W andm,, > 0, thenw € W.
Indeed, leta € R! be such thaiv,(t) = t“w(t) € W. Then according to

(3.5) the function-22_ is a.i. for any= > 0. Butm,, = m, + a, SO that-2

Fmwg —€ tMw —€

is a.i. In particular, the functiom itself is a.i., which means that it is V.

Remark 3.7. Functionsw € Z,,~ > 0, satisfy the doubling condition
w(2r) < Cw(r),0 <r </ (3.9

which follows from the fact that the functioﬁyﬁtﬁ is a.d. for everyy > M,
according to (3.6) (observe that, is finite sinceM,, < v by Theorem 3.4).

We shall need the following lemma.

Lemma 3.8.Letw € W and M,, < . Then—L—~ € Z°if AM,, < ~, that

_ [w(®)]*
is,

[ dt g
/ Y S¢ i ~ 0<r<d (3.10)
[w(®)* ~ [w(r)]
Proof. Forw,(x) = m from the definition of the lower index we easily
obtain
My, =7 — AM,.

Hencem,,, > 0. Itis easily checked that; W, that is, there exists a number
such that®w (t) is a.i. Thenw; € W according to Remark 3.6 and consequently
wy, € Z° by Theorem 3.4. 0



3.3 On radial A,-weights generated by oscillating functions
w.

Let p(x) = [w(]z — z0])]*, whereX € R!, x € R™ andx, is a fixed point inR"
andw(r) is a function such that*w(r) € W for somea € R'. The following
statement provides conditions in terms of the lower and upper indigeand
M,, of the functiomw(r), under whichp(z) = [w(|z — x¢|)]* is @ Muckenhoupt
weight of the class!,. According to the definition of the weighted space given in
(1.3), we use the following definition of the clads = A,(R"™), p = const, 1 <

p <0,

1 1 1=qqy i 00
Ap = {p~ Sup (5/;)(9:)@) (a/m(x)] d ) < } (3.11)

Q Q

wheresup is taken with respect to all cubeslrp, + % = 1, see e.g. [29] o,-
weights.

Lemma 3.9. Letw € W, A € R! andQ a bounded domain iiR”. Then
[w(]z — xzo])]* € Ap(Q) if

[w(r)]¥r", [w(r)] " e 2°. (3.12)

Condition (3.12) is equivalent to the following inequalities in terms of the lower
and upper indices of the functian(r)

LA My < My < % when A>0 (3.13)
Ap Aq
and n n
——— < my < M, < — when \<0. (3.14)
Alg [Alp

Proof. For radial weights thd,,-condition (3.11) takes the form

r r p—1
/[p(t)]pt”_ldt (/[p(t)]qtnldt) <Cr", 0<r<{=diamf),

0 0
(3.15)

whereC' > 0 does not depend on > 0, see [8], [9]. We rewrite this for

p(t) = [w(t)]* as
/wlT(t)dt (/sz(t)dt) < O (3.16)

0 0

wherew, (t) = [w(t)]*t", wo(t) = [w(t)]7". The feasibility of condition
(3.16) is obviously connected with validity @°- condition of Subsection 3.2
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for functionsw; (t) andwy(t). By Theorem 3.4, the functions, (¢) andws(t)
satisfy this condition if and only if their lower indices,,, andm,,, are strictly
positive. To calculate these indices, suppose ithat0. We have

Moy, =N+ APMy, My, = N — ApM,,

and the positivity of these numbers leads to condition (3.13). Similarly the case
A < 0 is considered.
Under condition (3.13) we then have

0 0

Thus, (3.16) and consequently (3.15) are satisfied. O

4 Preliminaries related to the variable exponent space

4.1 Some basics

We recall some basic facts for the variable exponent spa&esQ2) and refer
e.g. to [14] for details. The &lder inequality holds in the form

[ 5@ < K1l - ol @.1)
Q

with & = - + . The modulad,(f) = [ | f(z)]"*) dz and the normj f ||, are

Q
simultaneously greater than one and simultaneously lesslthan

A0 < L) < |11 i [1£]], <1 (4.2)
and )
LB < (e < A1, i [1£ = (4.3)
From (4.2) and (4.3) it follows that
a<|flp<e = a<Ig(f)<a (4.4)
and
Ci<IHf)<Cy = C5<|fll, <Cy (4.5)

with ¢; = min (c?,c’f) ,C4 = max <c’2’*,c§> ,C3 = min <C’11/p*,011/p*) and
Oy = max (c;/p*, o

The imbedding

P9 C LW, 1< r(x) < pr) <p* < oo
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is valid if |2 < co. In that case

£y < mll ey m= a2+ (1 —a)lQl, (4.6)

wherea; = 1nf ) anda, = sup r(z)
b SUD )

Lemma 4.1.Let() be a bounded set iR", the exponent satisfy conditions
(1.1), (1.2) and letv be any function such that there exist exponentsc R!
and the constants;, > 0 andc, > 0 such thate;r® < w(r) < cr?, 0 <r <
¢ = diam(2). Then

1

o lwllr = 2o )" < [w(|a — @) < Clw(le — w)PP™, (4.7)

whereC > 1 does not depend an z, € €.

Proof. Let
gl 0) = [w(fz =z 7

To show that} < g(z,20) < C, (x,z0)| < Cy, Cy = InC, we
observe thalin g(z, zo)| = |p(z) — p(x )| \Inw(|x — x0|)| Therefore,

|Inw(]z — xol)|
l 20

|z—a0|

|in g(x, x0)| = |p(x) — p(wo)| - [Inw(|z — xo])| < AL

which is bounded by the condition an O

4.2 Auxiliary lemma for averages
Let

w [w(lz — o))" /()]
M) =G | W w68
By (x)

denote the weighted means related to the weighted maximal operator (2.1). In
(4.8) we assume thgt(y) = 0 for y & 2. We write M, f(z) := M;”Af(a:)’A_o

In general, it will be admitted thatmay depend on the pointe ). Observe
that the functiorjw(¢)]*® is also of the type of the functiom(t), that is, it also
oscillates between two power functions.

Lemma 4.1l . Letw(r) € Z, and\(z) > 0. Then the inequality

e Tl — 2P dy C
M) = P [ (4.9)

B (x

holds withc > 0 not depending om > 0, xy € R™ and onz in any setD C R"

on whichsup A(z) < 7.
€D v



Proof. We distinguish the cases— zo| > 2r and|z — x| < 2r.
In the caseéx — xy| > 2r we have

1
|y—$0|2|$—xof—\y—l‘\2’f—xo|—7“2§|x—l‘o|-

Since the functionw € Z,, C W is a.i., we havev(|y — zo|) > cw (]z — x|).
Taking also into account the doubling property (3.9), we obtain

w(ly = zol) 2 cw(|z — zo|)

and then estimate (4.9) becomes evident six{eg > 0.
Let|z — x| < 2r. Observe that in this case

B(z,r) C B(xo,3r)

sincely —z| <r = |y—uxzo| <|y—z|+ |z —x0| < 3r. Hence

e [l — P dy
e T AT

Bsr(x0)

_ [w(lz — 2o L 2 )y
S el i R £ 2

B3, (0)

Then by Lemma 3.8 we get

MP(1) < ¢ (%)M <c (w(%))m) <ec

5 Proof of Theorem A

5.1 Reduction to the case of a single weight

Remark 5.1. It suffices to prove Theorem A for a single weiglitr — xo|), zo €
Q, tiaw(t) € L.
Indeed, let2 = J Q where(2,, contains the point,, in its interior and does

k=1
not containe;, j # k in its closure. Then

11 wi-u)) D A 2@ o =t (5.1)
k=1

Lr() (Q, ﬁ

k=1
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whenever < p_ < p, < oo. This equivalence follows from the easily checked
modular equivalence

( H \x—xky) ZP’ v)wi(|z — 1)),

if we take (4.4) and (4.5) into account.
Then, because of (5.1), the statement of Remark 5.1 is obtained via introduc-

tion of the standard partition of unity = > ay(x), whereay(x) are smooth
k=1

functions equal td in a neighborhoocB(x;, e) of the pointz, and equal to
0 outside its neighborhoo® (zy, 2<), so thatay(z) [wy(jz — z;))]™ = 0in a
neighborhood of the pointy, if & # ;.

In what follows,2 is an open bounded set B* andz, € Q.

5.2 A pointwise estimate for the weighted means

Theorem 5.2.Letp(x) satisfy conditions (1.1) and (1.2) and letc . If

0<my< M, < ——. (5.2)
Q(wo)
1 1 _ _1
Wherem =1 POL then
p(z)
w(|z — o) / |/ (y)ldy 1 /
<c|l+ [ ()P
| B ()] w(|y — o) | B ()]

B, (z) B, (z)

(5.3)

forall f € L0 (Q) such that|| f||,) < 1, wherec = ¢(p, w) is a constant not
depending orx, » and z.

Proof. From (5.2) and the continuity pfx) we conclude that there exists a
d > 0 such that
Myq(x) <n forall |z — x| <d. (5.4)

Without loss of generality we assume tllat 1. Let

pr(r) = min p(y)

ly—ai<r
andqiz) =1— 45 - From (5.2) itis easily seen that

Myq-(z) < n if |x—x0]§g and0<r§g. O (5.5)

O
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1° The caselx — xo| < 9 and 0 < r < ¢ (the main case)

In this case, applying thedider inequality with the exponents(z) andg,(z)
to the integral on the right-hand side of the equality

p(x)
fly) N\ e / f(y)]
M, —H— = — 2 _d ,
‘ (w<|y—xo|>> ) w(ly — o)) Y
Br(x)
we get
‘ M( /) )W’
"\ w(ly — zol) =
p(x) p(x)
pr(x) qr(x)
dy
pr . ES.ES
< | [ 170 / wlly —aone@ | OO
Br(x) Br(x)

where the last integral converges, since for smel x| one has
[w(ly = 0]))* = ely — | Mo

where one may choose sufficiently small so that according to (5.4)y —
xo|Mete)ar@) > |y — 70|79 for somes > 0.

We may make use of estimate (4.9) in (5.6), since W andw € Z,, under
the conditionM,, < ( 5 <n according to Theorem 3.4. We obtain

p(z)
pr(z)

p(x) _ p( )
‘Mr (—f(y) ) < o tellr = 2ol [ 1rwpe
w(|y — zol) =)
Br(z)
Here
/ )P dy < / dy + / F)P® dy,
B)(x) " By (x)
{y: Ifly)| > 1}

sincep,.(z) < p(y) for y € B,(x). Sincep(z) is bounded, we see that

np(z)
7‘Pr(z)

i, (Y[ s B L g

Br( )

12



Sincer < g < 1 and the second term in the brackets is also less than or equal to
5, we arrive at the estimate

C
MEFP < o [ [ 1P ay| <

r(z)
re Br(x)

r(z)—p(z)
<o e L [ ppo

By (z)

From here (4.2) follows, since

n Pr(@)—p(@)
r T (@ <ec.

Indeed,

P RS 2 e @) pr(@)in g

where
n

o [p(@) = pe(@)] in -] < nlp(e) 56| 7

with &, € B,.(z), and then by (2.2),

1
= o) - pi(2)] 1n1\§nA e,

pr r In =57

sincelz — &, | <.

20 The casgx —xo| > 3,0 <r < 4.

This case is trivial, because

ly — o] > v — 0| — [y — 2| >

l\DI&
%I&

d
1
Taking into account tha?% is almost decreasing, we then havfly — z¢|) >
Cw(4) = const. Sincew(|z — z|) < Cw(diamg), it follows that

M f(z) < eM, f(a),

and one may proceed as above for the gase0 (the conditionz — z¢| < g IS
not needed in this case).

13



3% The caser > 4.

This case is also easy. It suffices to show thét f (x) is bounded. We have

wr - culdiamo) () )
My < =y / wlly—zop ¥ / wlly— w0

y—wo|< g ly—zo|> 4

Here the first integral is estimated via thélHer inequality with the exponents

= min_p(y) and gz = pls
8

ly—zo|< g

p

ool

which is possible sincaq% < n. The estimate of the second integral is trivial
sincely — x| > £.

Corollary 5.3. Let0 < m,, < M, < q(zo) . If conditions (1.1), (1.2) are
satisfied, then

MY f ()P < e (1+ M| FOPY] () (5.7)
forall f € L0)(Q) such that] f]|,) < 1.

Remark 5.4. In the non-weighted casgx) = 1 the estimate (5.7) is known
to be valid if1 < p(x) < p* < oo instead of condition (1.1), see [5].

5.3 Proof of Theorem A itself

To prove Theorem A, we have to show that
HwaHp(-) =c (5.8)
in some ball| f||,(, < R, which is equivalent to the inequality

L,(M"f) <c for [[f] . <R

According to (4.7) we obtain

p(z)

LMY f) < c/w(|x — x| )P@0) dx.

Q

(5.8) first forWe prove (5.8) first for

M (i) @

ey < M, < (5.9)
p(l‘o) qo

14



whereL = 2=1 Opserve that- < —- so that the interval (5.9) fat,, M,
9 p(xo0) do q(zo0)

is somewhat narrower than the whole interéeu]ﬁ, q%) After that we treat
the remaining case.

1° (o) < My <55
Following the idea in [5], we represent this as
Px
fy) pe)
I(M" </ — pl(“)/\/l( da,
(5.10)
where ()
P\
€Tr) =
n() P+
Estimate (5.7) withv = 1 says that
MY@P @ < e(1+ MmO (@) (5.11)

(see Remark 5.4) for alb € LPrO)(Q) with |[¢]|,, () < 1 (or equivalently, for all
Y with [[¢||,, < C with fixedC' < c0).

We intend to choose(z) = w(‘{;( ) with f € L*() in (5.11). Let us show
that in this case

()

Hmm—ww <c (5.12)

[l =

p1

for all f € L*O) with |||, < c. Sincerm=ww(r) € ®°, by Corollary 3.5 we
havew(|x — zo|) > c|z — zo|M»*¢, ¢ > 0 and then

p(z)
1(z) |f ()] >
/W(:U)’P dx < c/ P dx. (5.13)
Q

Q

To obtain (5.12), it remains to apply thedler inequality in (5.13) with the

exponentg, andq, = -~ and take into account that
h -/
|aj_x0’Mw+Ep1 330 ’m_xO’Mw‘i’E
where(M,, + £)qo < n under the choice of small< &+ — M,,.

In view of (5.12), we may apply estimate (5. 11) "Then (5.10) implies

p1(y) Px
dz.

f(y)
1+M(Mw—%0

15
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By property (4.7), this yields
L(M"f) <

< CQ/ {[w(|a: — z0|)]P) 4 [[w(]x — zo[)]P =) M ([w(|Lf(—yl’:|l)(T;($°))r*} dx.

Here the integral of the first term is finite sined|x — xy|) < |z — xo|™°
according to (3.4) aneh,,p(x¢) > —n. Hence

e e [ (M gropO)E] e 61

in notation (2.1).

As is known [29], p. 201, the weighted maximal operatd”' is bounded
in LP- with a constanp,. > 1 if the weightw(|z—z|)]P**) isin A, According
to condition (3.13) of Lemma 3.9 this is the case#— < My g M, < =&
which is satisfied in the case under consideration.

Therefore, by the boundedness of the weighted operstst' ™ in L,,_,
from (5.14) we get

LMY f)<c+ c/ |f ()PP @ P dy = ¢ + c/ ()PP dy < co.  (5.15)

2% The remaining case

To get rid of the right-hand side bound in (5.9), we may split integration over
) into two parts, one over a small neighborhaBgl = Bj;(z) of the pointxy,
and another over its exteriér\ Bs, and to choosé sufficiently small so that the

numberf=>¢—= ?5)) is arbitrarily close to”("’o—

MY = XBaMwXBa+X35MwXQ\Ba+XQ\B§MwXBJ+XQ\BsMwXQ\Ba (5.16)
=: MY + M5 + M5 + My,
Since the weight is strictly positive beyond any neighborhood of the pgijnte

have
MY f(z) < CMf(x). (5.17)

For MY we have

N G o) w(jz — zo)
M3 f(z) = sup Kok / e )] .

B (z)NBs(x0)NQ2

Here|z — xo| > r > |y — zo|. Observe that the function.(t) = t;‘,’% is a.d.
for anye > 0 according to (3.6). Therefore

w(lz —aol) _ we(le —wol) | — xo[M [ — o[

w(ly —xol)  we(ly—wo|) |y—a0|My+e) = |y—xo|My+e
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Hence
M5 fx) < MM f(x) (5.18)

where M™M=+ f(z) is the weighted maximal function with the power weight
|z — xo|Mw*, Similarly we conclude that

My f(z) < OM™ = f(a). (5.19)
Thus from (5.16) according to (5.17), (5.18) and (5.19) we have
MY f(x) < xBMUXB f(2) + Mf(2) + MMeTe f(z) + M™ 7 f(z). (5.20)

Here the operatorgt, M=+ and M™+~¢ are bounded in the spade®)((2),
because the boundedness condition (2.2 is satisfied fer M,, + ¢ and =
m,, — € under a choice of sufficiently small.
It remains to prove the boundedness of the first term on the right-hand side of

(5.20). This is nothing else but the boundedness of the same opar&taver
a small set)s = Bs(zo) N 2. According to the previous case, this boundedness
holds if n

——— <My < M, < — (5.21)

p(x0) qs5

whereg; = L and p, () = min p(z). Let us show that, given the
xells

condition—zﬁo) < my < M, < ﬁ one can always choosgesufficiently

small such t%at (5.21) holds. Givev,, < we have to choosé so that

M, < < 2. We have
a5 q(wo)

q(zo)’

% = o —a(9), where a(d)= ()

[p(20) — (2] -

By the continuity ofp(x) we can choosé so thata(d) < 2 — M,. Then
o> M, and condition (5.21) is fulfilled. Then the operatbt®” is bounded in

the spacd.”")(Bs) which completes the proof.
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