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CHARACTERIZATION OF RIESZ AND BESSEL POTENTIALS
ON VARIABLE LEBESGUE SPACES

ALEXANDRE ALMEIDA AND STEFAN SAMKO

ABSTRACT. Riesz and Bessel potential spaces are studied within the framework
of the Lebesgue spaces with variable exponent. It is shown that the spaces of these
potentials can be characterized in terms of convergence of hypersingular integrals,
if one assumes that the exponent satisfies natural regularity conditions. As a
consequence of this characterization, we describe a relation between the spaces of
Riesz or Bessel potentials and the variable Sobolev spaces.

1. INTRODUCTION

The Lebesgue spaces Ly.y with variable exponent and the corresponding Sobolev
spaces W;(?) have been intensively investigated during the last years. We refer to the

papers [16], [27], where the basics of such spaces were developed, to the papers [9],
[23], where the denseness of nice functions in Sobolev variable spaces was considered,
and to the papers [3], [5], [7], [8], [13], [15],[18], [21], [22] and the recent preprints [2],
[4] and references therein, where various results on maximal, potential and singular
operators in variable Lebesgue spaces were obtained (see also the surveys [12], [25]).
The interest to the Lebesgue spaces with variable exponent during the last decade
was in particular roused by applications in problems of fluid dynamics, elasticity
theory and differential equations with non-standard growth conditions (see [8], [19]).

We deal with the spaces of Riesz and Bessel potentials with densities in the spaces
Lyy(R™). For the constant p it is known, that the left inverse operator to the
Riesz potential operator Z® within the frameworks of the spaces L,(R") may be
constructed in terms of the hypersingular integrals, and the range Z%[L,] is described
in terms of convergence of those hypersingular integrals, see [20], [24]. The extension
of the statement on the inversion to the case of variable exponents was recently given
in [1].
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In this paper we give a description of the range of the Riesz and Bessel potential
operators, Z%[Ly.)| and B*[Ly.)], respectively, in terms of convergence of hypersin-
gular integrals. As a consequence, we also establish a connection of the spaces of
Riesz and Bessel potentials with the Sobolev spaces W;’Z_). This partially extends
the known results for constant p (see [24]) to the variable exponent setting.

The paper is organized as follows. In Section 2 we provide notation and necessary
preliminaries and auxiliary results which will be often used throughout the text. The
first main result, Theorem 3.2, given in Section 3 contains a characterization of the
space of Riesz potentials in terms of fractional derivatives. In Section 4 we consider
some spaces of fractional smoothness defined in terms of hypersingular integrals and
study their connection with the space of Riesz potentials, the main results being
given in Theorems 4.1 and 4.4. The study of the space of Bessel potentials on Ly.)
and its description are made in Section 5, see Theorem 5.7. In the last section the
connection between the spaces of potentials and the Sobolev spaces with variable
exponent is studied.

Throughout the paper, we shall consider standard notation or it will be properly
introduced whenever needed.

2. PRELIMINARIES

As usual, C§°(R") stands for the class of all C'*° functions on R"™ with compact
support. By S(R"™) we denote the Schwartz class of all rapidly decreasing C>°-
functions on R", and by S&’'(R") its dual. For ¢ € S(R"), by Fy (or ») we denote
the Fourier transform of ¢,

(Fy)(€) = / ¢€ p(z)dz, €€ R (2.1)

n

By Wy (R™) we denote the class of Fourier transforms of integrable functions.

By @'(R™) we denote the topological dual of the Lizorkin space ®(R™) consisting
of all functions ¢ € S(R™) such that (DP®)(0) = 0, for all 3 € N2, where D¥ is
the usual partial derivative. Two elements of §’'(R") differing by a polynomial are
indistinguishable as elements of ®'(R™) (see [24], Section 2.2).

By C (or ¢) we denote a general positive constant whose value is irrelevant and
may change at different occurrences.

2.1. On Lebesgue spaces with variable exponent. A detailed discussion of
properties of the variable Lebesgue spaces may be found in the papers [9], [10],
[16], [27]. We recall here some important tools and definitions which will be used
throughout this paper.
Let p: R™ — [1,00) be a (Lebesgue) measurable function. Put
p:=ess sup p(z) and p:=ess inf p(x).
rER? - r€ER™

By Ly (R") we denote the space of all measurable functions f on R™ such that the
modular

Lo(f)i= [ If@)p@ds
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is finite. Under this definition, this is a linear space if and only if p < oo, and we
only consider bounded exponents. LP()(R™) is a Banach space endowed with the
norm

f

Il =int {305 4y (£) <1} reo®). @)

This space inherits some properties from the classic Lebesgue spaces with constant
exponent. In fact, under the additional assumption p > 1, Ly)(R") is uniformly
convex, reflexive and its dual space is (isomorphic to) L, ()(R"), where p/(-) is the
natural conjugate exponent given by ﬁ + ﬁ = 1. An important property of
this space is that the convergence in norm is equivalent to the modular convergence:
given { fi breny C Lpy(R™), then || fi||py — 0 if and only if I, (fx) — 0, as k — oo.
Nevertheless, this generalized space has some undesirable properties. As mentioned
before, L,.)(R") is not translation invariant contrarily to its classic counterpart.

Similarly to the classic case, one defines the Sobolev space of variable exponent
Wi, (R"), m € No, as the space of all measurable functions f such that its (weak)

derivatives D? f up to order m are in L,y(R™). This is a Banach space equipped
with the norm

1 Fllmpey = D> D Flloy,  f € Wity (R).

18]<m

In order to emphasize that we are dealing with variable exponents, we always
write p(-) instead of p to denote an exponent function. In general, we will consider
function spaces defined on the whole Euclidean space R™. So, in what follows, we
shall omit the “R™” from their notation.

2.2. The maximal operator in Ly.). For a locally integrable function g on R",
the Hardy-Littlewood maximal operator M is defined by

r>0

1
Mg(r) = sup W /B(x,r) l9(y)| dy,

where B(z,r) denotes the open ball centered at x € R™ and of radius r > 0.

The boundedness of the maximal operator M was first proved by L. Diening
[5] over bounded domains, under the assumption that p(-) is locally log-Hdolder
continuous, that is,

C

S Sa— R™ —y| < 1/2. 2.3
ey TYERS loyl<Y 23)

p(z) = p(y)| <

He later extended the result to unbounded domains by supposing, in addition,

that the exponent p(-) is constant outside some large fixed ball. The general case

of the exponent p(-) non-constant at infinity, was considered in [18], where some

integral condition was imposed and in [3] where it was assumed that the exponent
is log-Holder continuous at infinity:

C

——~ _ z yeR" > |zl 2.4

Ip(z) — p(y)| <
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Condition (2.4) is equivalent to the logarithmic decay condition

(o) = p(o0)] <

__~ . zeR 2.5
e+ ° (25)

where p(o0) = |l‘im p(x).

Let P(R™) be the class of all exponents p(-), 1 < p < p < oo, such that M is
bounded on L,). Recently, L. Diening [6] obtained a certain necessary and sufficient
condition for the exponent p(-) to be in P(R™).

Although the space Ly.) is not invariant with respect to translations, and Young'’s
theorem in general fails in the case of variable exponents, in [23] it was shown that it
is possible to use the mollifier technique within the framework of these spaces, if one
assumes that the exponent p(-) satisfies the local logarithmic continuity condition
(2.3).

The approximation problem via mollifiers is closely related to the boundedness of
the maximal operator (see [29], I11.2.2). In [5], Stein’s theorem on convolutions was
extended to the variable exponent setting as follows:

Theorem 2.1. Let ¢ be an integrable function on R™ and define p.(-) = e "p(-/¢),
e > 0. Suppose that the least decreasing radial majorant of ¢ is integrable, i.e.,
A= [, sup |p(y)|de < co. Then

ly[>|z]
() supl(F * )] < 24 (MP)), f € Ly, € RY
If p(-) € P(R™), then also
(it) Nf * @ellpey < el fllney
(with ¢ independent of € and f) and, if in addition [, ¢(x)dz =1, then
(iii) f*p. — f ase — 0 in Ly and almost everywhere.

Theorem 2.1 is an important tool which allows us to obtain boundedness of various
concrete convolution operators, even in the case where they are defined by the
Fourier transform of their kernel.

2.3. The Riesz potential operator on variable Lebesgue spaces. We recall
that the Riesz potential operator T¢ is defined by

I%(x) ¢=/R _9w) dy,

w o —ylre
where ¢ is a locally integrable function with an appropriate behavior at infinity and
0<a<n.

The L.y — Lg-boundedness of Z% on L.y spaces was first considered in [22],
where the Sobolev type theorem for bounded domains was proved under the assump-
tion that the maximal operator is bounded in L,.). After L. Diening [5] has proved
the boundedness of the maximal operator, the conditional Sobolev theorem in [22]
became an unconditional statement. L. Diening [7] proved the Sobolev theorem on
R™ for p(-) satisfying the local logarithmic condition (2.3) and constant at infinity.

Some weighted version of the Sobolev theorem for R™ with the power weight
fixed to infinity, was obtained in [14]. Recently, C. Capone, D. Cruz-Uribe and A.
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Fiorenza [2] proved the Sobolev theorem on arbitrary domains for p(-) non-constant
at infinity. Their statement for the case of the whole space R" runs as follows.

Theorem 2.2. Let 0 < a < n and let 1 < p <p < n/a. Assume also that p(-)
satisfies the log-Hélder conditions (2.3) and (2.4). Then there exists ¢ > 0 such that

1Z% fllqcy < e lfllpe)s [ € Ly, (2.6)

where q(-) is the Sobolev exponent given by ﬁ = ﬁ — =, v eR™
2.4. Hypersingular integrals on L) spaces. We refer to [24] and [26] for the
theory of hypersingular integrals.

A typical hypersingular integral has the form

! / (Aif) (@) dy, a >0, (2.7)

dn (@) [yl e

where Ag f denotes the finite difference of order ¢ € N of the function f and d,, ()
is a certain normalizing constant, which is chosen so that the construction in (2.7)
does not depend on ¢ (see [24], Chapter 3, for details). It is well-known that the
integral (2.7) exists (for each z € R") if f € S(R™) and ¢ > «, for instance.

Following [24], we shall consider both a centered difference and a non-centered
one in the construction of the hypersingular integral. However, when we write A}"
without any specification we mean a non-centered difference. The important fact
here is that the order ¢ should be chosen according to the following rule (as stated
in [24], page 65), which will be always assumed in the sequel:

1) in the case of a non-centered difference we take ¢ > 2 [%} with the obligatory
choice ¢ = a for a odd;
2) in the case of a centered difference we take { even and £ > a > 0 .

In general, the integral in (2.7) may be divergent, and hence it needs to be properly

defined. We interpret hypersingular operators as D := l% D¢, where D¢ denotes

the truncated hypersingular operator

I B AN TP
Daf<x>_dn,z((1) /y|>€ [ dy , > 0. (2.8)

Sometimes D* is also called the Riesz fractional derivative since it can be inter-
preted as a positive fractional power (—A)?2 of the minus Laplacian.

In what follows, the limit above is always taken in the sense of convergence in the
L,y norm. This makes sense in view of the Proposition 2.3 below.

Proposition 2.3. If p(-) € P(R"), then the truncated hypersingular integral opera-
tor DY is bounded in Ly, for every e > 0.

Another important property of the truncated hypersingular integrals is the fol-
lowing uniform estimate:
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Proposition 2.4. Let 0 < a <n and p(-) € P(R") withp < Z. Then the composi-
tions DI are uniformly bounded in L.y with respect to €, that is,

IDEZ%lpc) < e llellpys Voo € Ly,
where ¢ > 0 does not depend on £ > 0.

The proof of these two propositions may be found in [1].

We would like to point out that the Riesz derivative D* does not depend on the
order ¢ taken in the finite differences. This is why we may omit the parameter ¢
in the notation D*. We refer to [24] for details and to [1] where this question was
discussed within the setting of the variable Lebesgue spaces.

An important fact concerning hypersingular integrals is their application to the
inversion of potential-type operators. There are many papers on this subject, but we
only refer to the books [24] and [26], where several references and historical remarks
may be found.

The inversion of the Riesz potential operator in the context of the L, ) spaces was
studied in [1], which generalized results from [24] for the case of constant p. The
inversion theorem from [1] can be formulated as follows.

Theorem 2.5. Let 0 < a <n and p(-) € P(R"). Assume also that p < Z. Then
D*Z% =, ¢ € Ly().
Moreover, the convergence holds almost everywhere as well, that is,
lim DEZ%p(2) = p(2),
E—

for almost all x € R™.

3. CHARACTERIZATION OF THE RIESZ POTENTIALS ON L.y SPACES
We define the space of Riesz potentials on L.y in a natural way as
ILyoyl =1{f: [=T%, ¢ € Ly}, 0<a<n.

Following approaches in [24], we will show below that the space Z%[L,] can be
described in terms of convergence of hypersingular integrals.

Lemma 3.1. Let 1 < p <p(x) <p < 2,z € R", with0 < a < n. Let p'()
be the usual conjugate exponent and q(-) be the Sobolev limiting exponent given by

ﬁ = m & Ifp(-) satisfies the logarithmic conditions (2.3) and (2.4), then so do
p'(-) and q(-)
Proof. The proof is direct. OJ

Theorem 3.2. Let 0 < a <n, 1 <p <p <2 andlet f be a locally integrable

function. Assume also that p(-) satisfies the log-Holder contmuity conditions (2.3)

and (2.4). Then f € I%[Ly), if and only if f € Lgy.), with q(l = () — 2 and there

exists the Riesz derivative D* f (in the sense of convergence in Ly.y).
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Proof. First, assume that f € Z%[L,]. The fact that f € L. follows from Theorem
2.2. On the other hand, as f = Z%p for some ¢ € Ly, then we have

DYf = lir%]D)?IO‘gp = (3.1)
e—
(convergence in L)) according to Theorem 2.5.
Conversely, let f € L) and suppose that its Riesz derivative D*f exists. Our
aim is to prove that f =Z°D"f and hence that f € Z%[Ly,)].

Both f and Z°D*f can be regarded as elements of ®’. Let us show that they
coincide in this sense. For all ¢ € &, we have:

[ oo = [ oo ([ 2 an)ay
= i [ (] ai o) ot

¢
S (=1)F () f(u) I (u + k2)
= lim /ko du | dz
0 e | Jre dp () |2]"+e

— lim Rnf(u) (/| wdz) du

e=0 2p>e nola) [2]7He

= lim f( ) DEZ%¢(u) du

e—0

= [ () ofu)du

The first equality follows from the Fubini theorem since the double integral converges
absolutely. In fact, since |¢(y)| < a +\ i with an arbitrary large N, then by Lemma

1.38 in [24], we have that Z°(|¢|)(z) is bounded and Z%(|¢|)(z) <

|z| — oo. Thus

S Grpee 8

dx

VTN A <c +c / / <0
p()( (|¢|)) >0 2 al>1 (1 + ‘x|)(nfa)p (=)

because ir%Rf (n — a)p'(z) > n. Hence, using Holder inequality we arrive at
reR™

- ID*F ) (01 (y) dy < ¢ D" fllpey 12D D) < o0

In the second equality, we notice that the convergence with respect to the L) norm
implies weak convergence in ¢’ (note that Z*¢ € ®). The third equality follows from
similar arguments to those used in the first one, and then by the change of variables
y — u+ kz, with fixed z. We only observe now that D f € Ly (cf. Proposition
2.3 and Lemma 3.1). Finally, the last passage is obtained by making use of the
Lebesgue theorem. Indeed, since ¢ € Ly (), then D2Z%¢p € Ly (cf. Proposition
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2.3 and Lemma 3.1), so that f(-) (D2Z%*¢)(-) € L;. The result follows now from the
inversion Theorem 2.5.

To finish the proof, we observe that since both f and Z°D* f are tempered distri-
butions, then Z°D*f = f + P, where P is a polynomial. Therefore f + P € Lg,,
which implies P € Lgy(.y. Thus we should have P = 0, which means Z°D* f(z) = f(x)
almost everywhere. O

We generalize another characterization which is contained in Theorem 7.11 in [24].

Theorem 3.3. In Theorem 3.2 above one can replace the assertion on the existence
of the Riesz derivative of f by the following uniform boundedness condition: there
exists C' > 0 such that

D¢ fllpy < C (3.2)
for all e > 0.

Proof. If f =T1%p, ¢ € Ly, then (3.2) is immediate by Proposition 2.4.

Conversely, if sup [|[D2 f||,) < oo then there exists a subsequence of {D2f}__,
e>0

say {D¢ f} peny Which converges weakly in Ly (note that Ly, is a reflexive Banach

space under conditions 1 < p < p < 00). Let us denote its limit by g € L,(.), and
let ¢ € ®. As in the proof of Theorem 3.2, we get

/nl'o‘g(x) o(x) dv = / 9(y) I%(y) dy

= lim [ DF f(y) Z°¢(y) dy

k—>+00 Rn

= lim (2) (D Z%¢)(2) dz

k—+o0 Rn
= | [(2)o(z)dz
R»

The second equality follows directly from the weak convergence in L.y by noticing
that Z7%¢ € Ly, while the last one is justified by the convergence of D2 Z7%¢ to ¢
in Ly (taking into account the inversion theorem and the Lemma 3.1 once again)

and from the fact that f € (Lg()) = Lg.). Hence, as previously, one arrives at
f=1%g, so that f € Z%[L,,]. O

4. FUNCTION SPACES ON Lp(.) DEFINED BY FRACTIONAL DERIVATIVES

Hypersingular integrals can also be used to construct function spaces of fractional
smoothness. Similarly to the classic case let us consider the space

o) = € Ly Df € Ly}, a>0,

where the fractional derivative D is treated in the usual way as convergent in the
L,y norm. We remark that this space does not depend on the order of the finite
differences, and it is a Banach space with respect to the norm

1T Loyl == W llpey + 1D fllpc-
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These spaces will be shown the same as the spaces of Bessel potentials. They are
connected with the space of Riesz potentials in the following way.

Theorem 4.1. Assume that the exponent p(-) satisfies the usual logarithmic condi-
tions (2.3) and (2.4). Let also 0 < a <nand1 <p<p <. Then

Lyy = Lpy N 17 [Lp(]-

Proof. By Theorem 3.2 we only need to prove the embedding LSy C LyyNI*® [Lpy)-
So, let f € Lg(,). As in the proof of Theorem 3.2 (but here under the assumption
that f € Ly instead of f € Lgy.) as there), we have f(z) = Z°D*f(x) almost
everywhere, so that f € Z%[Ly,,]. O

Remark 4.2. Theorem 4.1 also holds if one takes centered differences (everything
in the proof of Theorem 3.2 works in a similar way). Hence, from this theorem we
conclude that the space L;“(_) does not depend on the type of finite differences used
to construct the derivative D?, at least when p < >.

4.1. Denseness of Cg’ in the space Ly . Before to prove that functions from
L;‘(,) can be approximated by C§° functions, let us show a preliminary denseness
result. By Wo(o) we denote the Sobolev space of all functions of L.y for which all
their (weak) derivatives are also in Ly.).

Proposition 4.3. The set C* NWF, is dense in Ly, for all p(-) € P(R").

Proof. Step 1: Let us show that C*°N Wty € Ly which is not obvious in the case
of variable exponents. If f € C>* N Wpo(‘?) then we already know that

/ &) dy € Ly, (4.1)

|y |t
ly|>e

for any € > 0 (see Proposition 2.3). On the other hand, we have

/Mdy —0 as 0—0. (4.2)

|y |t

ly|<o ()

To prove (4.2), we use the representation

L
@ =r ¥ 3 v ()

(see [24], formula (3.31)) with the choice ¢ > r > «. Hence

/ﬁﬁ;“a —E:quw/’1_t /‘meﬂyﬂ®—kWMycﬁ

k=1
ly|<d lgl=r y|<é

/X1-@P%qux—mwda (4.3)

0
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The change of variables y — 0z yields

[ im0 (gt (55) 2') 0

k=1
ly| <6 |j]=r

where K is given by

J
K;(z) = ‘Z|Zn+a when |2/ <1 and Kj(2)=0 otherwise,

and 0y (t) = kot. Since |j| = r > «, the kernel K has a decreasing radial integrable
dominant, so that Theorem 2.1 is applicable and we have

/%{)fa 0y <5razz|@]k;/ (1=t e M(Dif)(x)dt,  (4.5)

k=1
ly| <6 lgl=r

where ¢ > 0 is independent of dx(¢). Hence,

() /wdy <c N LG(M(Df) =0 as §—0. (4.6)

ly["+e
yl<o l=r

We remind that the convergence in norm is equivalent to the modular convergence
since the exponent is bounded. Further, under the present assumptions on p(-), the
maximal operator M maps L, into itself.

From (4.1) and (4.5) we see that the integral f @ yﬁ(a dy converges absolutely

for all x and defines a function belonging to Lp(.) Moreover, by (4.6), it coincides
with the Riesz derivative:

(ASf)(x) B (Af;f)(x) _ (Af;f—)(x) —0 ase—
/ ypra / e YT / i P

n

ly|>e p() ly|<e ()

so that D*f € Ly.).

We remark that some modification is needed if « is odd. In this case, we should
consider centered differences (and hence ¢ > «; recall the previous rule) and then to
proceed from (4.3).

Step 2: We use the standard approximation by using mollifiers (as in [24], Lemma
7.14). Let ¢ € C§° such that ¢ > 0, [p, ¢(z)dz = 1 with supp ¢ C B(0,1). Put

Om(z) == m"p(mz), m € N. Then ¢, € Cgo and supp ¢, C B(0,1/m). Given
fe Ly let us define

fula) = o f@) = [ oto) £ (= L) .
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Hence f,, € C*°. We also have f,, € L,y by Theorem 2.1 and D7 f,,, = D7 () % f €
L. In the case of fractional derivatives we have, for each € > 0 and m € N,

DZ frn = (D2 f),
that is,
DZ (¢m * f) = @m * D f,

which can be easily proved by Fubini theorem. Hence
D* fru = lim (o * D2f) = o # D" f = (D" ),,,

where the second equality follows from the continuity of the convolution operator.
In particular one concludes that D*f,, € L,,.

It remains to show that the functions f,, approximate the function f in the LZ(-)
norm. Of course, ||f — fullp) — 0 as m — oo by Theorem 2.1 once again. On the
other hand, using similar arguments we have

ID*(f = fm)llpey = 1D f =D frallpcy = ID*F = (D), llpy — O
as m — oo, since D f € L. U

Theorem 4.4. If p(-) is as in Proposition 4.3 with p < 2, then the class C§° is

dense in L;‘(.).

Proof. By Proposition 4.3, it is sufficient to show that every function f € C>*N Wi
can be approximated by functions in C§° in the norm [| - [ Ly [|. As in the case of
constant p, we will use the ”smooth truncation” of functions.

Let p € C§° with p(z) = 1if |z| < 1, suppp € B(0,2) and 0 < p(z) < 1 for
every z. Define pi,(z) := p (£), z € R", m € N. We are to show that the sequence
of truncations {jim f},,cy converges to f in Loy

The passage to the limit lim ||f — pm fllp) = 0 <= lim Ly (f — pmf) = 0
is directly checked by meansm gfoothe Lebesgue dominated g)ﬁ%rgence theorem. It
remains to show that I,.)(D*(f — pnf)) also tends to zero as m — oo.

Taking Remark 4.2 into account, we may consider centered differences in the
fractional derivative (under the choice ¢ > « with ¢ even). For brevity we denote

Vm = 1 — l,. Then we have

D (vnf)z) = —— ) <f) / () + 5y) AN+ G = Ry)

|y["+e
14
dn’g(Od) s (k’) Am,kf(x)

So we need to show that I,.y(A,rf) — 0 as m — oo, for £ = 0,1,...,¢. We
separately treat the cases k =0,k =fand 1 <k </{—1.
The case k = 0: we have

Amof (1) = dn (@) v (2) D* f(2) + B f () (4.7)

]~
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where

Bufte) = [ Lt i vl ),

\y!"“‘

_ / [t (%) = (2 + )AL F) (@ + 59) dy

’y|n+a

The convergence of the first term in (4.7) is clear, so that it remains to prove that
Ly (Bnf) — 0 as m — oo. Put

B, f(x) = / G /| (= B )+ B (@)

To estimate the term B, f, we make use of the Taylor formula (of order 1) with the
remainder in the integral form and obtain

Lim (x+§y) Z / = (az+ 2y> dt.

[ (:E + gy) — fim ()

where ¢ > 0 does not depend on z, y and m.

As in the proof of Proposition 4.3, we can estimate B f in terms of the convolution
of the derivatives of f with a “good kernel” in the sense of Theorem 2.1. In fact,
taking (4.8) and (3.31) in [24] into account, we get

ol ZZ[/ -0 (e (o) 1) @

\J\

+/j<1 e (el,(lt)”K <9y‘(t)) < IDjf|) (z) dt]

2v

o ZZ/ -0 (g (cag) 1)@ @9

|J| rv=1

Hence

C
<< 4.8
< - lyl, (4.8)

where K is given by
K(z)=|zI"""™™ > if |z <1 and K(z)=0 otherwise,
with 6,(t) = vt — £ and under the choice r > a — 1. So
Ly (B2 f) <—ZI M(Dif])] =0 asm — oco.
lil=r

For the term B! f we may proceed as follows. Since p is infinitely differentiable and
compactly supported, then it satisfies the Holder continuity condition. Hence, for



CHARACTERIZATION OF RIESZ AND BESSEL POTENTIALS 13

an arbitrary e € (0, 1], there exists ¢ = ¢. > 0 not depending on z, y, such that

fm (rc + gy) — fim ()

When « > 1, we may proceed as previously by considering r < a < . Putting
all these things together, one estimates B} f(z) as in (4.9) with the correspondent

kernel K given by

C
< oo Y.

K(y) = % when |y|>1 and K(y)=0 otherwise.

Under the choice 0 < ¢ < min(1,a — r), the kernel K has an integrable radial
decreasing dominant, so that we can apply Stein’s theorem once more and arrive at
the conclusion that
Loy (BLf <— S L(IDf)) >0 as m— oo,
|jl=r
The case 0 < a < 1 can be treated without passing to the derivatives of f. In fact,
in this case, we may take ¢ = 2, and hence
spsne ([ Vetily [, el
me \Jiy>1 |y["* i1 1yI™t wis1 [yt
Each term can be managed by using similar arguments as above but now with the

choice 0 < € < a.
The case k = ¢: let

Ly ) (T 4 r— £
Ao f(r) = /R (Ayvm)(w + 5y) f(x — 3y) ay

|y |t

= A}<l(...>dy+/ly|>l(...)dy

=i By, of(z) + By, f (2)
Notice that (Alvm,)(z) = —(ALum)(2) = —(A%u) (£). So, according to (4.3),

one gets the estimate
T+ 5
( A4 1) <_2y>
m m

o (3] -
B of (@) < —— (K x| f])(@)

)
<o (‘ ') S 1Dl < -5 ol

lj]=r

(with £ > r > «). Hence,

where K is now given by

1
Ky) = g

Since r > «, the kernel K is under the assumptions of Theorem 2.1. As before, we
get | By o fllp)y — 0 as m — oo.

12
ly| < 3 and K(y) =0 otherwise.
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As far as the term B, ,f is concerned, when o > 1 we may choose £ > o > 7 and
proceed in a similar way as in the case kK = 0 above. When 0 < a < 1 we may take

¢ =2 and get

1 [(8%0) (22)] 17 - )
IBL,f(2)] < / N o dy
/ [ (55) —2m (%‘;’m(%)! =yl
ly|>1
[p () = G @ =)l [p () = G =)l
= /y|>1 |y |+ er/y|>1 |y |+ Y
c [yl | f(z —y)|
me Jiy>1 |y |

for any € € (0,1] (and ¢ > 0 independent of m). Thus we arrive at the desired

conclusion by taking ¢ < a.
The case k € {1,2,...,¢ —1}: as in the previous case, we have

A iflz) = / (Ayvm)(z + 59) |(yA|:;af)(a: tE=ky)

= /|y|<1(...)dy_|_/y|>l(...)dy

=t B f(2) + By, f (2).

We may estimate the term Bfnykf by noticing that

’(Al;”m)(“gy)‘ “ <%>k

and then by proceeding as above with an appropriate choice of 7.
For the term B}mk we first consider the case a > 1. Since (';) = (k’il), for

[=0,1,...,k, we may write

-1

o (28 E () b1 2) o ()

if k£ is odd. When £k is even, we can also represent our finite difference as the sum

k
of the first order differences of two appropriate terms since Z(—l)l(ll“) = 0. In
l_

both situations we may again make use of the Hélder continuity (of order ¢) of the
function p. Finally, we shall arrive at the desired estimate by using arguments as
above, but under the assumption 0 < ¢ < min(1, & —1). The case 0 < o < 1 can be
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easily solved by taking ¢ = 2. So, we have k = ¢ — k = 1 and hence

|Bhif(@)] < / ’(A%’” (=] 1AL @) N
B yl>1 Jy| e
(2) 7 () 1 )
= /y|>1 MT dy + /y|>1 |y|n+a .
so that we can proceed as in the previous cases. -

5. BESSEL POTENTIALS ON L,(-) SPACES AND THEIR CHARACTERIZATION

The main aim of this section is to describe the range of the Bessel potential
operator on L, in terms of convergence of hypersingular integrals. This is known
in the case of constant p, see [24], Section 7.2, or [26], Section 27.3, and references
therein. Here we consider the case 0 < a <n,p < 7.

5.1. Basic properties. The Bessel kernel G, can be introduced in terms of Fourier
transform by

Go(z) = (1+|2[)™*% zeR", a>0.
It is known that

& w|z|? a-n dt
Gao(z) = c(a)/ e T r Tan gt T 7 e R™,
0

where ¢(«) is a certain constant (see, for example, [29], Section V.3.1), so that G,
is a non-negative, radially decreasing function. Moreover, GG, is integrable with
|Gallr = @Q(O) = 1 and it can also be represented by means of the McDonald
function:

Golw) = c(a,n) ] Kaa(|2]).
The Bessel potential of order o > 0 of the density ¢ is defined by
Bp(x) = | Galr —y)p(y) dy. (5.1)
R’I’L

For convenience, we also denote B%p = ¢.

Theorem 5.1. If p(-) € P(R"™) then the Bessel potential operator B is bounded in
Lyp(y-

Proof. The boundedness of the operator B* follows from the properties of the kernel
G, described above. Taking into account Theorem 2.1, there exists a constant ¢ > 0
such that

1BY¢llpy = |Ga * @llpey < ¢ @l
for all %) (- Lp(‘). |
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We are interested in Bessel potentials with densities in L. One defines the space
of Bessel potentials as the range of the Bessel potential operator

B Ly ={f: f=B%, ¢e€Ly}, a>0.

According to Theorem 5.1, the space B*[L,], also called sometimes Liouville
space of fractional smoothness is well defined, being a subspace of L, if the max-
imal operator is bounded in L,., in particular, if the exponent p(-) is log-Hélder
continuous both locally and at infinity.

B*[Ly,] is a Banach space endowed with the norm

1f B [Lpoy] Il = Nl (5.2)

where ¢ is the density from (5.1).
The symbol “—" below denotes continuous embedding.

Proposition 5.2. If p(-) € P(R") and o > v > 0, then B*[L,y] — BY[Ly,)].

Proof. The proof follows immediately from the properties of the Bessel kernel and
from the boundedness of the Bessel potential operator. Indeed, if f = B*p for some
@ € Ly then one can write f = BY(B*7¢). Thus f € BY[Ly)] by Theorem 5.1.
Furthermore,

1B Lyl = 1B ¢lloey < elielloey == el B [Loel-
0

5.2. Characterization of the space B*[L;,] via hypersingular integrals. The
comparison of the ranges of the Bessel and Riesz potential operators is naturally
made via the convolution type operator whose symbol is the ratio of the Fourier
transforms of the Riesz and Bessel kernels. This operator is the sum of the identity
operator and the convolution operator with a radial integrable kernel. Keeping in
mind the application of Theorem 2.1, we have to show more, namely that this kernel
has an integrable decreasing dominant.

We have to show the existence of integrable decreasing dominants for two im-
portant kernels g, and h,, one defined in (5.3), another in (5.4). This will require
substantial efforts.

Let g, and h, be the functions defined via the following Fourier transforms

Bl .
- =14+9g,(x), a>0, zeR", 5.3
g = LR (53

(1+]eP)? -
=14+ ho(x), >0, R". 5.4
¥ 2 + ho(z), « x € (5.4)

Observe that
1+ |z| A .

= = Go(x) + gu(z) + 1. 5.5
A eyE = Ca) + () (53

It is known that g, and h, are integrable (see, for example, Lemma 1.25 in [24]).
The following two lemmas are crucial for our further goals.
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Lemma 5.3. The function g, defined in (5.3) has an integrable and radially de-
creasing dominant.

Lemma 5.4. The kernel h,, given by (5.4) admits the bounds
|ho(z)| < ﬁ as x| <1, a = min{1, a} (5.6)
€T n—a

and
c

|ha(2)] < W as |z| > 1. (5.7)
where ¢ > 0 1s a constant not depending on x.

The proof of these lemmas being somewhat technical is postponed till the next
subsection.

Before to formulate the main result of this section, we prove the following two
statements.

Proposition 5.5. Let 0 < a <n and p(-) € P(R") with 1 <p <p < n/a. Then
every ¢ € L y can be represented as

p(
o =B+ U,)(¢+D%), (5.8)

where I denotes the identity operator and U, s the convolution operator with the
kernel h,.

Proof. Identity (5.8) holds for functions ¢ € C§°. This follows immediately from
equality (5.4) above (cf. (7.39) in [24]). The denseness of C§° in L) (stated
in Theorem 4.4) allows us to write (5.8) for all functions in L7 ). To this end,
we observe that both operators B and U, are continuous in L,.). In fact, the
boundedness of B* was proved in Theorem 5.1. On the other hand, the convolution
operator U, is bounded since its kernel has a radially decreasing and integrable
dominant by Lemma 5.4. O

Proposition 5.6. Let 0 <a <n andlet 1 <p <p<n/a. Then
B =TI + K,) v, (5.9)

Jor all ¥ € L, + Ly, where I is the identity operator and K, is the convolution
operator with the kernel g,.

Proof. Representation (5.9) holds for densities belonging to classical Lebesgue spaces
(see, for instance, (7.38) in [24]), where the kernel of K, is precisely the function g,
from (5.3). By the Sobolev theorem one concludes that either B or Z%(I + K,,) are

linear operators from L, into Ly, with @ =1_2 and from Ly into L), with

poon
Tlﬁ) = % — . So, we can define these operators on the sum L, + Ly in the usual
way. Hence, if ¢ = thg + 1, with ¢y € L, and ¢1 € Ly, then we may make use the
already known representation for each term and then arrive at equality (5.9). O

Finally, we are able to characterize the Bessel potentials in terms of convergence of
hypersingular integrals. The following theorem in the case of constant p,1 < p < oo,
is due to E. Stein [28] when 0 < a < 1 and to P.I. Lizorkin [17] in the general case
0 < a < 00, see also the proof for constant p in [24], p.186.
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Theorem 5.7. Let 0 < a<n. If 1 <p <p<n/a and p(-) satisfies the log-Hélder
continuity conditions (2.3) and (2.4), then B*[Ly)| = Ly, with equivalent norms:
there are constants c1, co > 0 such that

a lF Lol < I IBY Lyl < e 1 [ Lyl Vf € B [Lpgy)-

Proof. Assume first that f € B*[Ly)]. Then f € L,.) by Theorem 5.1. It remains
to show that its Riesz derivative also belongs to Ly.). Since f = B%p for some
¢ € Lyy and Ly C L, + Ly, then by Proposition 5.6 one gets the representation

B =TI%I + K,) ¢.

Lemma 5.3 combined with Theorem 2.1, allow us to conclude that K, is bounded
in Ly, and hence f € I%[L,]. So, according to the characterization given in
Theorem 3.2, the Riesz derivative D®f exists in the sense of convergence in Ly.).
Therefore, f € Lg(.). Moreover,

P L5l = 1B¢llpe) + D BYellpe) = [1B*¢llpe) + DL + Ka) @llp()
= [IB%llpe) + (1 + Ka) @llpey < ¢ llellpey = 17 1B Lyl

The third equality follows from the inversion Theorem 2.5, while the inequality is
obtained from Theorem 5.1 and from the boundedness of K.
Conversely, suppose that f € Lz(.). Proposition 5.5 yields the representation

=B +U,)(f+Df).

Taking into account Lemma 5.4 and Theorem 2.1, we arrive at the conclusion that
f € B¥[Ly(,] and

L 1B Ly ]| = 1T+ Ua)(f +D)llpy < €U flloe) + 1D Fllpe)) = e lLF T Lyl
O

Corollary 5.8. If the exponent p(-) is under the conditions of Theorem 5.7, then
Cg° is dense in BY[Ly.y].

5.3. Proof of Lemmas 5.3 and 5.4. We start by proving Lemma 5.3. Let us

denote p = (1+ |x[*)¥/2. Then # —1=(1-p~2)*/2 1. Taking the expansion
into the binomial series we get
_9\a = a/2 _o\k > a/2 _
(1—p2)2 _122( é )(—p %) —122(—1)k< ]i )p k0 p> 1.
k=0 k=1
Hence, for each x # 0,
|=[* S k<0é/2) A S A
————1=) (-1 Gox(z) := c(a, k) Gog(z),
(14 [z[?)2 kz_; k kz—;
where (Gy;, is the Bessel kernel of order 2k. Hence
go(z) =) clak)Gay(x), xe€R", (5.10)

k=1
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Now, we stress that

=D le(a, k)| Gar()

defines a radial decreasing dominant of g,. Furthermore, m,, is integrable,

| [a)2
< 3| ()| <
k=1

as k — oo (cf. [26], p. 14). O

since

c
ELlta/2

()| <

As regards Lemma 5.4, we split its proof into two parts.
Step 1 (proof of (5.6)): Let us start by representing the function h, as a finite
sum of Fourier transforms of Bessel kernels plus an integrable function. To this end,

we denote t = ﬁ Then h,(x) = m — 1, with g = §. But
1 X 1 1 i ( )k‘ﬁ .
3 Y e ST i \B (1—=1)8 _ B
o+ (1—-1) (1—1) 1+ (%) (1 —1)7 = 1—t
where the series converges if & < 1, that is, if t < £ or |z > 1. Since {5 = 1J|;||€‘2
and ﬁ = #, we get
R 1 2\& -1 k
o) = LE DRSS DT oy
ot &l
For each natural number N, we can write
ha(z) = (1+ [2]?) Z P kﬂ) — 1+ Ay(z), |z|>1, (5.11)

where [Ax(z)| < e Indeed, since W — 0 as k — 400 (recall that |z| > 1), we
have

A+ z?)2 o~ GV A+fa): 1 2
[An(2)] = < : (5.12)
oF e, | S P R S
Now it remains to represent the powers le"(+“> in terms of the powers 41r| =
X

We observe that for any v > 0, taking p = /1 + |z|?, we have
1 1\ 2 il (=/2\

—=p 7 <1__) =p _1J< ' >p2j+§25 0|, 5.13

- > > (7 o)), (513)
where M € N and

oule) = 3 (17 (T
j=M+1 J

converges absolutely for p > 1, that is, for x # 0.



CHARACTERIZATION OF RIESZ AND BESSEL POTENTIALS 20

Obviously
ng(p)' =1 1 c = 1 1
<c < : - (5.14)
) P ; %1 jlff p2j+7 pM+1 j:%rljlg 2%
where we took into account that |z| > 1 <= p > /2. Hence
O (p) C1 €2
e e (5.15)

Then from (5.13) and (5.15)

M _1)i (/2
! => S J ) + B, (z), (5.16)

o~ & T PR
where

1B, (x)] < |$!2M as x| > 1. (5.17)
Substituting (5.16) into (5.11) (with v = a(k + 1)), and taking M = N, we arrive

at

N )k+]( (k+1)/2)
j
Z (EFDET +ry(z), (5.18)
k,j=0
k+35#0
where the function
N
rv(@) = An(z) + (1+ |22)2 Y BR* Y (5.19)
k=0
satisfies the estimate
1
< — = N min(2
‘TN(:E)‘ = ZL’|“’ 4 Hlln( ,Oé),

for all ]:C\ > 1 according to (5.12) and (5.17). Hence, we only have to choose
N > mm@ ) in order to get the integrability of rx at infinity.

The estimate at infinity was given for |z| > 1, but the equality (5.18) itself may
be written for all x € R”, just by defining ry as

N
~ A n n
T'N<£IZ'> = ha($) — ké_o C(k,j) G2j+ak(x)a N > m, reR",
k40

where Gajyar are Bessel kernels and c(k, j) := (—1)* (_O‘(kjlw).

So, we have ry € Wy. In particular, ry is a bounded continuous function. Also,
ry is integrable at infinity in view of the estimate above and hence, ry € Wy N L.
On the other hand, F~'ry € Wy N Ly. Thus, F~!ry is a bounded continuous
function too. So

N N
|ho(x)] < Z lc(k, )| |1Gojsan(@)]| + [Flrn(a)| < Z lc(k, )| |Gajrar(z)| + C.
R0 50
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We know that

1 c

Gajyak(r) ~ | o2 ok < |p[nmin(La) as [a| <1,

when 2j + ak < n. Thus, we arrive at (5.6) with a = min(1, o).
In the case 25 + ak > n we arrive at the same estimate since

G2j+ak(x) ~ C(2j + Qk)7 |IL‘| < 1.

For the case 2j + ak = n we have the following logarithmic behavior:
1
G2jtar(x) ~ In m .zl < 1

But In <‘ I) < IfCI% for any a € (0,n). The proof of (5.6) is completed.

Step 2 (proof of (5.7)): To obtain (5.7), we transform the Bochner formula for
the Fourier transform of radial functions via integration by parts and arrive at the
formula

Flnte) = s [P0 8 Syt e 20, G0

2\ %
where 1, (t) = % and m is arbitrary such that m > 14 % (the latter condition

on m) guarantees the convergence of the integral at infinity.
To justify formula (5.20), we make use of the standard regularization of the inte-

gral (cf. [30]):

Folho(z) = (2m) " lim [ e W Vh,(Jy]) dy
e [ Rl 0 st at

= / FO st
_ @™ / [ Tyt dt (5.21)

where .J,_1(t) denotes the Bessel function of the first kind, v = 5, m € N and

fo(t) = e ha(t), > 0.

The second equality follows from the Bochner formula for Fourier transforms of
radial functions, while the last is obtained via integration by parts and the relation
Ll J,(u)] = u” J,_1(u) (cf. (8.133) in [24]). Here we assumed that some quantities
vanish, namely

OO Jaw(tlz)], =0, k=0,1,...,m—1. (5.22)
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To check this for 1, (t) = pu(t) - ¢a(t) With @, (t) = (1 +12)2 and ¢, (t) = #, we
observe that

(/2 o2
(k) () = ) v _
Yo’ (t) = pa(l) ;CJ(O‘) (1 + 2k’ k=0,1,...
and
Mt -k =1,2,...
oL (1) = galt) ¢ Zd Ht& k=12,

where the constants ¢;(«) and dj( ) may vanish (but not all simultaneously), which
may be directly proved. For £ > 1, we have

k
W = Y (’“) P00 6 (1)

k-1 [r/2] Yy k—r N
0 (1) (S ) (e 5 e
r = (1 +¢2)r—d = + ta

B2 (o) e
+ ]2; (1—{—t2 k -7
Since f.(t) = e " (o (t) — 1), then
90— 3 ( j) (e et g (1) — (—e)* e (5.23)
=0

Let k € {0,1,2,...,m — 1}. Taking into account that .J,,4(u) behaves like u***
for small values of u, we obtain

FE )t Tan(tlz]) — 0 as t — 0.

On the other hand, J,;(u) behaves like \/—a for large values of u. Since e~t t*~1/2

goes to zero as t — oo and ‘ng) (t)‘ behaves like a constant (0 or 1,if j > 0 or j =0,

respectively) when ¢ — oo, then

PO Tgr(tlz]) — 0 as ¢ — oo,

which completes the verification of (5.22).

To derive (5.20) from (5.21), we notice that the functions Fim ()t Jyym—1(t]x|),
e > 0, are integrable in (0,00). In fact, the integrability at the origin follows from
the asymptotic behavior of the Bessel function, while its integrability at infinity
follows from the definition of the Gamma function.

It suffices to note that f™(£) — i™(t) as e — 0, by (5.23), and the passage
to the limit in (5.21) is easily justified, which yields (5.20).

To obtain (5.7) from (5.20), we observe that the following estimates hold:

()| < tim as t>1 (5.24)
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and
ERIGIES: (t“*m +tm‘2[%]) as t< 1. (5.25)

So, we have

C

1 1
C
- (m) v - a—m+v
|x|y+m_1/0 [ (O [ Jysm—r (t]z]) dt < |x|y+m_1/0t | ym—1(t|z])| dt

Cc

||
e ) £ Mmool

‘ / E |, e (1) d
0

IN

IN

|x|n+a
&1
‘x’nJra

if m > 14 v + «, which guarantees the convergence of the last integral at infinity.
The proof is completed. l

6. CONNECTION OF THE RIESZ AND BESSEL POTENTIALS WITH THE SOBOLEV
SPACES OF VARIABLE EXPONENT

The identification of the spaces of Bessel potentials of integer smoothness with
Sobolev spaces is a well-known result within the framework of the classic Lebesgue
spaces. The result is due to A. Calderén and states that B™[L,] = W, if m € Ny
and 1 < p < oo, with equivalent norms. We extend this to the variable exponent
setting. The proof will follow mainly the case of constant p, which can be found,
for instance, in [29], Sections V.3.3-4. In particular, we will make use of the Riesz
transforms

R]f('r):hmcn/| MTJHf(x_y)d:% j:1727>n
y|>e

e—0
The key point is the following characterization:
Theorem 6.1. Let p(-) € P(R") and let o > 1. Then f € B*[Ly,)], if and only

if f € B Ly,] and 887]; € B YLy for every j = 1,...,n. Furthermore, there
exist positive constants ¢; and co such that

e I IBALpolIl < F B M Lyl + )

i=1

0
|5 Ll < e 1 1B Ll

(6.1)

Proof. Suppose first that f = B%p for some ¢ € Ly.). Then for each j =1,2,...,n,
we have
of

5a. = BRI+ Kl (6.2)

where [ is the identity operator and K is the convolution operator whose kernel is
g1, given by (5.3) with a = 1. This identity, obvious in Fourier transforms, is known
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to be valid for ¢ € L, when p is constant, see [29], p. 136. Then it is also valid for
variable p(-), since Lpy C Ly + Ly.

The right-hand side inequality in (6.1) follows from (6.2) and from the mapping
properties of the Bessel potential operator on spaces L,.).

The proof of the left-hand side inequality follows the known scheme for constant
p. However, we need to refine the connection with the Riesz transforms and the
derivatives, in order to overcome the difficulties associated to the convolution oper-
ators in the variable exponent setting. We write here the main steps of the proof
for the completeness of the presentation.

Assume that both f and 887]; belong to B [Lyy]. If f =B tp, with ¢ € Ly,
then the first order derivatives of ¢ exist in the weak sense and belong to Ly.).

Moreover, % = Bot (%). Since ¢ € Wpl(.) there exists a sequence of infinitely
J
differentiable and compactly supported functions {¢x}ren such that klim Or = ©
and lim % = % in Ly, j =1,2,...,n. This follows from the denseness of Cg®
k—oo 9%j L j
in the Sobolev space WI}(_) (see [23]), which holds under the assumptions on the
exponent. This completes the proof. O

Corollary 6.2. Let p(-) be as in Theorem 6.1 and let m € Ny. Then
B™[Lpy] = Wiy,

p

up to the equivalence of the norms.

The theorem below provides a connection of the spaces of Riesz potentials with
the Sobolev spaces. It partially extends the facts known for constant p (see, for
instance, [24], p. 181) to the variable exponent setting.

Theorem 6.3. Let p(-) be log-Holder continuous both locally and at infinity, with
1 <p<p<n/a. Then we have

Wiy C Lpy 0 I L] (6.3)
if 0 < a < min(m,n), m € N, and

W;?Z-) = Lp(') mIm[Lp(')] (6-4)

when 0 < m < n.

Proof. Let us prove (6.4) first. Let f € Wt)- From Corollary 6.2, Proposition 5.2
and Theorem 5.7, we derive that not only f € L., but also that D™ f € L,.). On
the other hand, the Sobolev theorem states that f € Ly.), where ¢(-) is the usual
Sobolev exponent. Then by Theorem 3.2 one concludes that f is a Riesz potential.
Reciprocally, if f € Z™[Ly,] then the application of Theorem 3.2 shows that D™ f
exists in Ly ), which implies f € Ly As above, one gets f € Wiy

The embedding (6.3) can be proved following similar arguments by observing that
B[ Ly <= B*[Lp.)] when m > o O
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