
J. Funct. Spaces and Applic.
2006, Vol. 4, no 2.

CHARACTERIZATION OF RIESZ AND BESSEL POTENTIALS
ON VARIABLE LEBESGUE SPACES

ALEXANDRE ALMEIDA AND STEFAN SAMKO

Abstract. Riesz and Bessel potential spaces are studied within the framework
of the Lebesgue spaces with variable exponent. It is shown that the spaces of these
potentials can be characterized in terms of convergence of hypersingular integrals,
if one assumes that the exponent satisfies natural regularity conditions. As a
consequence of this characterization, we describe a relation between the spaces of
Riesz or Bessel potentials and the variable Sobolev spaces.

1. Introduction

The Lebesgue spaces Lp(·) with variable exponent and the corresponding Sobolev
spaces Wm

p(·) have been intensively investigated during the last years. We refer to the

papers [16], [27], where the basics of such spaces were developed, to the papers [9],
[23], where the denseness of nice functions in Sobolev variable spaces was considered,
and to the papers [3], [5], [7], [8], [13], [15],[18], [21], [22] and the recent preprints [2],
[4] and references therein, where various results on maximal, potential and singular
operators in variable Lebesgue spaces were obtained (see also the surveys [12], [25]).
The interest to the Lebesgue spaces with variable exponent during the last decade
was in particular roused by applications in problems of fluid dynamics, elasticity
theory and differential equations with non-standard growth conditions (see [8], [19]).

We deal with the spaces of Riesz and Bessel potentials with densities in the spaces
Lp(·)(Rn). For the constant p it is known, that the left inverse operator to the
Riesz potential operator Iα within the frameworks of the spaces Lp(Rn) may be
constructed in terms of the hypersingular integrals, and the range Iα[Lp] is described
in terms of convergence of those hypersingular integrals, see [20], [24]. The extension
of the statement on the inversion to the case of variable exponents was recently given
in [1].
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In this paper we give a description of the range of the Riesz and Bessel potential
operators, Iα[Lp(·)] and Bα[Lp(·)], respectively, in terms of convergence of hypersin-
gular integrals. As a consequence, we also establish a connection of the spaces of
Riesz and Bessel potentials with the Sobolev spaces Wm

p(·). This partially extends

the known results for constant p (see [24]) to the variable exponent setting.
The paper is organized as follows. In Section 2 we provide notation and necessary

preliminaries and auxiliary results which will be often used throughout the text. The
first main result, Theorem 3.2, given in Section 3 contains a characterization of the
space of Riesz potentials in terms of fractional derivatives. In Section 4 we consider
some spaces of fractional smoothness defined in terms of hypersingular integrals and
study their connection with the space of Riesz potentials, the main results being
given in Theorems 4.1 and 4.4. The study of the space of Bessel potentials on Lp(·)
and its description are made in Section 5, see Theorem 5.7. In the last section the
connection between the spaces of potentials and the Sobolev spaces with variable
exponent is studied.

Throughout the paper, we shall consider standard notation or it will be properly
introduced whenever needed.

2. Preliminaries

As usual, C∞
0 (Rn) stands for the class of all C∞ functions on Rn with compact

support. By S(Rn) we denote the Schwartz class of all rapidly decreasing C∞-
functions on Rn, and by S ′(Rn) its dual. For ϕ ∈ S(Rn), by Fϕ (or ϕ̂) we denote
the Fourier transform of ϕ,

(Fϕ)(ξ) =

∫

Rn

eix·ξ ϕ(x) dx, ξ ∈ Rn. (2.1)

By W0(Rn) we denote the class of Fourier transforms of integrable functions.
By Φ′(Rn) we denote the topological dual of the Lizorkin space Φ(Rn) consisting

of all functions ϕ ∈ S(Rn) such that (Dβϕ̂)(0) = 0, for all β ∈ Nn
0 , where Dβ is

the usual partial derivative. Two elements of S ′(Rn) differing by a polynomial are
indistinguishable as elements of Φ′(Rn) (see [24], Section 2.2).

By C (or c) we denote a general positive constant whose value is irrelevant and
may change at different occurrences.

2.1. On Lebesgue spaces with variable exponent. A detailed discussion of
properties of the variable Lebesgue spaces may be found in the papers [9], [10],
[16], [27]. We recall here some important tools and definitions which will be used
throughout this paper.

Let p : Rn → [1,∞) be a (Lebesgue) measurable function. Put

p := ess sup
x∈Rn

p(x) and p := ess inf
x∈Rn

p(x).

By Lp(·)(Rn) we denote the space of all measurable functions f on Rn such that the
modular

Ip(·)(f) :=

∫

Rn

|f(x)|p(x)dx
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is finite. Under this definition, this is a linear space if and only if p < ∞, and we
only consider bounded exponents. Lp(·)(Rn) is a Banach space endowed with the
norm

‖f‖p(·) := inf

{
λ > 0 : Ip(·)

(
f

λ

)
≤ 1

}
, f ∈ Lp(·)(Rn). (2.2)

This space inherits some properties from the classic Lebesgue spaces with constant
exponent. In fact, under the additional assumption p > 1, Lp(·)(Rn) is uniformly
convex, reflexive and its dual space is (isomorphic to) Lp′(·)(Rn), where p′(·) is the
natural conjugate exponent given by 1

p(x)
+ 1

p′(x)
≡ 1. An important property of

this space is that the convergence in norm is equivalent to the modular convergence:
given {fk}k∈N0 ⊂ Lp(·)(Rn), then ‖fk‖p(·) → 0 if and only if Ip(·)(fk) → 0, as k →∞.
Nevertheless, this generalized space has some undesirable properties. As mentioned
before, Lp(·)(Rn) is not translation invariant contrarily to its classic counterpart.

Similarly to the classic case, one defines the Sobolev space of variable exponent
Wm

p(·)(Rn), m ∈ N0, as the space of all measurable functions f such that its (weak)

derivatives Dβf up to order m are in Lp(·)(Rn). This is a Banach space equipped
with the norm

‖f‖m,p(·) :=
∑

|β|≤m

‖Dβf‖p(·), f ∈ Wm
p(·)(Rn).

In order to emphasize that we are dealing with variable exponents, we always
write p(·) instead of p to denote an exponent function. In general, we will consider
function spaces defined on the whole Euclidean space Rn. So, in what follows, we
shall omit the “Rn” from their notation.

2.2. The maximal operator in Lp(·). For a locally integrable function g on Rn,
the Hardy-Littlewood maximal operator M is defined by

Mg(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|g(y)| dy,

where B(x, r) denotes the open ball centered at x ∈ Rn and of radius r > 0.
The boundedness of the maximal operator M was first proved by L. Diening

[5] over bounded domains, under the assumption that p(·) is locally log-Hölder
continuous, that is,

|p(x)− p(y)| ≤ C

− ln |x− y| , x, y ∈ Rn, |x− y| ≤ 1/2. (2.3)

He later extended the result to unbounded domains by supposing, in addition,
that the exponent p(·) is constant outside some large fixed ball. The general case
of the exponent p(·) non-constant at infinity, was considered in [18], where some
integral condition was imposed and in [3] where it was assumed that the exponent
is log-Hölder continuous at infinity:

|p(x)− p(y)| ≤ C

ln(e + |x|) , x, y ∈ Rn, |y| ≥ |x|. (2.4)
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Condition (2.4) is equivalent to the logarithmic decay condition

|p(x)− p(∞)| ≤ C

ln(e + |x|) , x ∈ Rn, (2.5)

where p(∞) = lim
|x|→∞

p(x).

Let P(Rn) be the class of all exponents p(·), 1 < p ≤ p < ∞, such that M is
bounded on Lp(·). Recently, L. Diening [6] obtained a certain necessary and sufficient
condition for the exponent p(·) to be in P(Rn).

Although the space Lp(·) is not invariant with respect to translations, and Young’s
theorem in general fails in the case of variable exponents, in [23] it was shown that it
is possible to use the mollifier technique within the framework of these spaces, if one
assumes that the exponent p(·) satisfies the local logarithmic continuity condition
(2.3).

The approximation problem via mollifiers is closely related to the boundedness of
the maximal operator (see [29], III.2.2). In [5], Stein’s theorem on convolutions was
extended to the variable exponent setting as follows:

Theorem 2.1. Let ϕ be an integrable function on Rn and define ϕε(·) = ε−nϕ(·/ε),
ε > 0. Suppose that the least decreasing radial majorant of ϕ is integrable, i.e.,
A :=

∫
Rn sup

|y|≥|x|
|ϕ(y)| dx < ∞. Then

(i) sup
ε>0

|(f ∗ ϕε)(x)| ≤ 2A (Mf)(x), f ∈ Lp(·), x ∈ Rn.

If p(·) ∈ P(Rn), then also
(ii) ‖f ∗ ϕε‖p(·) ≤ c ‖f‖p(·)
(with c independent of ε and f) and, if in addition

∫
Rn ϕ(x) dx = 1, then

(iii) f ∗ ϕε → f as ε → 0 in Lp(·) and almost everywhere.

Theorem 2.1 is an important tool which allows us to obtain boundedness of various
concrete convolution operators, even in the case where they are defined by the
Fourier transform of their kernel.

2.3. The Riesz potential operator on variable Lebesgue spaces. We recall
that the Riesz potential operator Iα is defined by

Iαg(x) :=

∫

Rn

g(y)

|x− y|n−α
dy,

where g is a locally integrable function with an appropriate behavior at infinity and
0 < α < n.

The Lp(·) → Lq(·)-boundedness of Iα on Lp(·) spaces was first considered in [22],
where the Sobolev type theorem for bounded domains was proved under the assump-
tion that the maximal operator is bounded in Lp(·). After L. Diening [5] has proved
the boundedness of the maximal operator, the conditional Sobolev theorem in [22]
became an unconditional statement. L. Diening [7] proved the Sobolev theorem on
Rn for p(·) satisfying the local logarithmic condition (2.3) and constant at infinity.

Some weighted version of the Sobolev theorem for Rn with the power weight
fixed to infinity, was obtained in [14]. Recently, C. Capone, D. Cruz-Uribe and A.
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Fiorenza [2] proved the Sobolev theorem on arbitrary domains for p(·) non-constant
at infinity. Their statement for the case of the whole space Rn runs as follows.

Theorem 2.2. Let 0 < α < n and let 1 < p ≤ p < n/α. Assume also that p(·)
satisfies the log-Hölder conditions (2.3) and (2.4). Then there exists c > 0 such that

‖Iαf‖q(·) ≤ c ‖f‖p(·), f ∈ Lp(·), (2.6)

where q(·) is the Sobolev exponent given by 1
q(x)

= 1
p(x)

− α
n
, x ∈ Rn.

2.4. Hypersingular integrals on Lp(·) spaces. We refer to [24] and [26] for the
theory of hypersingular integrals.

A typical hypersingular integral has the form

1

dn,`(α)

∫

Rn

(
∆`

yf
)
(x)

|y|n+α
dy, α > 0, (2.7)

where ∆`
yf denotes the finite difference of order ` ∈ N of the function f and dn,`(α)

is a certain normalizing constant, which is chosen so that the construction in (2.7)
does not depend on ` (see [24], Chapter 3, for details). It is well-known that the
integral (2.7) exists (for each x ∈ Rn) if f ∈ S(Rn) and ` > α, for instance.

Following [24], we shall consider both a centered difference and a non-centered
one in the construction of the hypersingular integral. However, when we write ∆m

h

without any specification we mean a non-centered difference. The important fact
here is that the order ` should be chosen according to the following rule (as stated
in [24], page 65), which will be always assumed in the sequel:

1) in the case of a non-centered difference we take ` > 2
[

α
2

]
with the obligatory

choice ` = α for α odd;
2) in the case of a centered difference we take ` even and ` > α > 0 .

In general, the integral in (2.7) may be divergent, and hence it needs to be properly
defined. We interpret hypersingular operators as Dα := lim

ε→0
Dα

ε , where Dα
ε denotes

the truncated hypersingular operator

Dα
ε f(x) =

1

dn,`(α)

∫

|y|>ε

(
∆`

yf
)
(x)

|y|n+α
dy , ε > 0. (2.8)

Sometimes Dα is also called the Riesz fractional derivative since it can be inter-
preted as a positive fractional power (−∆)

α
2 of the minus Laplacian.

In what follows, the limit above is always taken in the sense of convergence in the
Lp(·) norm. This makes sense in view of the Proposition 2.3 below.

Proposition 2.3. If p(·) ∈ P(Rn), then the truncated hypersingular integral opera-
tor Dα

ε is bounded in Lp(·), for every ε > 0.

Another important property of the truncated hypersingular integrals is the fol-
lowing uniform estimate:
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Proposition 2.4. Let 0 < α < n and p(·) ∈ P(Rn) with p < n
α
. Then the composi-

tions Dα
ε Iα are uniformly bounded in Lp(·) with respect to ε, that is,

‖Dα
ε Iαϕ‖p(·) ≤ c ‖ϕ‖p(·), ∀ϕ ∈ Lp(·),

where c > 0 does not depend on ε > 0.

The proof of these two propositions may be found in [1].
We would like to point out that the Riesz derivative Dα does not depend on the

order ` taken in the finite differences. This is why we may omit the parameter `
in the notation Dα. We refer to [24] for details and to [1] where this question was
discussed within the setting of the variable Lebesgue spaces.

An important fact concerning hypersingular integrals is their application to the
inversion of potential-type operators. There are many papers on this subject, but we
only refer to the books [24] and [26], where several references and historical remarks
may be found.

The inversion of the Riesz potential operator in the context of the Lp(·) spaces was
studied in [1], which generalized results from [24] for the case of constant p. The
inversion theorem from [1] can be formulated as follows.

Theorem 2.5. Let 0 < α < n and p(·) ∈ P(Rn). Assume also that p < n
α
. Then

DαIαϕ = ϕ, ϕ ∈ Lp(·).

Moreover, the convergence holds almost everywhere as well, that is,

lim
ε→0

Dα
ε Iαϕ(x) = ϕ(x),

for almost all x ∈ Rn.

3. Characterization of the Riesz potentials on Lp(·) spaces

We define the space of Riesz potentials on Lp(·) in a natural way as

Iα[Lp(·)] = {f : f = Iαϕ, ϕ ∈ Lp(·)}, 0 < α < n.

Following approaches in [24], we will show below that the space Iα[Lp(·)] can be
described in terms of convergence of hypersingular integrals.

Lemma 3.1. Let 1 < p ≤ p(x) ≤ p < n
α
, x ∈ Rn, with 0 < α < n. Let p′(·)

be the usual conjugate exponent and q(·) be the Sobolev limiting exponent given by
1

q(·) = 1
p(·) − α

n
. If p(·) satisfies the logarithmic conditions (2.3) and (2.4), then so do

p′(·) and q(·).
Proof. The proof is direct. ¤

Theorem 3.2. Let 0 < α < n, 1 < p ≤ p < n
α

and let f be a locally integrable
function. Assume also that p(·) satisfies the log-Hölder continuity conditions (2.3)
and (2.4). Then f ∈ Iα[Lp(·)], if and only if f ∈ Lq(·), with 1

q(·) = 1
p(·) − α

n
, and there

exists the Riesz derivative Dαf (in the sense of convergence in Lp(·)).
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Proof. First, assume that f ∈ Iα[Lp(·)]. The fact that f ∈ Lq(·) follows from Theorem
2.2. On the other hand, as f = Iαϕ for some ϕ ∈ Lp(·), then we have

Dαf = lim
ε→0

Dα
ε Iαϕ = ϕ (3.1)

(convergence in Lp(·)) according to Theorem 2.5.
Conversely, let f ∈ Lq(·) and suppose that its Riesz derivative Dαf exists. Our

aim is to prove that f = IαDαf and hence that f ∈ Iα[Lp(·)].
Both f and IαDαf can be regarded as elements of Φ′. Let us show that they

coincide in this sense. For all φ ∈ Φ, we have:

∫

Rn

IαDαf(x) φ(x) dx =

∫

Rn

Dαf(y)

(∫

Rn

φ(x)

|x− y|n−α
dx

)
dy

= lim
ε→0

∫

Rn

(∫

|z|>ε

(∆`
zf)(y)

dn,`(α) |z|n+α
dz

)
Iαφ(y) dy

= lim
ε→0

∫

|z|>ε




∫

Rn

∑̀
k=0

(−1)k
(

`
k

)
f(u) Iαφ(u + kz)

dn,`(α) |z|n+α
du


 dz

= lim
ε→0

∫

Rn

f(u)

(∫

|z|>ε

(∆`
−zIαφ)(u)

dn,`(α) |z|n+α
dz

)
du

= lim
ε→0

∫

Rn

f(u) Dα
ε Iαφ(u) du

=

∫

Rn

f(u) φ(u) du.

The first equality follows from the Fubini theorem since the double integral converges
absolutely. In fact, since |φ(y)| ≤ c

(1+|y|)N with an arbitrary large N , then by Lemma

1.38 in [24], we have that Iα(|φ|)(x) is bounded and Iα(|φ|)(x) ≤ c
(1+|x|)n−α as

|x| → ∞. Thus

Ip′(·)(Iα(|φ|)) ≤ c1 + c2

∫

|x|>1

dx

(1 + |x|)(n−α)p′(x)
< ∞

because inf
x∈Rn

(n− α)p′(x) > n. Hence, using Hölder inequality we arrive at

∫

Rn

|Dαf(y)| Iα(|φ|)(y) dy ≤ c ‖Dαf‖p(·) ‖Iα(|φ|)‖p′(·) < ∞.

In the second equality, we notice that the convergence with respect to the Lp(·) norm
implies weak convergence in Φ′ (note that Iαφ ∈ Φ). The third equality follows from
similar arguments to those used in the first one, and then by the change of variables
y → u + kz, with fixed z. We only observe now that Dα

ε f ∈ Lq(·) (cf. Proposition
2.3 and Lemma 3.1). Finally, the last passage is obtained by making use of the
Lebesgue theorem. Indeed, since φ ∈ Lq′(·), then Dα

ε Iαφ ∈ Lq′(·) (cf. Proposition
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2.3 and Lemma 3.1), so that f(·) (Dα
ε Iαφ)(·) ∈ L1. The result follows now from the

inversion Theorem 2.5.
To finish the proof, we observe that since both f and IαDαf are tempered distri-

butions, then IαDαf = f + P , where P is a polynomial. Therefore f + P ∈ Lq(·),
which implies P ∈ Lq(·). Thus we should have P ≡ 0, which means IαDαf(x) = f(x)
almost everywhere. ¤

We generalize another characterization which is contained in Theorem 7.11 in [24].

Theorem 3.3. In Theorem 3.2 above one can replace the assertion on the existence
of the Riesz derivative of f by the following uniform boundedness condition: there
exists C > 0 such that

‖Dα
ε f‖p(·) ≤ C (3.2)

for all ε > 0.

Proof. If f = Iαϕ, ϕ ∈ Lp(·), then (3.2) is immediate by Proposition 2.4.
Conversely, if sup

ε>0
‖Dα

ε f‖p(·) < ∞ then there exists a subsequence of {Dα
ε f}ε>0,

say {Dα
εk

f}
k∈N, which converges weakly in Lp(·) (note that Lp(·) is a reflexive Banach

space under conditions 1 < p ≤ p < ∞). Let us denote its limit by g ∈ Lp(·), and
let φ ∈ Φ. As in the proof of Theorem 3.2, we get∫

Rn

Iαg(x) φ(x) dx =

∫

Rn

g(y) Iαφ(y) dy

= lim
k→+∞

∫

Rn

Dα
εk

f(y) Iαφ(y) dy

= lim
k→+∞

∫

Rn

f(z) (Dα
εk
Iαφ)(z) dz

=

∫

Rn

f(z) φ(z) dz

The second equality follows directly from the weak convergence in Lp(·) by noticing
that Iαφ ∈ Lp′(·), while the last one is justified by the convergence of Dα

εk
Iαφ to φ

in Lq′(·) (taking into account the inversion theorem and the Lemma 3.1 once again)
and from the fact that f ∈ (Lq′(·))′ = Lq(·). Hence, as previously, one arrives at
f = Iαg, so that f ∈ Iα[Lp(·)]. ¤

4. Function spaces on Lp(·) defined by fractional derivatives

Hypersingular integrals can also be used to construct function spaces of fractional
smoothness. Similarly to the classic case let us consider the space

Lα
p(·) = {f ∈ Lp(·) : Dαf ∈ Lp(·)}, α > 0,

where the fractional derivative Dα is treated in the usual way as convergent in the
Lp(·) norm. We remark that this space does not depend on the order of the finite
differences, and it is a Banach space with respect to the norm

‖f |Lα
p(·)‖ := ‖f‖p(·) + ‖Dαf‖p(·).
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These spaces will be shown the same as the spaces of Bessel potentials. They are
connected with the space of Riesz potentials in the following way.

Theorem 4.1. Assume that the exponent p(·) satisfies the usual logarithmic condi-
tions (2.3) and (2.4). Let also 0 < α < n and 1 < p ≤ p < n

α
. Then

Lα
p(·) = Lp(·) ∩ Iα[Lp(·)].

Proof. By Theorem 3.2 we only need to prove the embedding Lα
p(·) ⊂ Lp(·)∩Iα[Lp(·)].

So, let f ∈ Lα
p(·). As in the proof of Theorem 3.2 (but here under the assumption

that f ∈ Lp(·) instead of f ∈ Lq(·) as there), we have f(x) = IαDαf(x) almost
everywhere, so that f ∈ Iα[Lp(·)]. ¤

Remark 4.2. Theorem 4.1 also holds if one takes centered differences (everything
in the proof of Theorem 3.2 works in a similar way). Hence, from this theorem we
conclude that the space Lα

p(·) does not depend on the type of finite differences used
to construct the derivative Dα, at least when p < n

α
.

4.1. Denseness of C∞
0 in the space Lα

p(·). Before to prove that functions from
Lα

p(·) can be approximated by C∞
0 functions, let us show a preliminary denseness

result. By W∞
p(·) we denote the Sobolev space of all functions of Lp(·) for which all

their (weak) derivatives are also in Lp(·).

Proposition 4.3. The set C∞ ∩W∞
p(·) is dense in Lα

p(·) for all p(·) ∈ P(Rn).

Proof. Step 1 : Let us show that C∞∩W∞
p(·) ⊂ Lα

p(·), which is not obvious in the case
of variable exponents. If f ∈ C∞ ∩W∞

p(·) then we already know that

∫

|y|>ε

(∆`
yf)(x)

|y|n+α
dy ∈ Lp(·) (4.1)

for any ε > 0 (see Proposition 2.3). On the other hand, we have
∥∥∥∥∥∥∥

∫

|y|≤δ

(∆`
yf)(x)

|y|n+α
dy

∥∥∥∥∥∥∥
p(·)

→ 0 as δ → 0. (4.2)

To prove (4.2), we use the representation

(∆`
yf)(x) = r

∑

|j|=r

∑̀

k=1

yj

j!
(−1)r−kkr

(
`

k

) ∫ 1

0

(1− t)r−1(Djf)(x− kty) dt, (4.3)

(see [24], formula (3.31)) with the choice ` ≥ r > α. Hence

∫

|y|≤δ

(∆`
yf)(x)

|y|n+α
dy =

∑

|j|=r

∑̀

k=1

cr,j,k

∫ 1

0

(1− t)r−1




∫

|y|≤δ

yj

|y|n+α
(Djf)(x− kty) dy


 dt.
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The change of variables y → δz yields

∫

|y|≤δ

(∆`
yf)(x)

|y|n+α
dy = δr−α

∑

|j|=r

∑̀

k=1

cr,j,k

∫ 1

0

(1−t)r−1

(
1

δk(t)n
Kj

( ·
δk(t)

)
∗Djf

)
(x) dt

(4.4)
where Kj is given by

Kj(z) =
zj

|z|n+α
when |z| ≤ 1 and Kj(z) = 0 otherwise,

and δk(t) = kδt. Since |j| = r > α, the kernel Kj has a decreasing radial integrable
dominant, so that Theorem 2.1 is applicable and we have

∣∣∣∣∣∣∣

∫

|y|≤δ

(∆`
yf)(x)

|y|n+α
dy

∣∣∣∣∣∣∣
≤ δr−α

∑

|j|=r

∑̀

k=1

|cr,j,k|
∫ 1

0

(1− t)r−1 c M(Djf)(x) dt, (4.5)

where c > 0 is independent of δk(t). Hence,

Ip(·)




∫

|y|≤δ

(∆`
yf)(x)

|y|n+α
dy


 ≤ c δ(r−α)p

∑

|j|=r

Ip(·)(M(Djf)) → 0 as δ → 0. (4.6)

We remind that the convergence in norm is equivalent to the modular convergence
since the exponent is bounded. Further, under the present assumptions on p(·), the
maximal operator M maps Lp(·) into itself.

From (4.1) and (4.5) we see that the integral
∫
Rn

(∆`
yf)(x)

|y|n+α dy converges absolutely

for all x and defines a function belonging to Lp(·). Moreover, by (4.6), it coincides
with the Riesz derivative:∥∥∥∥∥∥∥

∫

Rn

(∆`
yf)(x)

|y|n+α
dy −

∫

|y|>ε

(∆`
yf)(x)

|y|n+α
dy

∥∥∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥∥

∫

|y|≤ε

(∆`
yf)(x)

|y|n+α
dy

∥∥∥∥∥∥∥
p(·)

→ 0 as ε → 0,

so that Dαf ∈ Lp(·).
We remark that some modification is needed if α is odd. In this case, we should

consider centered differences (and hence ` > α; recall the previous rule) and then to
proceed from (4.3).

Step 2 : We use the standard approximation by using mollifiers (as in [24], Lemma

7.14). Let ϕ ∈ C∞
0 such that ϕ ≥ 0,

∫
Rn ϕ(x) dx = 1 with supp ϕ ⊂ B(0, 1). Put

ϕm(x) := mn ϕ(mx), m ∈ N. Then ϕm ∈ C∞
0 and supp ϕm ⊂ B(0, 1/m). Given

f ∈ Lα
p(·) let us define

fm(x) := ϕm ∗ f(x) =

∫

Rn

ϕ(y) f
(
x− y

m

)
dy.
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Hence fm ∈ C∞. We also have fm ∈ Lp(·) by Theorem 2.1 and Djfm = Dj(ϕm)∗f ∈
Lp(·). In the case of fractional derivatives we have, for each ε > 0 and m ∈ N,

Dα
ε fm = (Dα

ε f)m,

that is,

Dα
ε (ϕm ∗ f) = ϕm ∗ Dα

ε f,

which can be easily proved by Fubini theorem. Hence

Dαfm = lim
ε→0

(ϕm ∗ Dα
ε f) = ϕm ∗ Dαf = (Dαf)m,

where the second equality follows from the continuity of the convolution operator.
In particular one concludes that Dαfm ∈ Lp(·).

It remains to show that the functions fm approximate the function f in the Lα
p(·)

norm. Of course, ‖f − fm‖p(·) → 0 as m →∞ by Theorem 2.1 once again. On the
other hand, using similar arguments we have

‖Dα(f − fm)‖p(·) = ‖Dαf − Dαfm‖p(·) = ‖Dαf − (Dαf)m‖p(·) → 0

as m →∞, since Dαf ∈ Lp(·). ¤

Theorem 4.4. If p(·) is as in Proposition 4.3 with p < n
α
, then the class C∞

0 is
dense in Lα

p(·).

Proof. By Proposition 4.3, it is sufficient to show that every function f ∈ C∞∩W∞
p(·)

can be approximated by functions in C∞
0 in the norm ‖ · |Lα

p(·)‖. As in the case of
constant p, we will use the ”smooth truncation” of functions.

Let µ ∈ C∞
0 with µ(x) = 1 if |x| ≤ 1, supp µ ⊂ B(0, 2) and 0 ≤ µ(x) ≤ 1 for

every x. Define µm(x) := µ
(

x
m

)
, x ∈ Rn, m ∈ N. We are to show that the sequence

of truncations {µmf}m∈N converges to f in Lα
p(·).

The passage to the limit lim
m→∞

‖f − µmf‖p(·) = 0 ⇐⇒ lim
m→∞

Ip(·)(f − µmf) = 0

is directly checked by means of the Lebesgue dominated convergence theorem. It
remains to show that Ip(·)(Dα(f − µmf)) also tends to zero as m →∞.

Taking Remark 4.2 into account, we may consider centered differences in the
fractional derivative (under the choice ` > α with ` even). For brevity we denote
νm = 1− µm. Then we have

Dα(νmf)(x) =
1

dn,`(α)

∑̀

k=0

(
`

k

) ∫

Rn

(∆k
yνm)(x + `

2
y) (∆`−k

y f)(x + ( `
2
− k)y)

|y|n+α
dy

=:
1

dn,`(α)

∑̀

k=0

(
`

k

)
Am,kf(x).

So we need to show that Ip(·)(Am,kf) → 0 as m → ∞, for k = 0, 1, . . . , `. We
separately treat the cases k = 0, k = ` and 1 ≤ k ≤ `− 1.

The case k = 0: we have

Am,0f(x) = dn,`(α) νm(x)Dαf(x) + Bmf(x) (4.7)
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where

Bmf(x) =

∫

Rn

[νm(x + `
2
y)− νm(x)](∆`

yf)(x + `
2
y)

|y|n+α
dy

=

∫

Rn

[µm(x)− µm(x + `
2
y)](∆`

yf)(x + `
2
y)

|y|n+α
dy

The convergence of the first term in (4.7) is clear, so that it remains to prove that
Ip(·)(Bmf) → 0 as m →∞. Put

Bmf(x) =

∫

|y|≤1

(· · · ) dy +

∫

|y|>1

(· · · ) dy := B0
mf(x) + B1

mf(x).

To estimate the term B0
mf , we make use of the Taylor formula (of order 1) with the

remainder in the integral form and obtain

µm

(
x +

`

2
y

)
− µm(x) =

`

2m

n∑
j=1

yj

∫ 1

0

∂µ

∂xj

(
x + `t

2
y

m

)
dt.

Hence ∣∣∣∣µm

(
x +

`

2
y

)
− µm(x)

∣∣∣∣ ≤
c

m
|y|, (4.8)

where c > 0 does not depend on x, y and m.
As in the proof of Proposition 4.3, we can estimate B0

mf in terms of the convolution
of the derivatives of f with a “good kernel” in the sense of Theorem 2.1. In fact,
taking (4.8) and (3.31) in [24] into account, we get

|B0
mf(x)| ≤ c

m

∑

|j|=r

∑̀

ν= `
2

[∫ `
2ν

0

(1− t)r−1

(
1

(−θν(t))n
K

( ·
−θν(t)

)
∗ |Djf |

)
(x) dt

+

∫ 1

`
2ν

(1− t)r−1

(
1

θν(t)n
K

( ·
θν(t)

)
∗ |Djf |

)
(x) dt

]

+
c

m

∑

|j|=r

`
2
−1∑

ν=1

∫ 1

0

(1− t)r−1

(
1

(−θν(t))n
K

( ·
−θν(t)

)
∗ |Djf |

)
(x) dt (4.9)

where K is given by

K(z) = |z|r+1−n−α if |z| < 1 and K(z) = 0 otherwise,

with θν(t) = νt− `
2

and under the choice r > α− 1. So

Ip(·)(B
0
mf) ≤ c

m

∑

|j|=r

Ip(·)
[M(|Djf |)] → 0 as m →∞.

For the term B1
mf we may proceed as follows. Since µ is infinitely differentiable and

compactly supported, then it satisfies the Hölder continuity condition. Hence, for
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an arbitrary ε ∈ (0, 1], there exists c = cε > 0 not depending on x, y, such that∣∣∣∣µm

(
x +

`

2
y

)
− µm(x)

∣∣∣∣ ≤
c

mε
|y|ε.

When α > 1, we may proceed as previously by considering r < α < `. Putting
all these things together, one estimates B1

mf(x) as in (4.9) with the correspondent
kernel K given by

K(y) =
|y|r

|y|n+α−ε
when |y| > 1 and K(y) = 0 otherwise.

Under the choice 0 < ε < min(1, α − r), the kernel K has an integrable radial
decreasing dominant, so that we can apply Stein’s theorem once more and arrive at
the conclusion that

Ip(·)(B
1
mf) ≤ c

mε

∑

|j|=r

Ip(·)(|Djf |) → 0 as m →∞.

The case 0 < α ≤ 1 can be treated without passing to the derivatives of f . In fact,
in this case, we may take ` = 2, and hence

|B1
mf(x)| ≤ c

mε

(∫

|y|>1

|f(x + y)|
|y|n+α−ε

dy +

∫

|y|>1

|f(x)|
|y|n+α−ε

dy +

∫

|y|>1

|f(x− y)|
|y|n+α−ε

dy

)
.

Each term can be managed by using similar arguments as above but now with the
choice 0 < ε < α.

The case k = `: let

Am,`f(x) =

∫

Rn

(∆`
yνm)(x + `

2
y) f(x− `

2
y)

|y|n+α
dy

=

∫

|y|≤1

(· · · ) dy +

∫

|y|>1

(· · · ) dy

=: B0
m,`f(x) + B1

m,`f(x)

Notice that (∆`
yνm)(z) = −(∆`

yµm)(z) = −(∆`
y
m

µ)
(

z
m

)
. So, according to (4.3),

one gets the estimate
∣∣∣∣(∆`

yνm)

(
x +

`

2
y

)∣∣∣∣ =

∣∣∣∣∣(∆
`
y
m

µ)

(
x + `

2
y

m

)∣∣∣∣∣ ≤ c

( |y|
m

)r ∑

|j|=r

‖Djµ‖∞ ≤ c

mr
|y|r

(with ` ≥ r > α). Hence,

|B0
m,`f(x)| ≤ c

mr
(K ∗ |f |)(x)

where K is now given by

K(y) =
1

|y|n+α−r
if |y| ≤ `

2
and K(y) = 0 otherwise.

Since r > α, the kernel K is under the assumptions of Theorem 2.1. As before, we
get ‖B0

m,`f‖p(·) → 0 as m →∞.



CHARACTERIZATION OF RIESZ AND BESSEL POTENTIALS 14

As far as the term B1
m,`f is concerned, when α > 1 we may choose ` > α > r and

proceed in a similar way as in the case k = 0 above. When 0 < α ≤ 1 we may take
` = 2 and get

|B1
m,`f(x)| ≤

∫

|y|>1

∣∣∣
(
∆2

y
m

µ
) (

x+y
m

)∣∣∣ |f(x− y)|
|y|n+α

dy

=

∫

|y|>1

∣∣µ (
x+y
m

)− 2 µ
(

x
m

)
+ µ

(
x−y
m

)∣∣ |f(x− y)|
|y|n+α

dy

≤
∫

|y|>1

∣∣µ (
x+y
m

)− µ
(

x
m

)∣∣ |f(x− y)|
|y|n+α

dy +

∫

|y|>1

∣∣µ (
x−y
m

)− µ
(

x
m

)∣∣ |f(x− y)|
|y|n+α

dy

≤ c

mε

∫

|y|>1

|y|ε |f(x− y)|
|y|n+α

dy

for any ε ∈ (0, 1] (and c > 0 independent of m). Thus we arrive at the desired
conclusion by taking ε < α.

The case k ∈ {1, 2, . . . , `− 1}: as in the previous case, we have

Am,kf(x) =

∫

Rn

(∆k
yνm)(x + `

2
y) (∆`−k

y f)(x + ( `
2
− k)y)

|y|n+α
dy

=

∫

|y|≤1

(· · · ) dy +

∫

|y|>1

(· · · ) dy

=: B0
m,kf(x) + B1

m,kf(x).

We may estimate the term B0
m,kf by noticing that

∣∣∣∣(∆k
yνm)(x +

`

2
y)

∣∣∣∣ ≤ c

( |y|
m

)k

and then by proceeding as above with an appropriate choice of r.
For the term B1

m,k we first consider the case α > 1. Since
(

k
l

)
=

(
k

k−l

)
, for

l = 0, 1, . . . , k, we may write

(∆k
y
m

µ)

(
x + `

2
y

m

)
=

k−1
2∑

l=0

(
k

l

) [
µ

(
x + `

2
y

m
− l

y

m

)
− µ

(
x + `

2
y

m
− (k − l)

y

m

)]

if k is odd. When k is even, we can also represent our finite difference as the sum

of the first order differences of two appropriate terms since
k∑

l=0

(−1)l
(

k
l

)
= 0. In

both situations we may again make use of the Hölder continuity (of order ε) of the
function µ. Finally, we shall arrive at the desired estimate by using arguments as
above, but under the assumption 0 < ε < min(1, α− 1). The case 0 < α ≤ 1 can be
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easily solved by taking ` = 2. So, we have k = `− k = 1 and hence

|B1
m,kf(x)| ≤

∫

|y|>1

∣∣∣(∆1
y
m

µ)
(

x+y
m

)∣∣∣ |(∆1
yf)(x)|

|y|n+α
dy

≤
∫

|y|>1

(
|y|
m

)ε

|f(x)|
|y|n+α

dy +

∫

|y|>1

(
|y|
m

)ε

|f(x− y)|
|y|n+α

dy,

so that we can proceed as in the previous cases. ¤

5. Bessel potentials on Lp(·) spaces and their characterization

The main aim of this section is to describe the range of the Bessel potential
operator on Lp(·) in terms of convergence of hypersingular integrals. This is known
in the case of constant p, see [24], Section 7.2, or [26], Section 27.3, and references
therein. Here we consider the case 0 < α < n, p < n

α
.

5.1. Basic properties. The Bessel kernel Gα can be introduced in terms of Fourier
transform by

Ĝα(x) = (1 + |x|2)−α/2, x ∈ Rn, α > 0.

It is known that

Gα(x) = c(α)

∫ ∞

0

e−
π|x|2

t
− t

4π t
α−n

2
dt

t
, x ∈ Rn,

where c(α) is a certain constant (see, for example, [29], Section V.3.1), so that Gα

is a non-negative, radially decreasing function. Moreover, Gα is integrable with

‖Gα‖1 = Ĝα(0) = 1 and it can also be represented by means of the McDonald
function:

Gα(x) = c(α, n) |x|α−n
2 Kn−α

2
(|x|).

The Bessel potential of order α > 0 of the density ϕ is defined by

Bαϕ(x) =

∫

Rn

Gα(x− y) ϕ(y) dy. (5.1)

For convenience, we also denote B0ϕ = ϕ.

Theorem 5.1. If p(·) ∈ P(Rn) then the Bessel potential operator Bα is bounded in
Lp(·).

Proof. The boundedness of the operator Bα follows from the properties of the kernel
Gα described above. Taking into account Theorem 2.1, there exists a constant c > 0
such that

‖Bαϕ‖p(·) = ‖Gα ∗ ϕ‖p(·) ≤ c ‖ϕ‖p(·),

for all ϕ ∈ Lp(·). ¤
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We are interested in Bessel potentials with densities in Lp(·). One defines the space
of Bessel potentials as the range of the Bessel potential operator

Bα[Lp(·)] = {f : f = Bαϕ, ϕ ∈ Lp(·)}, α ≥ 0.

According to Theorem 5.1, the space Bα[Lp(·)], also called sometimes Liouville
space of fractional smoothness is well defined, being a subspace of Lp(·) if the max-
imal operator is bounded in Lp(·), in particular, if the exponent p(·) is log-Hölder
continuous both locally and at infinity.
Bα[Lp(·)] is a Banach space endowed with the norm

‖f | Bα[Lp(·)]‖ := ‖ϕ‖p(·), (5.2)

where ϕ is the density from (5.1).
The symbol“↪→” below denotes continuous embedding.

Proposition 5.2. If p(·) ∈ P(Rn) and α > γ ≥ 0, then Bα[Lp(·)] ↪→ Bγ[Lp(·)].

Proof. The proof follows immediately from the properties of the Bessel kernel and
from the boundedness of the Bessel potential operator. Indeed, if f = Bαϕ for some
ϕ ∈ Lp(·) then one can write f = Bγ(Bα−γϕ). Thus f ∈ Bγ[Lp(·)] by Theorem 5.1.
Furthermore,

‖f | Bγ[Lp(·)]‖ := ‖Bα−γϕ‖p(·) ≤ c ‖ϕ‖p(·) =: c ‖f | Bα[Lp(·)]‖.
¤

5.2. Characterization of the space Bα[Lp(·)] via hypersingular integrals. The
comparison of the ranges of the Bessel and Riesz potential operators is naturally
made via the convolution type operator whose symbol is the ratio of the Fourier
transforms of the Riesz and Bessel kernels. This operator is the sum of the identity
operator and the convolution operator with a radial integrable kernel. Keeping in
mind the application of Theorem 2.1, we have to show more, namely that this kernel
has an integrable decreasing dominant.

We have to show the existence of integrable decreasing dominants for two im-
portant kernels gα and hα, one defined in (5.3), another in (5.4). This will require
substantial efforts.

Let gα and hα be the functions defined via the following Fourier transforms

|x|α
(1 + |x|2)α

2

= 1 + ĝα(x), α > 0, x ∈ Rn, (5.3)

(1 + |x|2)α
2

1 + |x|α = 1 + ĥα(x), α > 0, x ∈ Rn. (5.4)

Observe that
1 + |x|α

(1 + |x|2)α
2

= Ĝα(x) + ĝα(x) + 1. (5.5)

It is known that gα and hα are integrable (see, for example, Lemma 1.25 in [24]).
The following two lemmas are crucial for our further goals.
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Lemma 5.3. The function gα defined in (5.3) has an integrable and radially de-
creasing dominant.

Lemma 5.4. The kernel hα given by (5.4) admits the bounds

|hα(x)| ≤ c

|x|n−a
as |x| < 1, a = min{1, α} (5.6)

and
|hα(x)| ≤ c

|x|n+α
as |x| ≥ 1. (5.7)

where c > 0 is a constant not depending on x.

The proof of these lemmas being somewhat technical is postponed till the next
subsection.

Before to formulate the main result of this section, we prove the following two
statements.

Proposition 5.5. Let 0 < α < n and p(·) ∈ P(Rn) with 1 < p ≤ p < n/α. Then
every ϕ ∈ Lα

p(·) can be represented as

ϕ = Bα(I + Uα)(ϕ + Dαϕ), (5.8)

where I denotes the identity operator and Uα is the convolution operator with the
kernel hα.

Proof. Identity (5.8) holds for functions ϕ ∈ C∞
0 . This follows immediately from

equality (5.4) above (cf. (7.39) in [24]). The denseness of C∞
0 in Lα

p(·) (stated

in Theorem 4.4) allows us to write (5.8) for all functions in Lα
p(·). To this end,

we observe that both operators Bα and Uα are continuous in Lp(·). In fact, the
boundedness of Bα was proved in Theorem 5.1. On the other hand, the convolution
operator Uα is bounded since its kernel has a radially decreasing and integrable
dominant by Lemma 5.4. ¤
Proposition 5.6. Let 0 < α < n and let 1 < p ≤ p < n/α. Then

Bαψ = Iα(I + Kα) ψ, (5.9)

for all ψ ∈ Lp + Lp, where I is the identity operator and Kα is the convolution
operator with the kernel gα.

Proof. Representation (5.9) holds for densities belonging to classical Lebesgue spaces
(see, for instance, (7.38) in [24]), where the kernel of Kα is precisely the function gα

from (5.3). By the Sobolev theorem one concludes that either B or Iα(I + Kα) are
linear operators from Lp into Lq(p), with 1

q(p)
= 1

p
− α

n
, and from Lp into Lq(p), with

1
q(p)

= 1
p
− α

n
. So, we can define these operators on the sum Lp + Lp in the usual

way. Hence, if ψ = ψ0 + ψ1, with ψ0 ∈ Lp and ψ1 ∈ Lp, then we may make use the

already known representation for each term and then arrive at equality (5.9). ¤
Finally, we are able to characterize the Bessel potentials in terms of convergence of

hypersingular integrals. The following theorem in the case of constant p, 1 < p < ∞,
is due to E. Stein [28] when 0 < α < 1 and to P.I. Lizorkin [17] in the general case
0 < α < ∞, see also the proof for constant p in [24], p.186.
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Theorem 5.7. Let 0 < α < n. If 1 < p ≤ p < n/α and p(·) satisfies the log-Hölder
continuity conditions (2.3) and (2.4), then Bα[Lp(·)] = Lα

p(·) with equivalent norms:
there are constants c1, c2 > 0 such that

c1 ‖f |Lα
p(·)‖ ≤ ‖f | Bα[Lp(·)]‖ ≤ c2 ‖f |Lα

p(·)‖, ∀f ∈ Bα[Lp(·)].

Proof. Assume first that f ∈ Bα[Lp(·)]. Then f ∈ Lp(·) by Theorem 5.1. It remains
to show that its Riesz derivative also belongs to Lp(·). Since f = Bαϕ for some
ϕ ∈ Lp(·) and Lp(·) ⊂ Lp + Lp, then by Proposition 5.6 one gets the representation

Bαϕ = Iα(I + Kα) ϕ.

Lemma 5.3 combined with Theorem 2.1, allow us to conclude that Kα is bounded
in Lp(·), and hence f ∈ Iα[Lp(·)]. So, according to the characterization given in
Theorem 3.2, the Riesz derivative Dαf exists in the sense of convergence in Lp(·).
Therefore, f ∈ Lα

p(·). Moreover,

‖f |Lα
p(·)‖ = ‖Bαϕ‖p(·) + ‖DαBαϕ‖p(·) = ‖Bαϕ‖p(·) + ‖DαIα(I + Kα) ϕ‖p(·)

= ‖Bαϕ‖p(·) + ‖(I + Kα) ϕ‖p(·) ≤ c ‖ϕ‖p(·) = c ‖f | Bα[Lα
p(·)]‖.

The third equality follows from the inversion Theorem 2.5, while the inequality is
obtained from Theorem 5.1 and from the boundedness of Kα.

Conversely, suppose that f ∈ Lα
p(·). Proposition 5.5 yields the representation

f = Bα(I + Uα)(f + Dαf).

Taking into account Lemma 5.4 and Theorem 2.1, we arrive at the conclusion that
f ∈ Bα[Lp(·)] and

‖f | Bα[Lp(·)]‖ = ‖(I + Uα)(f + Dαf)‖p(·) ≤ c (‖f‖p(·) + ‖Dαf‖p(·)) = c ‖f |Lα
p(·)‖.

¤
Corollary 5.8. If the exponent p(·) is under the conditions of Theorem 5.7, then
C∞

0 is dense in Bα[Lp(·)].

5.3. Proof of Lemmas 5.3 and 5.4. We start by proving Lemma 5.3. Let us

denote ρ = (1+ |x|2)1/2. Then |x|α
(1+|x|2)

α
2
−1 = (1−ρ−2)α/2−1. Taking the expansion

into the binomial series we get

(1− ρ−2)
α
2 − 1 =

∞∑

k=0

(
α/2

k

)(−ρ−2
)k − 1 =

∞∑

k=1

(−1)k

(
α/2

k

)
ρ−2k, ρ > 1.

Hence, for each x 6= 0,

|x|α
(1 + |x|2)α

2

− 1 =
∞∑

k=1

(−1)k

(
α/2

k

)
Ĝ2k(x) :=

∞∑

k=1

c(α, k) Ĝ2k(x),

where G2k is the Bessel kernel of order 2k. Hence

gα(x) =
∞∑

k=1

c(α, k) G2k(x), x ∈ Rn, (5.10)
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Now, we stress that

mα(x) :=
∞∑

k=1

|c(α, k)|G2k(x)

defines a radial decreasing dominant of gα. Furthermore, mα is integrable,

‖mα‖1 ≤
∞∑

k=1

∣∣∣∣
(

α/2

k

)∣∣∣∣ < ∞,

since
∣∣∣
(

α/2
k

)∣∣∣ ≤ c
k1+α/2 as k →∞ (cf. [26], p. 14). ¤

As regards Lemma 5.4, we split its proof into two parts.

Step 1 (proof of (5.6)): Let us start by representing the function ĥα as a finite
sum of Fourier transforms of Bessel kernels plus an integrable function. To this end,

we denote t = 1
1+|x|2 . Then ĥα(x) = 1

tβ+(1−t)β − 1, with β = α
2
. But

1

tβ + (1− t)β
− 1 =

1

(1− t)β
· 1

1 +
(

t
1−t

)β
− 1 =

1

(1− t)β

∞∑

k=0

(−1)k

(
t

1− t

)kβ

− 1

where the series converges if t
1−t

< 1, that is, if t < 1
2

or |x| > 1. Since 1
1−t

= 1+|x|2
|x|2

and t
1−t

= 1
|x|2 , we get

ĥα(x) =
(1 + |x|2)α

2

|x|α
∞∑

k=0

(−1)k

|x|αk
− 1, |x| > 1.

For each natural number N , we can write

ĥα(x) =
(
1 + |x|2)

α
2

N∑

k=0

(−1)k

|x|α(k+1)
− 1 + AN(x), |x| > 1, (5.11)

where |AN(x)| ≤ c
|x|αN . Indeed, since 1

|x|αk → 0 as k → +∞ (recall that |x| > 1), we

have

|AN(x)| =
∣∣∣∣∣
(1 + |x|2)α

2

|x|α
∞∑

k=N+1

(−1)k

|x|αk

∣∣∣∣∣ ≤
(1 + |x|2)α

2

|x|2α

1

|x|αN
≤ 2α

|x|αN
. (5.12)

Now it remains to represent the powers 1
|x|α(k+1) in terms of the powers 1√

1+|x|2 .

We observe that for any γ > 0, taking ρ =
√

1 + |x|2, we have

1

|x|γ = ρ−γ

(
1− 1

ρ2

)−γ/2

= ρ−γ

(
M∑

j=0

(−1)j

(−γ/2

j

)
ρ−2j + φM(ρ)

)
, (5.13)

where M ∈ N and

φM(ρ) =
∞∑

j=M+1

(−1)j

(−γ/2

j

)
ρ−2j

converges absolutely for ρ > 1, that is, for x 6= 0.
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Obviously
∣∣∣∣
φM(ρ)

ργ

∣∣∣∣ ≤ c

∞∑
j=M+1

1

j1− γ
2

1

ρ2j+γ
≤ c

ρM+1

∞∑
j=M+1

1

j1− γ
2

1

2
j+γ
2

(5.14)

where we took into account that |x| > 1 ⇐⇒ ρ ≥ √
2. Hence∣∣∣∣

φM(ρ)

ργ

∣∣∣∣ ≤
c1

ρM+1
≤ c2

ρM
. (5.15)

Then from (5.13) and (5.15)

1

|x|γ =
M∑

j=0

(−1)j
(−γ/2

j

)

(1 + |x|2)j+γ/2
+ Bγ

M(x), (5.16)

where

|Bγ
M(x)| ≤ C

|x|2M
as |x| > 1. (5.17)

Substituting (5.16) into (5.11) (with γ = α(k + 1)), and taking M = N , we arrive
at

ĥα(x) =
N∑

k,j=0
k+j 6=0

(−1)k+j
(−α(k+1)/2

j

)

(1 + |x|2)j+αk
+ rN(x), (5.18)

where the function

rN(x) = AN(x) +
(
1 + |x|2)

α
2

N∑

k=0

B
α(k+1)
N (x) (5.19)

satisfies the estimate

|rN(x)| ≤ c

|x|µ , µ = N min(2, α),

for all |x| > 1 according to (5.12) and (5.17). Hence, we only have to choose
N > n

min(2,α)
in order to get the integrability of rN at infinity.

The estimate at infinity was given for |x| > 1, but the equality (5.18) itself may
be written for all x ∈ Rn, just by defining rN as

rN(x) := ĥα(x)−
N∑

k,j=0
k+j 6=0

c(k, j) Ĝ2j+αk(x), N >
n

min(2, α)
, x ∈ Rn,

where G2j+αk are Bessel kernels and c(k, j) := (−1)k+j
(−α(k+1)/2

j

)
.

So, we have rN ∈ W0. In particular, rN is a bounded continuous function. Also,
rN is integrable at infinity in view of the estimate above and hence, rN ∈ W0 ∩ L1.
On the other hand, F−1rN ∈ W0 ∩ L1. Thus, F−1rN is a bounded continuous
function too. So

|hα(x)| ≤
N∑

k,j=0
k+j 6=0

|c(k, j)| |G2j+αk(x)|+ |F−1rN(x)| ≤
N∑

k,j=0
k+j 6=0

|c(k, j)| |G2j+αk(x)|+ C.
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We know that

G2j+αk(x) ∼ 1

|x|n−2j−αk
≤ c

|x|n−min(1,α)
as |x| < 1,

when 2j + αk < n. Thus, we arrive at (5.6) with a = min(1, α).
In the case 2j + αk > n we arrive at the same estimate since

G2j+αk(x) ∼ C(2j + αk), |x| < 1.

For the case 2j + αk = n we have the following logarithmic behavior:

G2j+αk(x) ∼ ln

(
1

|x|
)

, |x| < 1.

But ln
(

1
|x|

)
≤ 1

|x|n−a for any a ∈ (0, n). The proof of (5.6) is completed.

Step 2 (proof of (5.7)): To obtain (5.7), we transform the Bochner formula for
the Fourier transform of radial functions via integration by parts and arrive at the
formula

F−1ĥα(x) =
c

|x|n2 +m−1

∫ ∞

0

ψ(m)
α (t) t

n
2 Jn

2
+m−1(t|x|) dt, x 6= 0, (5.20)

where ψα(t) =
(1+t2)

α
2

1+tα
and m is arbitrary such that m > 1 + n

2
(the latter condition

on m) guarantees the convergence of the integral at infinity.
To justify formula (5.20), we make use of the standard regularization of the inte-

gral (cf. [30]):

F−1ĥα(x) = (2π)−n lim
ε→0

∫

Rn

e−ε|y| e−ix·y ĥα(|y|) dy

= (2π)−n lim
ε→0

(2π)n/2

|x|n/2−1

∫ ∞

0

e−εt ĥα(t) tn/2 Jn/2−1(t|x|) dt

=
(2π)−ν

|x|ν−1
lim
ε→0

∫ ∞

0

fε(t) tν Jν−1(t|x|) dt

=
(2π)−ν

|x|ν−1
lim
ε→0

(−1)m

|x|m
∫ ∞

0

f (m)
ε (t) tν Jν+m−1(t|x|) dt (5.21)

where Jν−1(t) denotes the Bessel function of the first kind, ν = n
2
, m ∈ N and

fε(t) := e−εt ĥα(t), ε > 0.

The second equality follows from the Bochner formula for Fourier transforms of
radial functions, while the last is obtained via integration by parts and the relation
d
du

[uν Jν(u)] = uν Jν−1(u) (cf. (8.133) in [24]). Here we assumed that some quantities
vanish, namely

f (k)
ε (t) tν Jν+k(t|x|)

∣∣∞
0

= 0, k = 0, 1, . . . , m− 1. (5.22)
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To check this for ψα(t) = ϕα(t) · φα(t) with ϕα(t) = (1 + t2)
α
2 and φα(t) = 1

1+tα
, we

observe that

ϕ(k)
α (t) = ϕα(t)

[k/2]∑
j=0

cj(α)
tk−2j

(1 + t2)k−j
, k = 0, 1, . . .

and

φ(k)
α (t) = φα(t) t−k

k∑
j=1

dj(α)
tjα

(1 + tα)j
, k = 1, 2, . . .

where the constants cj(α) and dj(α) may vanish (but not all simultaneously), which
may be directly proved. For k ≥ 1, we have

ψ(k)
α (t) =

k∑
r=0

(
k

r

)
ϕ(r)

α (t) φ(k−r)
α (t)

= ψα(t)
k−1∑
r=0

(
k

r

) 


[r/2]∑
j=0

cj(α) tr−2j

(1 + t2)r−j




(
t−(k−r)

k−r∑
j=1

dj(α) tjα

(1 + tα)j

)

+ ψα(t)




[k/2]∑
j=0

cj(α) tk−2j

(1 + t2)k−j




Since fε(t) = e−εt (ψα(t)− 1), then

f (k)
ε (t) =

k∑
j=0

(
k

j

)
(−ε)k−j e−εt ψ(j)

α (t)− (−ε)k e−εt. (5.23)

Let k ∈ {0, 1, 2, . . . , m − 1}. Taking into account that Jν+k(u) behaves like uν+k

for small values of u, we obtain

f (k)
ε (t) tν Jν+k(t|x|) −→ 0 as t → 0.

On the other hand, Jν+k(u) behaves like 1√
u

for large values of u. Since e−εt tν−1/2

goes to zero as t →∞ and
∣∣∣ψ(j)

α (t)
∣∣∣ behaves like a constant (0 or 1, if j > 0 or j = 0,

respectively) when t →∞, then

f (k)
ε (t) tν Jν+k(t|x|) −→ 0 as t →∞,

which completes the verification of (5.22).

To derive (5.20) from (5.21), we notice that the functions f
(m)
ε (t) tν Jν+m−1(t|x|),

ε > 0, are integrable in (0,∞). In fact, the integrability at the origin follows from
the asymptotic behavior of the Bessel function, while its integrability at infinity
follows from the definition of the Gamma function.

It suffices to note that f
(m)
ε (t) −→ ψ

(m)
α (t) as ε → 0, by (5.23), and the passage

to the limit in (5.21) is easily justified, which yields (5.20).
To obtain (5.7) from (5.20), we observe that the following estimates hold:

∣∣ψ(m)
α (t)

∣∣ ≤ c

tm
as t ≥ 1 (5.24)
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and ∣∣ψ(m)
α (t)

∣∣ ≤ c
(
tα−m + tm−2[m

2 ]
)

as t < 1. (5.25)

So, we have

c

|x|ν+m−1

∫ 1

0

|ψ(m)
α (t)| tν |Jν+m−1(t|x|)| dt ≤ c

|x|ν+m−1

∫ 1

0

tα−m+ν |Jν+m−1(t|x|)| dt

≤ c

|x|n+α

∫ |x|

0

tα−m+ν |Jν+m−1(t)| dt

≤ c

|x|n+α

∫ ∞

0

tα−m+ν |Jν+m−1(t)| dt

=
c1

|x|n+α

if m > 1 + ν + α, which guarantees the convergence of the last integral at infinity.
The proof is completed. ¤

6. Connection of the Riesz and Bessel potentials with the Sobolev
spaces of variable exponent

The identification of the spaces of Bessel potentials of integer smoothness with
Sobolev spaces is a well-known result within the framework of the classic Lebesgue
spaces. The result is due to A. Calderón and states that Bm[Lp] = Wm

p , if m ∈ N0

and 1 < p < ∞, with equivalent norms. We extend this to the variable exponent
setting. The proof will follow mainly the case of constant p, which can be found,
for instance, in [29], Sections V.3.3-4. In particular, we will make use of the Riesz
transforms

Rj f(x) = lim
ε→0

cn

∫

|y|>ε

yj

|y|n+1
f(x− y) dy, j = 1, 2, . . . , n.

The key point is the following characterization:

Theorem 6.1. Let p(·) ∈ P(Rn) and let α ≥ 1. Then f ∈ Bα[Lp(·)], if and only

if f ∈ Bα−1[Lp(·)] and ∂f
∂xj

∈ Bα−1[Lp(·)] for every j = 1, . . . , n. Furthermore, there

exist positive constants c1 and c2 such that

c1 ‖f | Bα[Lp(·)]‖ ≤ ‖f | Bα−1[Lp(·)]‖+
n∑

j=1

∥∥∥∥
∂f

∂xj

| Bα−1[Lp(·)]

∥∥∥∥ ≤ c2 ‖f | Bα[Lp(·)]‖.

(6.1)

Proof. Suppose first that f = Bαϕ for some ϕ ∈ Lp(·). Then for each j = 1, 2, . . . , n,
we have

∂f

∂xj

= Bα−1[−Rj(I + K1)ϕ], (6.2)

where I is the identity operator and K1 is the convolution operator whose kernel is
g1, given by (5.3) with α = 1. This identity, obvious in Fourier transforms, is known
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to be valid for ϕ ∈ Lp when p is constant, see [29], p. 136. Then it is also valid for
variable p(·), since Lp(·) ⊂ Lp + Lp.

The right-hand side inequality in (6.1) follows from (6.2) and from the mapping
properties of the Bessel potential operator on spaces Lp(·).

The proof of the left-hand side inequality follows the known scheme for constant
p. However, we need to refine the connection with the Riesz transforms and the
derivatives, in order to overcome the difficulties associated to the convolution oper-
ators in the variable exponent setting. We write here the main steps of the proof
for the completeness of the presentation.

Assume that both f and ∂f
∂xj

belong to Bα−1[Lp(·)]. If f = Bα−1ϕ, with ϕ ∈ Lp(·),
then the first order derivatives of ϕ exist in the weak sense and belong to Lp(·).

Moreover, ∂f
∂xj

= Bα−1
(

∂ϕ
∂xj

)
. Since ϕ ∈ W 1

p(·) there exists a sequence of infinitely

differentiable and compactly supported functions {ϕk}k∈N such that lim
k→∞

ϕk = ϕ

and lim
k→∞

∂ϕk

∂xj
= ∂ϕ

∂xj
in Lp(·), j = 1, 2, . . . , n. This follows from the denseness of C∞

0

in the Sobolev space W 1
p(·) (see [23]), which holds under the assumptions on the

exponent. This completes the proof. ¤

Corollary 6.2. Let p(·) be as in Theorem 6.1 and let m ∈ N0. Then

Bm[Lp(·)] = Wm
p(·),

up to the equivalence of the norms.

The theorem below provides a connection of the spaces of Riesz potentials with
the Sobolev spaces. It partially extends the facts known for constant p (see, for
instance, [24], p. 181) to the variable exponent setting.

Theorem 6.3. Let p(·) be log-Hölder continuous both locally and at infinity, with
1 < p ≤ p < n/α. Then we have

Wm
p(·) ⊂ Lp(·) ∩ Iα[Lp(·)] (6.3)

if 0 < α < min(m, n), m ∈ N, and

Wm
p(·) = Lp(·) ∩ Im[Lp(·)] (6.4)

when 0 < m < n.

Proof. Let us prove (6.4) first. Let f ∈ Wm
p(·). From Corollary 6.2, Proposition 5.2

and Theorem 5.7, we derive that not only f ∈ Lp(·), but also that Dmf ∈ Lp(·). On
the other hand, the Sobolev theorem states that f ∈ Lq(·), where q(·) is the usual
Sobolev exponent. Then by Theorem 3.2 one concludes that f is a Riesz potential.
Reciprocally, if f ∈ Im[Lp(·)] then the application of Theorem 3.2 shows that Dmf
exists in Lp(·), which implies f ∈ Lm

p(·). As above, one gets f ∈ Wm
p(·).

The embedding (6.3) can be proved following similar arguments by observing that
Bm[Lp(·)] ↪→ Bα[Lp(·)] when m > α. ¤
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