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Integral Equations
and Operator Theory

Local Fredholm spectrums and Fredholm prop-
erties of singular integral operators on Car-
leson curves acting on weighted Hölder spaces

Vladimir Rabinovich, Natasha Samko, and Stefan Samko

Abstract. We study the local Fredholm spectrums and global Fredholm prop-
erties for singular integral operators on composed Carleson curves with dis-
continuous coefficients acting on weighted Hölder spaces. We consider the
curves, coefficients, and weights which are slowly oscillating at the nodes of
the curve.

Application of pseudodifferential operators technique allows us to ex-
plain the influence of oscillation of curves, coefficients, and weights on the
appearance of massive local Fredholm spectrums.

We obtain a criterion of Fredholmness and index formula for operators
under consideration.
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spaces 13
3.1. Multiplicative Hölder spaces on R+ 13
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1. Introduction

In the book [1] (see also references therein) A. Böttcher and Yu. Karlovich con-
sidered the algebra of operators acting in Lp(Γ, w), where 1 < p < ∞ and w is a
Muckenhoupt weight, generated by the operator SΓ of singular integration along a
composed Carleson curve Γ and operators of multiplication by piece-wise continu-
ous functions. Several new phenomena were discovered by them: the circular arcs
and horns which typically arise in the spectral theory of Gohberg, Krupnik, and
Spitkovsky, [9], [22] are converted into logarithmic double spirals and spiral horns.
Notice that the approach of Böttcher/Yu. Karlovich is based on the Wiener-Hopf
factorization, and theory of sub-multiplicative functions.

However, there is another approach to the problem based on the local princi-
ple and the Mellin pseudodifferential operators technique. Such an approach was
applied in the papers [17], [19], [18], [20], [2], [4], [3], [1] for the study of singular
integral operators acting on weighted Lp-spaces on composed Carleson curves. It
has been shown that the local representative of a singular integral operator at
singular points can be realized as a Mellin pseudodifferential operator with sym-
bol containing all characteristics of the operator: characteristics of oscillations and
rotations of the curve, oscillations of the weight and coefficients, the exponent p
of Lp-space.

Here we apply this approach to the investigation of Fredholm properties of
singular integral operators

Au(t) = a(t)u(t) + b(t)SΓu(t), t ∈ Γ

as operators acting on weighted Hölder spaces Λs,w(Γ), 0 < s < 1. We suppose that
the coefficients a, b are smooth functions on Γ outside nodes tk of the curve Γ, and
they have slowly oscillating discontinuities at the nodes. We also suppose that the
curve Γ and the weight w have slowly oscillating characteristics at every node tk.
We explain the appearance of massive local Fredholm spectrum at the nodes by
the influence of oscillation of the curves, weights, and coefficients at the node. We
show that the local Fredholm spectrum at the node is a union of logarithmic
double spirals whose shapes depend on the behavior of coefficients a, b, curve Γ,
and weight w at the node, and the exponent s of the considered Hölder space.
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Note that Fredholm theory of singular integral operators with piece-wise con-
tinuous coefficients on composed Lyapunov curves acting on Hölder spaces with
power weights was constructed by R. Duduchava in early seventy [5], [6], [7], see
also the book of I. Gohberg and N. Krupnik [8]. Fredholm property of singular in-
tegral operators with piece-wise continuous coefficients on closed Lyapunov curves
acting on generalized Hölder spaces with general weights was studied by N. Samko
(see [26], [27], and reference therein).

The paper is organized as follows. In Section 1 we give an auxiliary material
concerning pseudodifferential operators on R acting on Hölder spaces. The main
result of this section is a criterion of local Fredholmness of pseudodifferential oper-
ators at the point +∞. This result has a fundamental significance in what follows.
In Section 2 the results of Section 1 are reformulated for Mellin pseudodifferential
operators acting on the Hölder spaces Λ̃s(R+) with respect to the multiplicative
structure of the group R+. Section 3 is the main in the paper and contains the
following results:

1) a theorem on boundedness of the singular integral operator on composed
Carleson curves acting on Hölder spaces with general weights. The proof of this
theorem is based on the theorem on the boundedness of Mellin pseudodifferential
operators in the spaces Λ̃s(R+), 0 < s < 1, and an admissible partition of unity
on the curve;

2) a criterion of local Fredholmness of singular integral operator with piece-
wise slowly oscillating coefficients acting on weighted Hölder spaces and the de-
scription of their local Fredholm spectrums;

3) a criterion of Fredholmness of singular integral operators with piece-wise
slowly oscillating coefficient at the nodes on weighted Hölder spaces. For the proof
of sufficiency of the criterion we use the corresponding results for the local Fred-
holmness of singular integral operators, and ”gluing” the global regularizers from
the local ones by means of the admissible partition of unity on the curve Γ. The
necessity of conditions of this theorem follows from necessity of conditions for the
singular integral operator to be locally Fredholm operator.

From the local principles of Simonenko [23] and Allen- Douglas [21] it follows
that the global Fredholmness of singular integral operators acting on weighted
Lp−spaces is equivalent to their local Fredholmness at every point of the curve
Γ. In the case of operators acting on weighted Hölder spaces the local principle is
known also (see for instance [14], [28]), but it is more convenient for us to give an
explicit construction of regularizers.
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N o t a t i o n :
|a|r,t is the symbol norm, see (1);
B(X) is a Banach algebra of all bounded linear operators

acting on a Banach space X;
C∞b (R), see (2.14);
F is the set of all the nodes of the curve Γ, see Subsection 4.1;
K (X) is a two-sided ideal in B(X) of all compact operators;
Op(a), see (2.2);
OpM (a), see (3.5);
OPSm

1,0, see Definition 2.2;
OPS0

1,0(R̃), see Subsection 2.4;
OPS0

1,0 see Subsection 3.2 ;
OPSO±, OPSO are the classes of operators with symbols from SO±, SO, respectively;
OPSO0, see Subsection 3.2;
OPSO+(R̃) see Subsection 2.4;
R̃ is the two point compactification of R;
Sm

1,0 is the Hörmander class of symbols, see Definition 2.1;
S0

1,0(R̃), see Subsection 2.4;
S0

1,0, see Subsection 3.2;
SO0, see Subsection 3.2;
SO± is the class of symbols from S0

1,0 slowly oscillating at±∞,
see Definition 2.4 ; SO = SO+ ∩ SO−;

SO∞, see (2.21);
sp+∞(A : X → X), see (2.42 );
Vhu(x) = u(x + h) is the translation operator;
Λs(E) is the ”translation type” Hölder class, see Definition 2.6;
Λs

c(R) see (2.27);
Λs

x0
(E) is the subspace of functions u ∈ Λs(E) such that

lim
E3x→x0

u(x) = 0, where x0 is a limit point of E;

Λ̃s(R+) is the ”dilatation type” Hölder class, see Definition 3.1;
Λ̃s
−(R+,CN ), see (3.8);

Λs,w(Γ), see Subsection 4.2;
〈ξ〉 =

√
1 + |ξ|2 ;

Φ, see (2.17).

2. Local invertibility of pseudodifferential operators on weighted
Hölder spaces

2.1. Calculus of pseudodifferential operators

The goal of this subsection is to set up some notations and summarize (without
proof) some facts on pseudodifferential operators. Standard references are [13],
[11], [24], [29], [30].
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We restrict ourselves to the case of dimension one, because our aim is appli-
cations of pseudodifferential operators to the theory of one-dimensional singular
integral operators.

Definition 2.1. We say that a function a belongs to the L.Hörmander class Sm
1,0

where m > 0, m ∈ R, if a ∈ C∞ (R× R) , and for all r, t ∈ N0 = N∪{0}
|a|r,t =

∑
α,β∈N0

α≤r,β≤t

sup
R×R

∣∣∂α
ξ ∂β

x a(x, ξ)
∣∣ 〈ξ〉α−m

< ∞, (2.1)

where 〈ξ〉 =
√

1 + |ξ|2.
As usual, we associate with a symbol a the pseudodifferential operator de-

fined on the Schwartz space S(R) by the formula

Op(a)u(x) = a(x,D)u(x) = (2π)−1
∫

R
dξ

∫

R
a(x, ξ)u(y)ei(x−y)ξdy. (2.2)

Definition 2.2. We denote by OPSm
1,0 the class of pseudodifferential operators with

symbols in Sm
1,0.

It is well-known that A ∈ OPSm
1,0 is a bounded operator on S(R). We say

that At is a formally adjoint operator for A if
∫

R
(Au) (x)v(x)dx =

∫

R
u(x)(Atv) (x)dx (2.3)

for all u, v ∈ S(R). Then, At = Op(at) ∈ OPSm
1,0, and we can define the action of

A ∈ OPSm
1,0 on S′(R) by the formula

(Au) (v) = u(Atv),

where u ∈ S′(R), v ∈ S(R).

Proposition 2.3. Let A = Op(a) ∈ OPSm
1,0(R). Then there exists a Schwartz kernel

ka ∈ C∞(R)⊗S′(R) of the operator A such that

Au(x) = (ka(x, z), u(x− z)) , u ∈ S′(R), (2.4)

where
ka(x, z) = F−1

ξ→za(x, ξ).

(F−1
ξ→z is the inverse Fourier transform in the sense of distributions.)

The kernel ka(x, z) is in C∞(R× R\{0}) and satisfies
∣∣∂β

x ∂α
z ka(x, z)

∣∣ ≤ Cα,β,N |z|−1−m−α−N
, x ∈ R, z ∈ R\{0} (2.5)

for all the multi-indices α, β, and all N ≥ 0 such that 1 + m + |α|+ N > 0.

Below we set up some facts on calculus of pseudodifferential operators with
slowly oscillating symbols following [16], see also [15], Chap. 4.
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Definition 2.4. A symbol a is called slowly oscillating at the points ±∞ if a ∈
S0

1,0(R), and ∣∣∂α
ξ ∂β

x a(x, ξ)
∣∣ ≤ Cαβ(x) 〈ξ〉−α

, (2.6)

where limx→±∞ Cαβ(x) = 0 for every α ≥ 0 and β > 0. We denote by SO± the
class of slowly oscillating at the point ±∞ symbols, and set SO = SO+∩SO− We
use the notations OPSO±, and OPSO for the class of operators with symbols in
SO± and SO, respectively.

Proposition 2.5. Let A = Op(a) ∈ OPSO±, B = Op(b) ∈ OPSO±. Then AB ∈
OPSO±, and

AB = Op(ab) + Op(t(x, ξ)),

where t(x, ξ) is such that
∣∣∂β

x ∂α
ξ t(x, ξ)

∣∣ ≤ Cαβ(x) 〈ξ〉−1−α
, (2.7)

and
lim

x→±∞
Cαβ(x) = 0 (2.8)

for all α, β.

2.2. Hölder spaces

Definition 2.6. Let E ⊂ R, and 0 < s < 1, we define Λs(E) as the subspace of C(E)
consisting of those bounded functions u which satisfy in E the Hölder condition of
order s, that is, there exists a constant c such that |u(x)− u(y)| ≤ c |x− y|s for
all x, y ∈ E.

Equipped with the norm

‖u‖Λs(E) = ‖u‖L∞(E) + sup
x,y∈E, x 6=y

|u(x)− u(y)|
|x− y|s , (2.9)

Λs(E) is a Banach space.

Proposition 2.7. Let ϕ ∈ C∞0 (R) be such that ϕ(x) = 1 if |x| ≤ 1, ϕ(x) = 0 if
|x| ≥ 2, and 0 ≤ ϕ(x) ≤ 1 if 1 ≤ |x| ≤ 2, and ϕR(x) = ϕ(x/R). Then for every
s ∈ (0, 1)

lim
R→∞

‖ϕRu‖Λs(R) = ‖u‖Λs(R) . (2.10)

Proof. Proof follows directly from the definition of norm (2.9). ¤

Proposition 2.8. (see [32], p. 52). Let s ≤ r. Then Λr(E) ⊆ Λs(E). If s < r, and
E is an open set with a compact closure, then the imbedding Λr(E) ⊂ Λs(E) is
compact.

We denote by Λs
x0

(E) the subspace of Λs(E) consisting of functions u such
that limE3x→x0 u(x) = 0, where x0 is a limit point of E.
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Proposition 2.9. Let u ∈ Λs
x0

(E). Then for every δ ∈ (0, +∞] there exists a
constant Cδ > 0 such that

‖u‖L∞(E) ≤ Cδ sup
x,y∈E,0<|x−y|<δ

|u(x)− u(y)|
|x− y|s . (2.11)

Proof. Suppose that inequality (2.11) does not hold for some δ > 0. Then there
exists a sequence un ∈ Λs

x0
(E) such that ‖un‖L∞(E) = 1, and

sup
x,y∈E,

0<|x−y|<δ

|un(x)− un(y)|
|x− y|s <

1
n

. (2.12)

Since ‖un‖L∞(E) = 1, the sequence un is uniformly bounded and by (2.12) it is
equicontinuous. Then, there exists a subsequence unk

convergent to a limit function
u uniformly on every compact set in E. This implies that ‖u‖L∞(E) = 1. Passing
to the limit in (2.12) we obtain that

sup
x,y∈E

0<|x−y|<δ

|u(x)− u(y)|
|x− y|s = 0.

Hence u is a constant function on E. It implies that u(x) = 0 for every point
x ∈ E, because lim

E3x→x0
u(x) = 0. This is a contradiction to ‖u‖L∞(E) = 1. ¤

Proposition 2.10. On the space Λs
x0

(E), the norm defined in (2.9) and the norm

‖u‖Λs
δ(E) = sup

x,y∈E,0<|x−y|<δ

|u(x)− u(y)|
|x− y|s ,

where δ ∈ (0,∞], are equivalent.

Proof. It is evident that
‖u‖Λs

δ(E) ≤ ‖u‖Λs(E) .

Further, by (2.11)

‖u‖Λs(E) ≤ sup
x,y∈E,0<|x−y|<δ

|u(x)− u(y)|
|x− y|s +

(
1 +

2
δs

)
‖u‖L∞(E)

≤
(

1 +
(

1 +
2
δs

)
Cδ

)
‖u‖Λs

δ((E) .

¤
2.3. Boundedness and compactness of pseudodifferential operators on Hölder spaces

Let X be a Banach space, B(X) a Banach algebra of all bounded linear operators
acting on X, and K (X) a two-sided ideal in B(X) of all compact operators.

In what follows if X is a function space and a is a function we denote by aI
the operator of multiplication by this function. If B is a linear operator we will
write aB instead of aIB.

We will define the action of pseudodifferential operators on Hölder spaces
Λs(R) by formula (2.4).
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Proposition 2.11. A pseudodifferential operator A = Op(a) ∈ OPSε
1,0 is bounded

from Λs(R) in Λs−ε(R) for every s ∈ (0, 1) and ε such that s−ε ∈ (0, 1). Moreover,
there exist C > 0 independent of a such that

‖Op(a)u‖Λs−ε(R) ≤ C |a|l1,l2
‖u‖Λs(R) , (2.13)

where l1 > 2, l2 > 2.

The boundedness of pseudodifferential operators on the Hölder spaces has
been proved in [25], p. 253-257, see also [31], p.37-38 without estimate (2.13). But
a careful analysis of those proofs allows us to obtain estimate (2.13).

We denote by C∞b (R) the class of functions in C∞(R) bounded with all their
derivatives, and with the topology defined by the seminorms

|a|k =
∑

j≤k

sup
x∈R

∣∣∣a(j)(x)
∣∣∣ . (2.14)

If A,B ∈ B(X), then we denote by [A;B] = AB −BA the commutator of A,B.

Proposition 2.12. Let A = Op(a) ∈ OPS0
1,0, ϕ ∈ C∞b (R), ϕR(x) = ϕ(x/R). Then

‖[ϕRI,A]‖B(Λs(R)) ≤
C

R
, R > 0 (2.15)

where C > 0 does not depend on R.

Proof. It follows from the formulas of compositions for pseudodifferential operators
that

[ϕRI, A] = Op(bR),
where

|bR|k,t ≤ CR−1 |a|k+2,t+2 . (2.16)

Estimate (2.16) and Proposition 2.11 yield estimate (2.15). ¤

Let
Φ = {ϕ ∈ Λs(R) : ϕ(x) ≡ 0 for x ≤ b = bϕ ∈ R} (2.17)

and
Λs
−(R) = Φ, (2.18)

the closure being taken with respect to the norm of Λs(R). It is clear that Λs
−(R)

is a closed subspace of

Λs
−∞(R) =

{
u ∈ Λs

−(R) : lim
x→−∞

u(x) = 0
}

.

Proposition 2.13. A pseudodifferential operator A = Op(a) ∈ OPSε
1,0 is bounded

from Λs
−(R) in Λs−ε

− (R) for every s ∈ (0, 1) and ε such that s − ε ∈ (0, 1) with
estimate (2.13).

The proof of this proposition easily follows from Propositions 2.11 and 2.12.
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Proposition 2.14. Let T = Op(t) ∈ OPS−ε
1,0, and

∣∣∂β
x ∂α

ξ t(x, ξ)
∣∣ ≤ Cαβ(x) 〈ξ〉−ε−α

, ε > 0, (2.19)

where

lim
x→+∞

Cαβ(x) = 0 (2.20)

for all α, β ∈ N0. Let χ ∈ C∞b (R), and χ(x) = 0 for x < R.

(i) Then TχI and χT are compact operators on Λs(R) (Λs
−(R)) for every

χ ∈ C∞b (R), such that χ(x) = 0 for x < R.

(ii) If limx→∞ Cαβ(x) = 0 for all α, β ∈ N0, then T is a compact operator
on Λs(R),

(
Λs
−(R)

)
.

Proof. We prove that χT is a compact operator. Let ϕ ∈ C∞0 (R), ϕ(x) = 1 if
|x| ≤ 1, and ϕ(x) = 0 if |x| ≥ 2, ϕR(x) = ϕ(x/R), ψR = 1− ϕR. Then

‖χT − ϕRχT‖B(Λs(R))

≤ ‖ψRχT‖
B(Λs(R))

≤ C |ψRχt|2k1,2k2

where C (> 0) , and 2k1 > 1, 2k2 > 1 are independent of t and R. Estimates (2.19),
(2.20) imply that

lim
R→∞

|ψRχt|2k1,2k2
= 0.

Let us prove that ϕRχT : Λs(R) → Λs(R) is a compact operator. Indeed, supp ϕRχTu ⊂
B2R = {x ∈ R : |x| < 2R} for every function u ∈ Λs(R). Hence, ϕRχT maps
bounded sets in Λs(R) in bounded sets in Λs+ε(B2R). By Proposition 2.8, the
space Λs+ε(B2R) is compactly imbedded into Λs(B2R). In the same way we prove
compactness of Tχ, and statement (ii).

The proof for the spaces Λs
−(R) is similar. ¤

We denote by SO∞(R) the class of slowly oscillating functions, that is, the
functions in C∞b (R) which satisfy the condition

lim
x→∞

b′(x) = 0. (2.21)

Note that this condition implies that

lim
x→∞

b(j)(x) = 0, j ∈ N.

Proposition 2.15. Let A = Op(a) ∈ OPSO, b ∈ SO∞(R). Then the commutator

[A, bI] = AbI − bA

is a compact operator on Λs(R) (Λs
−(R)).

The proof easily follows from Propositions 2.5 and 2.14.
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2.4. Local Fredholmness of pseudodifferential operators

Let χ ∈ C∞b (R), and χ(x) = 0 if x ≤ 1, and χ(x) = 1 if x ≥ 2, 0 ≤ χ(x) ≤ 1. We
set χR(x) = χ(x/R), R > 0. Let ψR be a function with the properties similar to
the properties of χR, and ψRχR = χR.

Definition 2.16. An operator A ∈ B (Λs(R)) is called a locally Fredholm operator
at the point +∞, if there exist operators L,R ∈ B (Λs(R)) and R0 > 0 such that
for R > R0

LψRAχRI = χRI + T ′R, χRAψRR = χRI + T ′′R, (2.22)

where T ′R, T ′′R ∈ K(Λs(R)).

Equalities (2.22) can be written as follows

ψRLψRAχRI = χRI + ψRT ′RψRI, χRAψRRψR = χRI + ψRT ′′RψRI. (2.23)

Note if u ∈ Λs(R) then the functions ψRu, χRu belong to Λs
−(R). It implies

that A is a locally Fredholm operator on Λs(R) at the point +∞ if and only A is
a locally Fredholm operator on Λs

−(R) at this point.
We denote by R̃ the two point compactification of R homeomorphic to the

segment [−1, 1], and by S0
1,0(R̃) the class of symbols in S0

1,0 admitting exten-
sions on R̃. The corresponding class of pseudodifferential operators is denoted by
OPS0

1,0(R̃).

Proposition 2.17. Let A = Op(a) ∈ OPS0
1,0(R̃), and a sequence hn → ∞. Then

there exists a subsequence hnk
and the function ah(x, ξ) = lim

k→∞
a(x + hnk

, ξ) such

that for every function ϕ ∈ C∞0 (RN )

lim
k→∞

∥∥∥
(
V−hnk

AVhnk
−Op(ah)

)
ϕI

∥∥∥
B(Λs(R))

= 0. (2.24)

Proof. Let A = Op(a) ∈ OPS0
1,0(R̃) and Vhu(x) = u(x − h) be the translation

operator. For a sequence hn → ∞ we have V−hnAVhn = Op(a(x + hn, ξ), where
the functional sequence a(x + hn, ξ) is uniformly bounded and equicontinuous on
compact sets K × R̃, where K is a compact set in R. Applying Arcella-Ascoli’s
Theorem we obtain that there exists a subsequence hnk

such that

a(x + hnk
, ξ) → ah(x, ξ)

uniformly on every compact sets K × R̃, that is,

lim
k→∞

sup
K×RN

|a(x + hnk
, ξ)− ah(x, ξ)| = 0. (2.25)

By the well-known inequality

sup
X

∣∣∣∣
∂u(x)
∂xj

∣∣∣∣ ≤ C
√

sup
X
|u(x)|

√√√√sup
X

∣∣∣∣∣
∂2u(x)

∂x2
j

∣∣∣∣∣,



Vol. 99 (9999) Running Heads: Local Fredholm spectrums 11

where X is a set in R, we obtain that

lim
k→∞

sup
K×R

∣∣∂α
ξ ∂β

x a(x + hnk
, ξ)− ∂α

ξ ∂β
x ah(x, ξ)

∣∣ 〈ξ〉α = 0. (2.26)

Formula (2.26) implies that the limit symbol ah(x, ξ) is in S0
1,0(R). Moreover,

estimate (2.26) and Proposition 2.11 yield (3.4). ¤

Let
Λs

c(R) = the closure in Λs(R) of the set of functions
in Λs(R) with compact supports. (2.27)

Corollary 2.18. Let A = Op(a) ∈ OPS0
1,0(R̃), and ah be denoted by (2.26). Then

s− lim
k→∞

(V−hnk
AVhnk

: Λs
c(R) → Λs(R)) = Op(ah). (2.28)

Proof. It suffices to prove (2.28) for u ∈ Λs(R) with compact support. Let ϕRu = u.
Then

lim
k→∞

∥∥∥
(
V−hnk

AVhnk
−Op(ah)

)
u
∥∥∥

Λs(R)

≤ lim
k→∞

∥∥∥
(
V−hnk

AVhnk
u−Op(ah)

)
ϕRI

∥∥∥
B(Λs(R))

‖u‖Λs(R) = 0.

Hence 2.24 implies 2.28. ¤

We set OPSO+(R̃) = OPS0
1,0(R̃)

⋂
OPSO+. Note that if a ∈ SO+(R̃) and

ah is a limit symbol defined by (2.26), then ah is a function depending only on
ξ ∈ R: ah(x, ξ) = ah(ξ) ([15], Chap. 4.4).

Theorem 2.19. An operator A = Op(a) ∈ OPSO+(R̃) acting on Λs(R)
(
Λs
−(R)

)
is a locally Fredholm operator at the point +∞, if and only if

lim
r→∞

inf
x>r,ξ∈R

|a(x, ξ)| > 0. (2.29)

Proof. 1. Let ψ ∈ C∞b (R), and ψ(x) = 0 if x ≤ 1/2, and ψ(x) = 1 if x ≥ 1,
0 ≤ ψ(x) ≤ 1, ψR(x) = ψ(x/R), R > 0, and ψRχR = χR. Let condition (2.29) be
fulfilled. Then there exist R0 > 0 such that bR0(x, ξ) = ψR0(x)a−1(x, ξ) ∈ SO+.
Let BR0 = Op(bR0). Then

BR0A = ψR0 + T ′,
where T ′ = Op(t′) with t′ satisfying estimates (2.7) and (2.8). Then,

BR0AχRI = χRI + T ′χRI,

where T ′χRI is a compact operator by Proposition 2.14. Moreover,

BR0AχRI = BR0ψRAχRI + BR0 [ψRI, A] χRI,

where [ψRI, A] is a compact operator by Proposition 2.15. Hence,

BR0ψRAχRI = χRI + T ′,

where T ′ is a compact operator.
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In the same way we obtain that

χRAψRBR0 = χRI + T ′′,

where T ′′ is a compact operator.
2. Let an operator Op(a) ∈ OPSO+(R̃) be locally Fredholm at the point

+∞. Show that condition (2.29) is fulfilled. Notice that

s− lim
R→∞

(ψRI : Λs
c(R) → Λs(R)) = 0.

Let A : Λs(R) → Λs(R) be a locally Fredholm operator at the point +∞. Then
the following a priory estimate holds

‖AχR0u‖Λs(R) ≥ C(‖χR0u‖Λs(R) − ‖Tu‖Λs(R)) (2.30)

where T is a compact operator, and R0 > 0 is sufficiently large.
Let ω have the properties similar to the properties of χ, and ωRχR0 = ωR.

Then
‖AωRu‖Λs(R) ≥ C

(
‖ωRu‖Λs(R) − ‖TωRu‖Λs(R)

)
.

We can consider T as a compact operator from Λs
c(R) in Λs(R). Hence,

lim
R→∞

‖TωRI‖Λs
c(R)→Λs(R) = 0. (2.31)

Formulas (2.30), (2.31) yield that there exist R0 such that for R > R0

‖AωRu‖Λs(R) ≥ C/2 ‖ωRu‖Λs(R) (2.32)

for every function u ∈ Λs
c(R). Let a sequence hm ∈ R tend to +∞ and a function

u have a compact support. Then for fixed R > 0 there exists m ≥ m0 such that
ωRVhmu = Vhmu. Thus, for m ≥ m0

‖V−hmAωRVhmu‖Λs(R) = ‖V−hmAVhmu‖Λs(R) ≥ C/2 ‖u‖Λs(R) .

Proposition 2.17 yields that for a compactly supported function u (∈ Λs(R))

‖Op(ah)u‖Λs(R) ≥ C/2 ‖u‖Λs(R) . (2.33)

Let u ∈ Λs(R) be an arbitrary function. Then (2.33), Propositions 2.12 and 2.14
imply that

‖ϕROp(ah)u‖Λs(R) ≥ ‖Op(ah)ϕRu‖Λs(R) + O(1/R) (2.34)

≥ C/2 ‖ϕRu‖Λs(R) + O(1/R).

In light of Proposition 2.7

lim
R→∞

‖ϕRu‖Λs(R) = ‖u‖Λs(R) . (2.35)

Passing to the limit in (2.34) as R → ∞, and applying (2.35) we obtain the
estimate

‖Op(ah)u‖Λs(R) ≥ C/2 ‖u‖Λs(R) (2.36)

for every function u ∈ Λs(R), s ∈ (0, 1).
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Note that ah(x, ξ) = ah(ξ) since a(x, ξ) ∈ SO+(R). Thus, (2.36) implies that

‖ah(D)u‖Λs(R) ≥ C/2 ‖u‖Λs(R) (2.37)

for every function u ∈ Λs(R), s ∈ (0, 1). Set in (2.37) u = eξ = eixξ. It is evident
that eξ ∈ Λs(R) for every s ∈ (0, 1), and ah(D)eξ(x) = ah(ξ)eξ(x). Thus, (2.37)
implies that

inf
ξ∈R

|ah(ξ)| ≥ C/2 > 0, (2.38)

where
lim

n→∞
sup
K×R

|a(x + hn, ξ)− ah(ξ)| = 0 (2.39)

for every compact set K ⊂ R. Let us show that indeed (2.38) implies (2.29).
Suppose that (2.38) holds, but (2.29) does not hold. Then there exists a sequence
(hn, pn), hn → +∞ such that

lim
n→∞

a(hn, pn) = 0. (2.40)

Let the sequence hn be such that limit (2.39) exists. Then it follows from (2.39),
(2.38) there exists N ∈ N such that for all n > N

|a(hn, pn)| ≥ C/4 > 0. (2.41)

Inequality (2.41) contradicts to (2.40). ¤

Let A : Λs(R) →Λs(R). We say that λ ∈ C is a point of the local Fredholm
spectrum of A at the point +∞ if the operator A − λI is not a locally Fredholm
operator at the point +∞. We denote the local Fredholm spectrum at the point
+∞ as

sp+∞(A : Λs(R) → Λs(R)). (2.42)
In the same way we define the local Fredholm spectrum for A : Λs

−(R) → Λs
−(R).

Theorem 2.19 has the following corollary.

Theorem 2.20. Let A = Op(a) ∈ OPSO+(R̃). Then

sp+∞(A : Λs(R) → Λs(R)) = sp+∞(A : Λs
−(R) → Λs

−(R))

=
⋃

h∈Ω+∞(a)

{
λ ∈ C : λ = ah(ξ), ξ ∈ R̃

}
,

where Ω+∞(a) is a set of all sequences hn → +∞ such that the limits lim
n→∞

a(hn, ξ) =

ah(ξ) exist.

3. Local Fredholmness of Mellin pseudodifferential operator on
Hölder spaces

3.1. Multiplicative Hölder spaces on R+

We consider here the Hölder spaces on R+ with respect to the multiplicative struc-
ture of the group R+.
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Definition 3.1. By Λ̃s(R+), where 0 < s < 1, we denote the class of bounded
continuous function on R+ satisfying the conditions:

‖u‖Λ̃s(R+) = ‖u‖L∞(R+) + sup
t∈R+,λ∈R+\{1}

|u(λt)− u(t)|
|log λ|s = (3.1)

‖u‖L∞(R+) + sup
t,τ∈R+,t 6=τ

|u(t)− u(τ)|∣∣log t
τ

∣∣s < ∞.

Note that the mapping η : R+ → R, η(r) = − log r generates the isomor-
phisms η∗ : Λs (R) → Λ̃s(R+). We set Λ̃s

−(R+) = η∗
(
Λs
− (R)

)
.

Proposition 3.2. The norm (3.1) on Λ̃s
−(R+) is equivalent to the norm

‖u‖Λ̃s
−(R+) = sup

t∈R+,ε 6=0
1
e
−1<ε<e−1

|u((1 + ε)t)− u(t)|
|ε|s . (3.2)

Proof. Following the proof of Proposition 2.9 one can show that norm (3.1) on
Λ̃s
−(R+) is equivalent to the norm

sup
t∈R+,λ 6=1

1
e

<λ<e

|u(λt)− u(t)|
|log λ|s . (3.3)

Set λ = 1 + ε in (3.3). Then, ε ∈ ( 1
e − 1, 0) ∪ (0, e− 1). Hence,

0 < α = inf
ε∈( 1

e−1,0)∪(0,e−1)

log(1 + ε)
ε

≤ sup
ε∈( 1

e−1,0)∪(0,e−1).

log(1 + ε)
ε

= β < ∞.

Then, we obtain that norm (3.3) is equivalent to the norm

‖u‖Λ̃s
−(R+) = sup

t∈R+,ε∈( 1
e−1,0)∪(0,e−1)

|u((1 + ε)t)− u(t)|
|ε|s . (3.4)

The next proposition gives a connection between the space

Λs
0(R+) =

{
u ∈ Λs

−(R+) : lim
x→0

u(x) = 0
}

= Λs
−(R+).

and the space Λ̃s
−(R+). ¤

Proposition 3.3. The operator u → xsu is an isomorphism from Λ̃s
−(R+) on

Λs
0(R+).
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Proof. Let u ∈ Λ̃s
−(R+). If we set below h = εx, then

‖xsu‖Λs
−(R+) = sup

x,x+h∈R+,h 6=0

|(x + h)su(x + h)− xsu(x)|
|h|s

= sup
x,(1+ε)x∈R+,ε6=0

|(1 + ε)su((1 + ε)x)− u(x)|
|ε|s ≤

C sup
x,(1+ε)x∈R+,ε∈( 1

e−1,0)∪(0,e−1)

|(1 + ε)su((1 + ε)x)− u(x)|
|ε|s

≤ C sup
ε∈( 1

e−1,0)∪(0,e−1)

|(1 + ε)s − 1|
|ε|s ‖u‖L∞(R+)

+C sup
x,(1+ε)x∈R+

ε∈( 1
e
−1,0)∪(0,e−1)

|u((1 + ε)x)− u(x)|
|ε|s ≤ C ‖u‖Λ̃s

−(R+) .

Hence, u → xsu is a bounded operator from Λ̃s
−(R+) on Λs

−(R+). Since the function
u ∈ Λ̃s

−(R+) is bounded, we have limx→0 xsu(x) = 0, so that xsu ∈ Λs
0(R+).

Let us prove the boundedness of the inverse operator from Λs
0(R+) onto

Λ̃s
−(R+). We have

‖u‖Λ̃s
−(R+) = sup

t,(1+ε)t∈R+
ε∈( 1

e
−1,0)∪(0,e−1)

|u((1 + ε)t)− u(t)|
|ε|s

= sup
t,τ=(1+ε)t∈R+,

ε∈( 1
e
−1,0)∪(0,e−1)

|tsu(τ)− tsu(t)|
|t− τ |s

≤ es sup
t,τ∈∈R+,τ=(1+ε)t

ε∈( 1
e
−1,0)∪(0,e−1)

|τ su(τ)− tsu(t)|
|t− τ |s ≤ es ‖tsu‖Λs

−(R+) .

This implies that ∥∥t−su
∥∥

Λ̃s
−(R+)

≤ es ‖u‖Λs
−(R+) .

¤

3.2. Mellin pseudodifferential operators

As a modification of Definition 2.1, we say that a complex-valued function a defined
on R+×R belongs to the class S0

1,0 if a ∈ C∞(R+×R) and satisfies the estimates

|a|r,t =
∑

α≤r,β≤t

sup
R+×R

∣∣(r∂r)β∂α
λ a(r, λ)

∣∣ 〈λ〉α < ∞

for all α, β ∈ N0 = {0, 1, 2, 3....}, where 〈λ〉 = (1 + |λ|2)1/2
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Definition 3.4. Let a ∈ S0
1,0. The operator

(OpM (a)u)(r) = (2π)−1

∫

R
dλ

∫

R+

a(r, λ)
(

r

ρ

)iλ

u(ρ)
dρ

ρ
(3.5)

where u ∈ C∞0 (R+), is called the Mellin pseudodifferential operator with symbol
a.

The class of operators of the form (3.5) with a ∈ S0
1,0 is denoted by OPS0

1,0.

The Mellin pseudodifferential operators in the class OPS0
1,0 are the trans-

plantation on R+ of pseudodifferential operators in the class OPSm
1,0, by means of

the mapping φ : R+ → R, φ(r) = − log r.
Let us summarize some properties of Mellin pseudodifferential operators

which follow from the corresponding properties of pseudodifferential operators on
R.

By S(R+) we denote the class of functions ϕ on R+ such that ϕ(exp x) ∈ S(R).
From the boundedness of usual pseudodifferential operators in OPS0

1,0 on S(R)
it follows that an operator A ∈ OPS0

1,0 is a bounded operator on S(R+). An
operator At is called formally adjoint to the operator A if

∫

R+

(Au) (r)v̄(x)
dr

r
=

∫

R+

u(r)(Atv) (r)
dr

r
(3.6)

for arbitrary functions u, v ∈ S(R+). Let A = OpM (a) ∈ OPS0
1,0 . Then the

formally adjoint operator At ∈ OPS0
1,0. Thus formula (3.6) allows us to consider

pseudodifferential operators on the space of distributions S′(R+), and consequently
on the space of Hölder functions.

We say that a symbol a(∈ S0
1,0) is slowly oscillating at the point 0, if

∣∣(r∂r)β∂α
λ a(r, λ)

∣∣ ≤ Cαβ(r) 〈λ〉−α
,

where
lim
r→0

Cαβ(r) = 0,

for all α ∈ N0 and β ∈ N.
We denote by SO0 the class of slowly oscillating at the point 0 symbols, and

by OPSO0 the corresponding class of pseudodifferential operators.
The next propositions are reformulations for Mellin pseudodifferential oper-

ators of the corresponding propositions of Section 2.

Proposition 3.5. Let A = OpM (a) ∈ SO0, B = OpM (b) ∈ SO0 . Then

AB = OpM (ab) + OpM (t),

where OpM (t) ∈ OPS−1
1,0 , and
∣∣(r∂r)β∂α

λ t(r, λ)
∣∣ ≤ Cαβ(r) 〈λ〉−α−1

,
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where
lim
r→0

Cαβ(r) = 0,

for all α, β ∈ N0.

Proposition 3.6. Let A = OpM (a) ∈ OPS0
1,0 . Then A is bounded on Λ̃s(R+)(

Λ̃s
−(R+)

)
and

‖OpM (a)‖B(Λ̃s(R+)) ≤ C |a|l1,l2
, l1 > 2, l2 > 1.

Let χ be a function introduced in 2.4, χ̃R(r) = χR(− log r), r ∈ R+.We denote
by SO∞(R+) the class of functions b̃ ∈ C∞(R+) such that b̃(r) = b(− log r), where
b ∈ SO∞(R).

Proposition 3.7. Let A = OpM (a) ∈ OPSO0, b̃ ∈ SO∞(R+). Then the commuta-

tor
[
a, χ̃Rb̃I

]
is a compact operator on Λ̃s(R+)

(
Λ̃s
−(R+)

)
.

Definition 3.8. An operator A : Λ̃s(R+) → Λ̃s(R+) is called a locally Fredholm
operator at the point 0 if there exist operators LR,RR ∈ B

(
Λ̃s(R+)

)
such that

LRψ̃RAχ̃RI = χ̃RI + T ′R, χ̃RAψ̃RRR = χ̃RI + T ′′R,

where T ′R, T ′′R are compact operators on Λ̃s(R+).
A point ζ ∈ C is called a point of local Fredholm spectrum at the point 0 if

the operator A− ζI : Λ̃s(R+) → Λ̃s(R+) is not a locally Fredholm operator at the
point 0. We denote by sp0(A) the local Fredholm spectrum of A at the point 0.

We denote by S0
1,0(R̃) the class of symbols a ∈ S0

1,0 such that a is extended
to a continuous function on R+ × R̃.

The next theorems are reformulations of the results of Subsection 2.4 with
respect to the Mellin pseudodifferential operators.

Theorem 3.9. Let A = OpM (a(r, λ)) ∈ OPSO0(R̃) = OPS0
1,0(R̃)∩OPSO0. Then

A : Λ̃s
−(R+) → Λ̃s

−(R+) is a locally Fredholm operator at the point 0, if and only
if

lim
%→+0

inf
0<r<%

λ∈R
|a(r, λ)| > 0. (3.7)

Moreover,

sp0(A : Λ̃s
−(R+) → Λ̃s

−(R+) =
⋃

h∈Ω0(a)

{
ζ ∈ C : ζ = ah(λ), λ ∈ R̃

}
,

where Ω0(a) is a set of all the sequences hn → +0 such that the limits lim
n→∞

a(hn, λ) =

ah(λ) exist.
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We will also make use of Mellin pseudodifferential operators in Hölder spaces
of vector-valued functions. By Λ̃s

−(R+,CN ) we denote the space of vector-valued
functions u = (u1, ..., uN ), where uj ∈ Λ̃s

−(R+) with the norm

‖u‖Λs
−(R+,CN ) = max

1≤j≤N
‖uj‖Λs

−(R+) , (3.8)

and by OPSO0(R̃,CN×N ) the class of matrix-valued pseudodifferential operators
OpM (a(r, λ)) = OpM ((aij(r, λ))N

i,j=1), where aij(r, λ) ∈ OPSO0(R̃).

Theorem 3.10. Let A = OpM (a(r, λ)) ∈ OPSO0(R̃,CN×N ). Then A : Λ̃s
−(R+,CN ) →

Λ̃s
−(R+,CN ) is a locally Fredholm operator at the point 0, if and only if

lim
%→+0

inf
0<r<%,λ∈R

|det a(r, λ)| > 0. (3.9)

Moreover,

sp0

(
A : Λ̃s

−(R+,CN ) → Λ̃s
−(R+,CN )

)
=

⋃

h∈Ω0(a)

⋃

λ∈R̃
sp

(
ah(λ) : CN → CN

)
,

where Ω0(a) is the set of all the sequences hn → +0 such that the limits lim
n→∞

a(hn, λ) =

ah(λ) exist.

4. Singular integral operators

4.1. Curves, weights, and coefficients

A set γ ⊂ C is called a simple smooth arc if there exists a homeomorphism ϕ :
[0, 1] → γ such that ϕ(r) ∈ C∞(0, 1] and ϕ′(r) 6= 0 for all r ∈ (0, 1). The points
ϕ(0) and ϕ(1) are called the endpoints of γ. We refer to a set Γ ⊂ C as a composed
curve if Γ =

⋃K
k=1 Γk where Γ1, . . . , ΓK are oriented and rectifiable simple smooth

arcs each pair of which has at most endpoints in common. A node of Γ is a point
which is an endpoint of at least one of the arcs Γ1, . . . , ΓK . The set of all the nodes
of Γ will be denoted by F .

A C∞-function f : (0, ε] → C is said to be slowly oscillating at the origin if

sup
r∈(0,ε)

∣∣∣∣∣
(

r
d

dr

)k

f(r)

∣∣∣∣∣ < ∞ , k ∈ N0 (4.1)

and
lim
r→0

|rf ′(r)| = 0 (4.2)

We remark that (4.1) and (4.2) imply that actually

lim
r→0

∣∣∣∣∣
(

r
d

dr

)k

f(r)

∣∣∣∣∣ = 0, k ∈ N0.

To have an example, notice that if f(r) = g(log(− log r)), 0 < r < 1, where
g ∈ C∞b (R), then f is slowly oscillating at the origin.
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Suppose Γ is a composed curve and tk ∈ F .

Definition 4.1. We say that Γ is slowly oscillating at the point tk, if there exists
an ε > 0 such that the portion Γ(tk, ε) := {τ ∈ Γ : |τ − tk| < ε} has the form

Γ(tk, ε) = {tk} ∪ γk
1 ∪ . . . ∪ γk

nk

where the arcs γk
j are defined by

γk
j =

{
t : t = tk + reiωk

j (r), r ∈ (0, ε)
}

, j = 1, . . . , nk, (4.3)

and the functions ωk
j (r) may have the form

ωk
j (r) = θk(r) + θk

j (r)

where θk and θk
1 , . . . , θk

n are real-valued C∞-functions such that

i) the functions δk(r) = r dθk(r)
dr and δkj(r) = r

dθk
j (r)

dr are slowly oscillating at
r = 0,
ii) there exists constants mk

j and Mk
j such that for all r ∈ (0, ε)

0 ≤ mk
1 < θk

1 (r) < Mk
1 < mk

2 < θk
2 (r) < Mk

2 < . . . < mk
n < θk

n(r) < Mk
n < 2π.

(4.4)

Under assumption i), the functions θk
j (j = 1, . . . , n) are also slowly oscillating

at r = 0.
For example, the functions

ωk
j (r) = θk log r + θk

j ; θk, θk
j ∈ R, (j = 1, . . . , nk)

with 0 ≤ θk
1 < θk

2 < . . . < θk
n < 2π, satisfy all the assumptions of Definition 4.1.

The curve γk
j is a logarithmic spiral in this case, and Γ(tk, ε) is a star of logarithmic

spirals at the node tk.
A composed curve which is slowly oscillating at each of its nodes will be

referred to as a slowly oscillating composed curve.
Let w : Γ → [0, +∞] be a function which takes values in (0,+∞) on Γ \ F

and is C∞ on Γ \ F . We call w a slowly oscillating weight at tk ∈ F if, under the
above notation, w is of the form

w(tk + reiωk
j (r)) = evk(r), r ∈ (0, ε), j ∈ {1, . . . , nk},

where

κk(r) = r
dvk(r)

dr
is slowly oscillating at r = 0. For instance, the weight w arising from

v(r) = f(log(− log r)) log r, r ∈ (0, ε)

with a bounded function f ∈ C∞b (R) is slowly oscillating at tk; in this case we
have

lim inf
r→0

rv′(r) = lim inf
x→+∞

(f(x) + f ′(x)), lim sup
r→0

rv′(r) = lim sup
x→+∞

(f(x) + f ′(x)).
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Finally, a function a : Γ → C is said to be piecewise slowly oscillating on Γ,
a ∈ PSO(Γ), if a is C∞ on Γ \ F and if for each node tk ∈ F we have

a(tk + reiωk
j (r)) = atk,j(r), r ∈ (0, ε], j ∈ {1, . . . , n}

where at0,1(r), . . . , at0,n(r) are slowly oscillating at r = 0.

4.2. Boundedness of SIO on Hölder spaces

We say that u ∈ Λs(Γ), 0 < s < 1, if there exists a neighborhood Fε of F such
that u ∈ Λs(Γ\Fε), that is, u is continuous on Γ\Fε,

‖u‖Λs(Γ\Fε) = ‖u‖L∞(Γ\Fε) + sup
t,τ∈Γ\Fε

|u(t)− u(τ)|
|t− τ |s < ∞,

and u(tk + rei(θk(r)+θk
j (r))) = uj

k(r) ∈ Λs(0, ε), for every k = 1, ..., K, and j =
1, ..., nk. A norm in Λs(Γ) is introduced in the evident way.

By Λs,w(Γ), where w is a weight introduced in Subsection 4.1, we denote the
weighted Hölder space of functions such that wu ∈ Λs(Γ). A norm in Λs,w(Γ) is
introduced as

‖u‖Λs,w(Γ) = ‖wu‖Λs(Γ) .

Let
A = aI + bSΓ,

where a, b ∈ PSO(Γ), and

SΓu(t) = lim
ε→0

1
πi

∫

τ∈Γ:|t−τ |≥ε

u(τ)dτ

τ − t
, t ∈ Γ

is a SIO on Γ.
Let tk ∈ F, and ϕk ∈ C∞(Γ) be such that ϕk(τ) = 1 for τ in a neighborhood

Uk of the node tk and ϕk(τ) = 0 outside a neighborhood U ′
k ⊃ Uk, and 0 ≤

ϕk(τ) ≤ 1. Let ψk have the properties similar to those of ϕk, and ψkϕk = ϕk.

Put εj
k = 1 if tk is the starting point of the oriented arc γj

k and let εj
k = −1

if tk is the end point of the oriented arc γj
k.

Define
ν : [0, 2π)× (C \ iZ) → C

by

ν(δ, z) =

{
coth(πz), δ = 0,

e(π−δ)z

sinh(πz) , δ ∈ (0, 2π).

For j, l ∈ {1, . . . , nk}, let

Sk
jl : R+ × (C \ iZ) → C,

be the functions

Sk
jl(r, z) =





εl
kν(2π + θk

j (r)− θk
l (r), z) , j < l,

εkν(0, z) , j = l,
εkν(θk

j (r)− θk
l (r), z) , j > l.

(4.5)
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Let us introduce the map

(Φtk
f) (r) = column

(
w(r)
rs

f
(
tk + reiθk(r)+iθk

1 (r)
)

, · · · ,
w(r)
rs

f
(
tk + reiθk(r)+iθk

nk
(r)

))
.

It follows from Proposition 3.3 that

Φtk
: Λs

0(Γ(0, ε), w) → Φtk
(Λs

0(Γ(0, ε), w)) ⊂ Λ̃s
−(R+,Cnk)

is a Banach space isomorphism.

Proposition 4.2. Let s ∈ (0, 1), and the following condition hold:

s < lim inf
r→+0

κk(r) ≤ lim sup
r→+0

κk(r) < 1 + s (4.6)

for every k = 1, ..., K. Then the operator

Φtk
ϕkSΓψkΦ−1

tk

is a Mellin pseudodifferential operator with the symbol sk(r, λ) =
(
sjl

k (r, λ)
)nk

j,l=1
∈

OPSO0(R̃,Cnk) defined by

sjl
k (r, λ) = εlϕ̃

j
k(r)Sk

jl

(
r,

λ + i(κk(r)− s)
1 + iδk(r)

)
ψ̃l

k(r) + tkjl(r, λ) (4.7)

where ϕ̃j
k(r) = ϕk(tk + rei(θk(r)+θk

l (r))), ψ̃l
k(r) = ϕk(tk + rei(θk(r)+θk

l (r))), and
tkjl(r, λ) ∈ S−1

1,0 and

lim
r→0

(r∂r)β∂α
λ tkjl(r, λ) 〈λ〉α = 0

for every α, β ∈ N0.

Proof. See papers [3], [19], and also book [15], Chap. 4.6. ¤

Corollary 4.3. The operator Φtk
ϕkSΓψkΦ−1‘

tk
is bounded on the space Λ̃s

−(R+), 0 <
s < 1.

Proof. Indeed, condition (4.6) implies that Sk
jl

(
r, λ+i(κk(r)−s)

1+iδk(r)

)
∈ SO0(R̃). Thus

OpM (sk(r, λ)) is a bounded operator on Λ̃s
−(R+), 0 < s < 1, by Proposition

3.6. ¤

Theorem 4.4. Let s ∈ (0, 1), and the following condition hold:

s < lim inf
r→+0

κk(r) ≤ lim sup
r→+0

κk(r) < 1 + s (4.8)

for every k = 1, ..., K. Then A : Λs,w
0 (Γ) → Λs,w

0 (Γ) is a bounded operator.

Proof. Let ϕk ∈ C∞(Γ) and ϕk(τ) = 1 if τ ∈ Uk a neighborhood of the node
tk and ϕk(τ) = 0 outside a neighborhood U ′

k ⊃ Uk, and 0 ≤ ϕk(τ) ≤ 1. Let ψk
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have properties similar to the properties of ϕk, and ψkϕk = ϕk. We set ϕ0 =
1−∑K

k=1 ϕk. Then

A =
K∑

k=0

ϕkAψkI +
K∑

k=0

ϕkA(1− ψk)I.

Note that a function u ∈ Λs
0(Γ) and the weight w satisfy the following estimates

in a neighborhood of the mode tk

|u(t)| ≤ C ‖u‖Λs(Γ) |t− tk|s , (4.9)

and
c |t− tk|

lim inf
r→+0

κk(r) ≤ |w(t)| ≤ C |t− tk|
lim sup
r→+0

κk(r)

. (4.10)
It follows from (4.8), (4.9) and (4.10) that∥∥w−1u

∥∥
L1(Γ)

≤ C ‖u‖Λs(Γ) ,

if u ∈ Λs
0(Γ). Since supp (1− ψk)∩ suppϕk = ∅, the operators ϕkwAw−1(1−ψk)I

are operators with C∞−kernels. Hence,∥∥wϕkA(1− ψk)w−1u
∥∥

Λs(Γ)
≤ C

∥∥w−1u
∥∥

L1(Γ)
≤ C ‖u‖Λs(Γ) .

Note that condition (4.8) implies that lim
t→tk

w(t) = 0. Hence

lim
t→tk

(
ϕkwAw−1(1− ψk)u

)
(t) = 0

for every function u ∈ Λs(Γ). Thus the operator
∑K

k=0 ϕkA(1 − ψk)I is bounded
on Λs,w

0 (Γ). From the well-known classical results (see for instance [12]) it follows
that the operator ϕ0Aψ0I is bounded on Λs,w

0 (Γ) because the supports of ϕ0, ψ0

do not contain the nodes.
Hence, we reduced the proof of Theorem 4.4 to the problem of boundedness

of operators ϕkAψkI : Λs,w
0 (Γ) → Λs,w

0 (Γ). Applying Proposition 4.2, we obtain
that ϕkAψkI : Λs,w

0 (Γ) → Λs,w
0 (Γ) is bounded, if and only if the operator Sk =

Φtk
ϕkSΓψkΦ−1‘

tk
: Λ̃s

−(R+) → Λ̃s
−(R+) is bounded, but boundedness of Sk follows

from Proposition 3.6. ¤
4.3. Fredholm properties of singular integral operators on composed Carleson

curves

We say that an operator A : Λs,w
0 (Γ) → Λs,w

0 (Γ) is a locally Fredholm operator at
the point t ∈ Γ if there exists functions ϕt, ψt ∈ C∞(Γ), (ϕtψt = ϕt), equal to one
in a neighborhood of t, and an operator Lt, Rt : Λs,w

0 (Γ) → Λs,w
0 (Γ) such that

LtψtAϕtI = ϕtI + T t
1 and ϕtAψtR

t = ϕtI + T t
2 , (4.11)

where T t
1 , T t

2 are compact operators on the space Λs,w
0 (Γ). The operators Lt, Rt

are called local regularizers of A at the point t ∈ Γ.
Below we use the following notation. Let a ∈ PSO(Γ) and tk ∈ F. Then

diag(ak(r)) = diag(ak
1(r), ..., ak

nk
(r)) is a diagonal matrix with components ak

j (r) =

a(tk + reωk
j (r)), r ∈ (0, ε). We say that an operator B : Λs,w

0 (Γ) → Λs,w
0 (Γ) is
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a local type operator, if for an arbitrary function a ∈ C∞(Γ) the commutator
[B, aI] = BaI − aB is a compact operator on Λs,w

0 (Γ).
Let Γ ⊂ C be a composed curve introduced in Subsection 4.1 and w be a

slowly oscillating weight satisfying conditions (4.8) for every point tk ∈ F . Let

AΓ = aI + bSΓ : Λs,w
0 (Γ) → Λs,w

0 (Γ), 0 < s < 1

be a singular integral operator on Γ with piece-wise slowly oscillating coefficients
a, b ∈ PSO(Γ). We set

σtk
(AΓ)(r, λ)

= ϕtk
(r)

(
diag(ak(r)) + diag(bk(r))

(
εlS

k
jl

(
r,

λ + i(κk(r)− s)
1 + iδk(r)

))nk

j,l=1

)
,

r ∈ R, λ ∈ R,

where ϕtk
∈ C∞(R) is equal to 1 near the point tk, and has a support in a small

neighborhood of the point tk ∈ F. We say that σtk
(AΓ) is a local symbol of AΓ at

the point tk ∈ F.

Theorem 4.5. (i) AΓ is a locally Fredholm operator at the point tk ∈ F if and only
if

lim
δ→+0

inf
0<r<δ

λ∈R

|detσtk
(AΓ)(r, λ)| > 0. (4.12)

(ii) AΓ is a locally Fredholm operator at the point t ∈ Γ\F , if and only if

a2(t)− b2(t) 6= 0; (4.13)

If conditions (4.12) and (4.13) hold, then for every point t ∈ Γ there exist local
regularizers of local type.

Proof. (i) Let tk ∈ F . Then AΓ : Λs,w
0 (Γ) → Λs,w

0 (Γ) is a locally Fredholm operator
at the point tk, if and only if the operator Φtk

ϕkAΓψkΦ−1‘
tk

: Λ̃s
−(R+) → Λ̃s

−(R+)
if locally Fredholm at the point 0, where the functions ϕk, ψk have supports in a
small neighborhood at the point tk, and ϕk(tk) = ψk(tk) = 1. Hence, (i) follows
from Proposition 3.7. It follows from the construction of local regularizers and
Proposition 3.7 that the local regularizers at the point tk ∈ F are local type
operators.

(ii) The curve Γ is smooth in a small neighborhood of the point t ∈ Γ\F , and
the space Λs,w

0 (Γ) coincides with the usual Hölder space Λs(Γ), and the coefficients
of A are smooth. Hence (ii) follows from the well-known results for singular integral
operators on Lyapunov curves acting on Hölder spaces (see for instance [12], [8]).
The local regularizer at the point t0 ∈ Γ\F has the form

Rt0 = ϕt0(a(t0)I − b(t0)SΓ)ψt0I,

where ϕt0 , ψt0(∈ C∞(Γ)) are functions with supports in a small neighborhood of
the point t0. It is clear that Rt0 is a regularizer of local type. ¤
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We denote by spt(AΓ : Λs,w
0 (Γ) → Λs,w

0 (Γ)) the set of complex numbers ζ
such that the operator A− ζI is not locally Fredholm operator at the point t ∈ Γ.

Theorem 3.10 and Theorem 3.2 yield the following result.

Theorem 4.6. Let tk ∈ F. Then

sptk
(AΓ : Λs,w

0 (Γ) → Λs,w
0 (Γ)) (4.14)

=
⋃

h∈Ω0(σtk
(A))

⋃

λ∈R̃
sp(σtk,h(A)(λ) : Cnk → Cnk), (4.15)

where
σtk,h(AΓ)(λ) = lim

k→∞
σtk

(A)(hm, λ), (4.16)

and h = (hm) ∈ Ω0(σtk
(A)) is the set of all the sequences such that the limit (4.16)

exists.

Note that

σtk,h(AΓ)(λ) = diag(ak
h) + diag(bk

h)
(

εlS
k,h
jl

(
λ + i(κh

k − s)
1 + iδh

k

))nk

j,l=1

, λ ∈ R,

(4.17)
where

ak
h = lim

m→∞
ak(hm), bk

h = lim
m→∞

bk(hm), κh
k = lim

m→∞
κk(hm), (4.18)

δh
k = lim

m→∞
δk(hm), θk,h

j = lim
m→∞

θk
j (hm), j = 1, ..., nk,

and

Sk,h
jl (z) =





εl
kν(2π + θk,h

j − θk,h
l , z) , j < l,

εkν(0, z) , j = l,

εkν(θk,h
j − θk,h

l , z) , j > l.

. (4.19)

Notice that σtk,h(AΓ) is the symbol of singular integral operator

Bk,h = ak
hI + bk

hSγk,h : Λs,wk,h

0 (γk,h) → Λs,wk,h

0 (γk,h), (4.20)

where γk,h is a union of logarithmic spirals staring in the node t = tk, that is

γk,h = {tk}
nk⋃

j=1

{
t ∈ C : t = tk + rei(δh

k log r+θk,h
j ), r ∈ R+

}
,

wk,h = |t− tk|κ
h
k is a power weight at the node tk.

It was proved in [2] that the operator Bk,h : Lp,wk,h

(γk,h) → Lp,wk,h

(γk,h),
where −1/p < wk,h < 1 − 1/p, is locally Fredholm at the point tk, if and only
if Bk,h is invertible. One can prove that the same property holds for Bk,h :
Λs,wk,h

0 (γk,h) → Λs,wk,h

0 (γk,h). Hence, the local spectrum of AΓ : Λs,w
0 (Γ) →

Λs,w
0 (Γ)) is the union of spectrums of singular integral operators Bk,h on the log-

arithmic star γk,h acting on the space Λs,wk,h

0 (γk,h) with power weight wk,h.
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Thus, the local massive Fredholm spectrum sptk
(AΓ : Λs,w

0 (Γ) → Λs,w
0 (Γ))

is generated by three forces: 1) oscillation of curves; 2) oscillation of weights; 3)
oscillation of coefficients a, b at the node tk ∈ F.

If tk is an end-point of a single curve only, then the logarithmic star γk,h

is transformed into a single logarithmic spiral. In this case the local essential
spectrum at the node tk is a union of the double logarithmic spirals (see [4], [3],
[15], Ch. 4.6).

Theorem 4.7. Let conditions (4.8) be satisfied for every point tk ∈ F. Then

AΓ = aI + bSΓ : Λs,w
0 (Γ) → Λs,w

0 (Γ)

is a Fredholm operator, if and only if
(i) for every point tk ∈ F condition (4.12) holds;
(ii) for every point t ∈ Γ\F condition (4.13) holds.
If the conditions (i), (ii) are satisfied, then

Ind A = −
L∑

k=1

1
2π

[
arg

a(t) + b(t)
a(t)− b(t)

]

t∈Γj

−
L∑

k=1

1
2π

lim
r→+0

[arg det σtk
(AΓ)(r, λ)]+∞λ=−∞ ,

where Γj are the simple arcs composing the curve Γ with orientation induced by
that of Γ.

Proof. From Propositions 3.7 and 4.2 it follows that the singular integral operator
A = aI + bSΓ : Λs,w

0 (Γ) → Λs,w
0 (Γ) is a local type operator. Let conditions (4.12),

(4.13) be fulfilled. Then for every point t ∈ Γ there exists a local regularizer of
local type, that is, for every t ∈ Γ there exists a function ϕt ∈ C∞(Γ) equal to one
in a neighborhood of t, and operator Rt : Λs,w

0 (Γ) → Λs,w
0 (Γ) such that equality

(4.11) is fulfilled. Since Γ is a compact set we can construct a partition of unity

N∑

k=0

ϕk(t) = 1, t ∈ Γ

with the following properties:
(a) ϕk ∈ C∞(Γ), k = 0, ..., N, 0 ≤ ϕk ≤ 1;
(b) supp ϕk contains only one node tk, k = 1, ..., N, and ϕk(t) = 1 in a

neighborhood of the tk, where ϕ0 = 1 −∑N
k=1 ϕk is such that supp ϕ0 does not

contain the nodes;
(c)

RkAϕkI = ϕkI + T ′k, ϕkARk = ϕkI + T ′′k ,

where T ′k, T ′′k are compact operators.
Let functions ψk ∈ C∞(Γ), k = 0, ..., N, be such that 0 ≤ ψk ≤ 1, and

ϕkψk = ϕk. We set

Rleft =
N∑

k=0

ψkRk.
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Then,

RleftA =
N∑

k=0

ψkRkA =
N∑

k=0

ψkRkAϕkI +
N∑

k=0

ψkRkA(1− ϕk)I

= I +
N∑

k=0

ψkT ′k +
N∑

k=0

[
ψk, RkA

]
= I + T ′.

Note that T ′ is a compact operator, since Rk and A are operators of local type.
Hence, Rleft is a left regularizer of A. In the same way one can prove that the
operator

Rright =
N∑

k=0

RkψkI

is a right regularizer of A, that is, ARright = I + T ′′, where T ′′ is a compact
operator. Thus we proved that the singular integral operator A is a Fredholm
operator.

Let A : Λs,w
0 (Γ) → Λs,w

0 (Γ) be a Fredholm operator. Then A is a locally
Fredholm operator at every point t ∈ Γ. Hence condition (4.12) is fulfilled for
t = tk ∈ F by Theorem 4.6, and condition (4.13) is fulfilled for t ∈ Γ\F.

The proof of the index formula is similar to that of the analogous formula for
singular integral operators acting on Lp−spaces (see [19], Theorem 4.1.) ¤
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[4] A. Böttcher, Yu.I. Karlovich, V.S. Rabinovich. The method of limit operators for
one-dimensional singular integrals with slowly oscillating data. J. Operator Theory
43 (2000) , 171-198

[5] R.V. Duduchava. On boundedness of the operator of singular integration in weighted
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