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Local Fredholm spectrums and Fredholm prop-
erties of singular integral operators on Car-
leson curves acting on weighted Holder spaces

Vladimir Rabinovich, Natasha Samko, and Stefan Samko

Abstract. We study the local Fredholm spectrums and global Fredholm prop-
erties for singular integral operators on composed Carleson curves with dis-
continuous coefficients acting on weighted Holder spaces. We consider the
curves, coefficients, and weights which are slowly oscillating at the nodes of
the curve.

Application of pseudodifferential operators technique allows us to ex-
plain the influence of oscillation of curves, coefficients, and weights on the
appearance of massive local Fredholm spectrums.

We obtain a criterion of Fredholmness and index formula for operators
under consideration.
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1. Introduction

In the book [1] (see also references therein) A. Béttcher and Yu. Karlovich con-
sidered the algebra of operators acting in LP(T',w), where 1 < p < co and w is a
Muckenhoupt weight, generated by the operator St of singular integration along a
composed Carleson curve I' and operators of multiplication by piece-wise continu-
ous functions. Several new phenomena were discovered by them: the circular arcs
and horns which typically arise in the spectral theory of Gohberg, Krupnik, and
Spitkovsky, [9], [22] are converted into logarithmic double spirals and spiral horns.
Notice that the approach of Bottcher/Yu. Karlovich is based on the Wiener-Hopf
factorization, and theory of sub-multiplicative functions.

However, there is another approach to the problem based on the local princi-
ple and the Mellin pseudodifferential operators technique. Such an approach was
applied in the papers [17], [19], [18], [20], [2], [4], [3], [1] for the study of singular
integral operators acting on weighted LP-spaces on composed Carleson curves. It
has been shown that the local representative of a singular integral operator at
singular points can be realized as a Mellin pseudodifferential operator with sym-
bol containing all characteristics of the operator: characteristics of oscillations and
rotations of the curve, oscillations of the weight and coefficients, the exponent p
of LP-space.

Here we apply this approach to the investigation of Fredholm properties of
singular integral operators

Au(t) = a(t)u(t) + b(t)Sru(t), teT

as operators acting on weighted Holder spaces A**(T"),0 < s < 1. We suppose that
the coefficients a, b are smooth functions on I' outside nodes t;, of the curve I', and
they have slowly oscillating discontinuities at the nodes. We also suppose that the
curve I' and the weight w have slowly oscillating characteristics at every node ty.
We explain the appearance of massive local Fredholm spectrum at the nodes by
the influence of oscillation of the curves, weights, and coefficients at the node. We
show that the local Fredholm spectrum at the node is a union of logarithmic
double spirals whose shapes depend on the behavior of coefficients a, b, curve T,
and weight w at the node, and the exponent s of the considered Holder space.
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Note that Fredholm theory of singular integral operators with piece-wise con-
tinuous coefficients on composed Lyapunov curves acting on Holder spaces with
power weights was constructed by R. Duduchava in early seventy [5], [6], [7], see
also the book of I. Gohberg and N. Krupnik [8]. Fredholm property of singular in-
tegral operators with piece-wise continuous coefficients on closed Lyapunov curves
acting on generalized Holder spaces with general weights was studied by N. Samko
(see [26], [27], and reference therein).

The paper is organized as follows. In Section 1 we give an auxiliary material
concerning pseudodifferential operators on R acting on Holder spaces. The main
result of this section is a criterion of local Fredholmness of pseudodifferential oper-
ators at the point +o0o. This result has a fundamental significance in what follows.
In Section 2 the results of Section 1 are reformulated for Mellin pseudodifferential
operators acting on the Holder spaces As (R.) with respect to the multiplicative
structure of the group Ry. Section 3 is the main in the paper and contains the
following results:

1) a theorem on boundedness of the singular integral operator on composed
Carleson curves acting on Holder spaces with general weights. The proof of this
theorem is based on the theorem on the boundedness of Mellin pseudodifferential
operators in the spaces As (R4),0 < s < 1, and an admissible partition of unity
on the curve;

2) a criterion of local Fredholmness of singular integral operator with piece-
wise slowly oscillating coefficients acting on weighted Holder spaces and the de-
scription of their local Fredholm spectrums;

3) a criterion of Fredholmness of singular integral operators with piece-wise
slowly oscillating coefficient at the nodes on weighted Holder spaces. For the proof
of sufficiency of the criterion we use the corresponding results for the local Fred-
holmness of singular integral operators, and ”gluing” the global regularizers from
the local ones by means of the admissible partition of unity on the curve I'. The
necessity of conditions of this theorem follows from necessity of conditions for the
singular integral operator to be locally Fredholm operator.

From the local principles of Simonenko [23] and Allen- Douglas [21] it follows
that the global Fredholmness of singular integral operators acting on weighted
LP—spaces is equivalent to their local Fredholmness at every point of the curve
T". In the case of operators acting on weighted Holder spaces the local principle is
known also (see for instance [14], [28]), but it is more convenient for us to give an
explicit construction of regularizers.
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Notation:

|alrt

B(X)

Cy*(R),

F

K (X)
Op(a),
OpM(a)v
OPS{’}W
OPSY o(R),
oPSY,
0PSO, 0PSO
OPSO,,
OPSO,(R)

SO,

SPtoo(A: X — X),

Viu(z) = u(x + h)
A*(E)

AZ(R)

A%, (E)

A*(R4)

AS (Ry,CN),
AS,’LU(F)’

(€ = V1+EP

)

IEOT

is the symbol norm, see (1);

is a Banach algebra of all bounded linear operators
acting on a Banach space X;

see (2.14);

is the set of all the nodes of the curve I', see Subsection 4.1;
is a two-sided ideal in B(X) of all compact operators;
see (2.2);

see (3.5);

see Definition 2.2;

see Subsection 2.4;

see Subsection 3.2 ;

are the classes of operators with symbols from SO, SO, respectively;

see Subsection 3.2;

see Subsection 2.4;

is the two point compactification of R;

is the Hormander class of symbols, see Definition 2.1;
see Subsection 2.4;

see Subsection 3.2;

see Subsection 3.2;

is the class of symbols from SRO slowly oscillating at 4 oo,
see Definition 2.4 ; SO = SO, N SO_;

see (2.21);

see (2.42);

is the translation operator;

is the ”translation type” Holder class, see Definition 2.6;
see (2.27);

is the subspace of functions v € A®(E) such that

lim w(z) =0, where xz( is a limit point of E;
E>x—xg

is the ”dilatation type” Holder class, see Definition 3.1;
see (3.8);
see Subsection 4.2;

see (2.17).

2. Local invertibility of pseudodifferential operators on weighted

Holder spaces

2.1. Calculus of pseudodifferential operators

The goal of this subsection is to set up some notations and summarize (without
proof) some facts on pseudodifferential operators. Standard references are [13],

[11], [24], [29], [30].
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We restrict ourselves to the case of dimension one, because our aim is appli-
cations of pseudodifferential operators to the theory of one-dimensional singular
integral operators.

Definition 2.1. We say that a function a belongs to the L.Hormander class S17
wherem >0, m €R, if a € C® (R x R), and for all r,t € Ng = NU{0}

lal,, = > ggg{!@?@?a(m,f)!<£>a‘m<oo, (2.1)

a,BENg
a<r,B<t

where (£) = /1 + [£|2.

As usual, we associate with a symbol a the pseudodifferential operator de-
fined on the Schwartz space S(R) by the formula

Op(a)u(x) = a(x, Dyu(x) = (2r)"" / ¢ / oz, uly)e T Vedy.  (2.2)

Definition 2.2. We denote by OPSTY, the class of pseudodifferential operators with
symbols in ST.

It is well-known that A € OPSTY, is a bounded operator on S(R). We say
that A is a formally adjoint operator for A if

/ (Au) (z)v(z)de = / u(z)(A) (z)dx (2.3)
R R

for all u,v € S(R). Then, A" = Op(a’) € OPSYY, and we can define the action of
A € OPST, on S'(R) by the formula

(Au) (v) = u(A'v),
where u € S’(R), v € S(R).

Proposition 2.3. Let A = Op(a) € OPST(R). Then there exists a Schwartz kernel
ko, € C*(R)®S'(R) of the operator A such that

Au(z) = (ko(z,2),u(z — 2)),u € S'(R), (2.4)
where
ka(xa Z) = ngza(gc, f)
(F{jz is the inverse Fourier transform in the sense of distributions.)

The kernel kq(x, z) is in C°(R x R\{0}) and satisfies
0800 ka(2,2)| < Capn 2|77 *N, zeR, 2 e R\{0} (2.5)
for all the multi-indices o, B, and all N > 0 such that 1 +m + |a] + N > 0.

Below we set up some facts on calculus of pseudodifferential operators with
slowly oscillating symbols following [16], see also [15], Chap. 4.
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Definition 2.4. A symbol a is called slowly oscillating at the points +oo if a €
S%O(R), and

|0¢02a(z.)] < Casla) (€)™ (26)
where limy,_, 4o Cop(z) = 0 for every a > 0 and § > 0. We denote by SO the
class of slowly oscillating at the point oo symbols, and set SO = SO, NSO_ We

use the notations OPSO4, and OPSO for the class of operators with symbols in
SO~ and SO, respectively.

Proposition 2.5. Let A = Op(a) € OPSO4,B = Op(b) € OPSOx. Then AB €
OPSO4, and
AB = Op(ab) + Op(t(z,¢)),

where t(x, &) is such that

07084, €)] < Cap@) ()7, (2.7)
and
Jim  Cap(a) =0 (2.8)
for all a, .

2.2. Holder spaces

Definition 2.6. Let E C R, and 0 < s < 1, we define A*(E) as the subspace of C(E)
consisting of those bounded functions u which satisfy in E the Holder condition of
order s, that is, there exists a constant ¢ such that |u(z) —u(y)| < clx —y|® for
all z,y € E.

Equipped with the norm

u\xr) —u
Fll oy = Nl ooy + sup  LAE =20 (2.9)

T,YyEE, z#y ‘x_y‘s
A%(FE) is a Banach space.
Proposition 2.7. Let ¢ € C§°(R) be such that p(x) =1 if |z| <1, ¢(x) =0 if

|z] > 2, and 0 < p(z) <1 if 1 < |z| <2, and pr(x) = ¢(z/R). Then for every
s€(0,1)

RIEI})O lorul As(R) — [[ul As(R) (2.10)
Proof. Proof follows directly from the definition of norm (2.9). O

Proposition 2.8. (see [32], p. 52). Let s <r. Then A"(E) C A*(E). If s <r, and
E is an open set with a compact closure, then the imbedding A"(E) C A*(E) is
compact.

We denote by A; (E) the subspace of A*(E) consisting of functions u such
that limgs,—z, u(z) = 0, where z; is a limit point of E.



Vol. 99 (9999) Running Heads: Local Fredholm spectrums 7

Proposition 2.9. Let u € A; (E). Then for every § € (0,+00] there ewists a
constant Cs > 0 such that

u(z) — u(y)]
[ull oo () < Cs sup — -

\ (2.11)
z,y€E,0<|z—y|<d |£L' - y|

Proof. Suppose that inequality (2.11) does not hold for some § > 0. Then there
exists a sequence u, € A (E) such that [|u,||pw g =1, and

p @ w1

yeE, |z —y|° n’
o<|lz—y|<s

(2.12)

Since [[un|/f«(z) = 1, the sequence w,, is uniformly bounded and by (2.12) it is
equicontinuous. Then, there exists a subsequence u,,, convergent to a limit function
u uniformly on every compact set in E. This implies that ||ul| oo(m) = 1. Passing
to the limit in (2.12) we obtain that

wp 1@ —u)l
z,yEE |IE — y‘
o<|z—y|<8

Hence w is a constant function on E. It implies that u(x) = 0 for every point
z € E, because _lim wu(z) = 0. This is a contradiction to ||l z) = 1. O

Sr—xo

Proposition 2.10. On the space A} (E), the norm defined in (2.9) and the norm

u(z) — u(y)|
o = sup —_—
A5(E) z,y€E,0<|z—y|<d |J) - y‘s

[l

b

where § € (0,00], are equivalent.

Proof. 1Tt is evident that
[l

Az < lullas ) -
Further, by (2.11)

u(z) — u(y)| 2
[[wll 5 < sup — st {1+ =) llullp~
| A(E) z,yEE,0<|z—y|<d |'T - y‘ s H L=(B)
2
< (1 + (1 + 58) 05> [l

A ((B)
O

2.3. Boundedness and compactness of pseudodifferential operators on Holder spaces

Let X be a Banach space, B(X) a Banach algebra of all bounded linear operators
acting on X, and K (X) a two-sided ideal in B(X) of all compact operators.

In what follows if X is a function space and a is a function we denote by al
the operator of multiplication by this function. If B is a linear operator we will
write aB instead of alB.

We will define the action of pseudodifferential operators on Holder spaces
A*(R) by formula (2.4).
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Proposition 2.11. A pseudodifferential operator A = Op(a) € OPS]  is bounded
from A*(R) in A°~¢(R) for every s € (0,1) and e such that s—e € (0,1). Moreover,
there exist C' > 0 independent of a such that

||OP(G>UHA576(R) <cC |a|11,12 H“HAS(R) ) (2.13)
where [{ > 2,15 > 2.

The boundedness of pseudodifferential operators on the Holder spaces has
been proved in [25], p. 253-257, see also [31], p.37-38 without estimate (2.13). But
a careful analysis of those proofs allows us to obtain estimate (2.13).

We denote by Cg°(R) the class of functions in C*°(R) bounded with all their
derivatives, and with the topology defined by the seminorms

lal,, = Zsup ‘a(j)(x)‘ . (2.14)
jgkxER

If A, B € B(X), then we denote by [A; B] = AB — BA the commutator of A, B.
Proposition 2.12. Let A = Op(a) € OPSY, 0 € Ci°(R), pr(z) = @(x/R). Then

c
kot Allsaemy < 7+ B>0 (2.15)

where C' > 0 does not depend on R.

Proof. Tt follows from the formulas of compositions for pseudodifferential operators
that

lprl, Al = Op(br),

where
|bR|k,t <CR™! |a|k+2,t+2‘ (2.16)
Estimate (2.16) and Proposition 2.11 yield estimate (2.15). O
Let
O={pecAR): ¢()=0 for x<b=b, € R} (2.17)
and
AZ(R) =@, (2.18)

the closure being taken with respect to the norm of A®*(R). It is clear that A® (R)
is a closed subspace of

A (R) = {u €A (R): lim u(z)= 0} .

r——00

Proposition 2.13. A pseudodifferential operator A = Op(a) € OPS{  is bounded
from A% (R) in A °(R) for every s € (0,1) and € such that s —e € (0,1) with
estimate (2.13).

The proof of this proposition easily follows from Propositions 2.11 and 2.12.
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Proposition 2.14. Let T' = Op(t) € OPS; g, and

02021(2.6)| < Caple) () >0, (2.19)
where
lirJP Cop(x) =0 (2.20)

for all o, B € Ny. Let x € Cp°(R), and x(x) =0 for z < R.

(i) Then T'xI and xT are compact operators on A*(R) (A°(R)) for every
x € Cg°(R), such that x(z) =0 for < R.

(11) If limg oo Cop(x) =0 for all o, B € Ny, then T is a compact operator
on A*(R), (A% (R)).

Proof. We prove that xT is a compact operator. Let ¢ € CP(R),p(z) = 1 if
2] < 1, and (x) = 0 if || > 2, pr(x) = p(¢/R), br = 1 — ¢ Then

IXT = orXT ||l (a=m))
< |l¥rxT|| < ClYrxtlor, ok,

BAS®) —
where C' (> 0), and 2k; > 1,2ky > 1 are independent of ¢t and R. Estimates (2.19),
(2.20) imply that
ngnoo |wRXt‘2k1,2k2 =0.

Let us prove that o pxT" : A*(R) — A*(R) is a compact operator. Indeed, supp prxTu C
Bsr = {z € R: |x| < 2R} for every function u € A®(R). Hence, ppxT maps
bounded sets in A*(R) in bounded sets in AST¢(Byg). By Proposition 2.8, the
space A5 (Bgg) is compactly imbedded into A®*(Bsg). In the same way we prove
compactness of T'x, and statement (ii).

The proof for the spaces A% (R) is similar. O

We denote by SO*(R) the class of slowly oscillating functions, that is, the
functions in Cp°(R) which satisfy the condition

lim b'(z) = 0. (2.21)

Note that this condition implies that

lim bY)(x) = 0,5 € N.

xr— 00

Proposition 2.15. Let A = Op(a) € OPSO, b € SO>®(R). Then the commutator
[A,bI) = AbI — bA
is a compact operator on A®*(R) (A% (R)).

The proof easily follows from Propositions 2.5 and 2.14.
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2.4. Local Fredholmness of pseudodifferential operators

Let x € C;°(R), and x(z) =0if ¢ <1, and x(z) =1if 2 > 2,0 < x(z) < 1. We
set xr(z) = x(x/R), R > 0. Let ¥g be a function with the properties similar to
the properties of xr, and YrXxr = XR-

Definition 2.16. An operator A € B(A*(R)) is called a locally Fredholm operator

at the point 400, if there exist operators L, R € B(A°(R)) and Ry > 0 such that
for R > Ry

LYyrAxrl = Xrl + Tk, xrRAYRR = xrI + Ty, (2.22)
where Tx, Th € KK(A*(R)).

Equalities (2.22) can be written as follows
VRLYRAXRT = XRI + YRTRYRI, XRAYRRYR = XrI + YRTRYRI.  (2.23)

Note if u € A*(R) then the functions ¥ru, xgu belong to A* (R). It implies
that A is a locally Fredholm operator on A*(R) at the point +o0o if and only A is
a locally Fredholm operator on A* (R) at this point.

We denote by R the two point compactification of R homeomorphic to the

segment [—1,1], and by S?’O(R) the class of symbols in S?,O admitting exten-
sions on R. The corresponding class of pseudodifferential operators is denoted by
OPS? ((R).

Proposition 2.17. Let A = Op(a) € OPS?’O(H?R), and a sequence h, — oco. Then
there exists a subsequence hy, and the function ap(x,&) = klim a(x + hp,, &) such

that for every function ¢ € C§°(RY)

li H Vo, AV, —O )IH —0. 224
k1—>r<(>lo( hn, AVh,, — Op(an) ) ¢ BeA(®) (2.24)

Proof. Let A = Op(a) € OPS{{O(]E) and Vyu(z) = u(z — h) be the translation
operator. For a sequence h, — oo we have V_j, AV} = Op(a(z + hy,,§), where
the functional sequence a(x + hy,,€) is uniformly bounded and equicontinuous on
compact sets K X ]li7 where K is a compact set in R. Applying Arcella-Ascoli’s
Theorem we obtain that there exists a subsequence h,, such that

a(m + hnk,f) - ah(xa f)
uniformly on every compact sets K x ]Ii, that is,

lim sup [a(s+ ny, &) — an(z,€)] = 0. (2.25)
k—00 [r RN

By the well-known inequality

()

Zj

sup
X

\ <Cfsup lu(a)]
X
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where X is a set in R, we obtain that

lim sup |0800a(z + hn,, &) — 0200 an(x,€)| (€)* =0. (2.26)
k—oo g xR
Formula (2.26) implies that the limit symbol ap(z,&) is in S{ (R). Moreover,
estimate (2.26) and Proposition 2.11 yield (3.4). O

Let

A3(R) = the closure in A®(R) of the set of functions

in A*(R) with compact supports. (2.27)

Corollary 2.18. Let A= Op(a) € OPS?’O(I’@)7 and ap, be denoted by (2.26). Then

5 — kh_,rgo(v_hw AV, AJ(R) — A*(R)) = Op(ap). (2.28)
Proof. It suffices to prove (2.28) for u € A*(R) with compact support. Let o pu = u.
Then

lim H (V,hnk AVh,, — Op(ah)) uH

k—o0 As(R)
< [lim H (V—hnkAthkU - Op(ah)) @RIHB(AS(R)) l[ull ps gy = O-
Hence 2.24 implies 2.28. (|

We set OPSO(R) = OPSY ,(R)OPSO.. Note that if a € SO (R) and
ap, is a limit symbol defined by (2.26), then aj is a function depending only on
£ eR: ap(x, &) = ap(§) ([15], Chap. 4.4).

Theorem 2.19. An operator A = Op(a) € OPSO(R) acting on A*(R) (A% (R))
is a locally Fredholm operator at the point +o0o, if and only if

lim inf |a(z,&)] > 0. (2.29)

r—oo x>r,(ER

Proof. 1. Let ¢ € Cp°(R), and ¢(z) = 0if # < 1/2, and ¢(z) = 1 if z > 1,
0<¢(z) <1, vgr(x) =¢(/R),R >0, and Yyrxr = xr. Let condition (2.29) be
fulfilled. Then there exist Ry > 0 such that bg, (z,£) = ¥gr,(z)a"(x,£) € SO,.
Let Br, = Op(bg,). Then
BRUA = wRo + T/7

where T" = Op(t’) with t’ satisfying estimates (2.7) and (2.8). Then,

BroAxrI = xrI + T'xrI1,
where T'xrI is a compact operator by Proposition 2.14. Moreover,

Br,AxrI = BroyWrRAXRI + Br, [VrI, A] XRI,
where [¢prI, A] is a compact operator by Proposition 2.15. Hence,
BrotrAXRI = xrI + T,

where T" is a compact operator.
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In the same way we obtain that
XrAYRBR, = XrI +T",

where T is a compact operator. N
2. Let an operator Op(a) € OPSOL,(R) be locally Fredholm at the point
+0oo. Show that condition (2.29) is fulfilled. Notice that

s — Rlim (YrI:AL(R) — A°(R)) =0.

Let A : A*(R) — A®*(R) be a locally Fredholm operator at the point +o00. Then
the following a priory estimate holds

[AX Ry ull Ao ) 2 CllIxRo Ul Ao @) = [T0l Ao () (2.30)

where T is a compact operator, and Ry > 0 is sufficiently large.
Let w have the properties similar to the properties of x, and wrxr, = wr.
Then

w2 C (||WRU\ As(R)) :

We can consider T as a compact operator from A%(R) in A®*(R). Hence,

||AwRu| As(R) — ||TwRu|
1. T I s s = . 2 1
A (TRl gy gy —e@) =0 (2.31)

Formulas (2.30), (2.31) yield that there exist Rg such that for R > Ry

As(R) = C/2||wrul A%(R) (2.32)

for every function v € A2(R). Let a sequence h,, € R tend to +00 and a function
u have a compact support. Then for fixed R > 0 there exists m > mg such that
wrWh,, u =V u. Thus, for m > my

HV,hmAwRthu\

|| Awprul

re®) = IVoh AV Ul pe gy 2 C/2 Ul pe () -

Proposition 2.17 yields that for a compactly supported function u (€ A*(R))
10p(an)ull ysm) = C/2 [ull o gy - (2.33)

Let u € A*(R) be an arbitrary function. Then (2.33), Propositions 2.12 and 2.14
imply that

lerOp(an)ullys@y = Op(an)prullysw) + O(1/R) (2.34)
> C/2|prullysg) + O(1/R).
In light of Proposition 2.7
li smy = (R - 2.
[ lerulls (R) (KN (R) (2.35)

Passing to the limit in (2.34) as R — oo, and applying (2.35) we obtain the
estimate

|0p(an)ully- ) = C/2]u
for every function v € A*(R), s € (0,1).

A*(R) (2.36)
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Note that ap(z, &) = ap (&) since a(x, &) € SO4(R). Thus, (2.36) implies that
llan(D)ull ys ry = C/2|ul ps gy (2.37)

for every function u € A*(R),s € (0,1). Set in (2.37) u = e¢ = €5, It is evident
that ec € A®*(R) for every s € (0,1), and ap(D)es(z) = an(§)ee(z). Thus, (2.37)

implies that
inf an(€)] = C/2> 0, (2.38)

where

lim sup |a(z + by, &) —an(§)| =0 (2.39)

n—o0 xR
for every compact set K C R. Let us show that indeed (2.38) implies (2.29).
Suppose that (2.38) holds, but (2.29) does not hold. Then there exists a sequence
(hn, pn), hn — 400 such that

lim a(hn,pn) = 0. (2.40)

n— o0

Let the sequence h,, be such that limit (2.39) exists. Then it follows from (2.39),
(2.38) there exists N € N such that for all n > N

|a(hn,pr)| > C/4 > 0. (2.41)
Inequality (2.41) contradicts to (2.40). O

Let A: A*(R) —=A°(R). We say that A € C is a point of the local Fredholm
spectrum of A at the point 4o0 if the operator A — AI is not a locally Fredholm
operator at the point +00. We denote the local Fredholm spectrum at the point
+o0 as

$P1oo(A: A°(R) — A°(R)). (2.42)
In the same way we define the local Fredholm spectrum for A : A% (R) — A% (R).
Theorem 2.19 has the following corollary.

Theorem 2.20. Let A = Op(a) € OPSOL(R). Then
Proo(A  A(R) > A°(R)) = sprao(A s A% (R) — A% (R))
- U {Aecc:A:ah(g),gef@},
REQ oo (a)
where Q1o (a) is a set of all sequences h,, — +00 such that the limits lim a(h,,§) =

n—oo

an(§) ewist.

3. Local Fredholmness of Mellin pseudodifferential operator on
Holder spaces

3.1. Multiplicative Holder spaces on R

We consider here the Holder spaces on R with respect to the multiplicative struc-
ture of the group R,.
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Definition 3.1. By A*(Ry), where 0 < s < 1, we denote the class of bounded
continuous function on Ry satisfying the conditions:

|u(At) — u(t)]
Ul As - u [eS] + Sup TSN 3.1
l[ull z Ry) lull Ry) tERy AER\{1} [log A 3.1)

jult) = u(n)| _

lull g,y + sup 5
T

t,7ERy tA£T ’log

Note that the mapping 7 : Ry — R,n(r) = —logr generates the isomor-
phisms n* : A* (R) — A*(Ry). We set A* (R;) =n* (A% (R)).

Proposition 3.2. The norm (3.1) on A* (R, is equivalent to the norm

HCEDORE] 62)

lul

is = sup
AZ(R4) tER Y ,e#0 |€

1_1<e<e—1

Proof. Following the proof of Proposition 2.9 one can show that norm (3.1) on
A% (R,) is equivalent to the norm

[u(At) — u(?)]

P 9
tER L, AFL |log )\|6
%<>\<e

(3.3)

Set A\=1+¢in (3.3). Then, € € (2 —1,0) U (0,e — 1). Hence,

€

log(1 log(1
0<ae inf log(1+¢) sup log(1+2) _ 5 .
£€(1—1,0)U(0,e~1) € e€(1—1,0)U(0,e—1). 2

Then, we obtain that norm (3.3) is equivalent to the norm

Rs (Ry) = sup |u((L +€)t) — u(?)] .

= (3.4)
teERy,e€(L—1,0)U(0,e—1) le|

[l

The next proposition gives a connection between the space

AS(R,) = {u € A* (Ry) : lim u(z) = o} = A° (Ry).

Tr—

and the space A® (Ry). O

Proposition 3.3. The operator u — x*u is an isomorphism from A® (R4) on
A3 (R).
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Proof. Let u € A® (Ry.). If we set below h = ex, then

z + h)Su(z + h) — z5u(x
ey = sp  lermrueah) oo
- z,x+h€eR L, h#0 ‘h|

[[ul

[(1+¢e)u((1+¢e)z) — u(z)]

= sup 3 <
@,(14+e)z€R 4 540 lel
. . (1 +2)°u((1 +2)2) — u(w)
o,(14+e)zeR s £€(1—1,0U(0,e—1) el
[(1+¢)® —1]
< C sup Il
e€(L-1,0)U(0,e—1) le]
u((l+¢e)x) —u(x
o o WD @
z,(1+e)z€Ry |€| -

ce(1-1,00u(0,e-1)

Hence, u — zu is a bounded operator from A* (R, ) on A® (R, ). Since the function
u € A* (Ry) is bounded, we have lim, o z%u(z) = 0, so that z°u € A§(Ry).

Let us prove the boundedness of the inverse operator from A§(R,) onto
A (R,). We have

u((1+e)t) — u(t)]

[[ul B

s = sup
AL(Ry) t(14e)ter, |E
ce(1-1,00U(0,e—1)

t9 — tu(t
I e el
tr=(1+e)teRy, |tL - '7—|
ce(l-1,00u(0,e-1)

[ru(r) — tu(t)

< € su < es|ltsull .. )
o t,TE€R+,1—I):(1+E)t ‘t — Is - H | As (Ry)
ce(L-1,00U(0,e—1)
This implies that
[t Ao Ry) S e [lullps @,y -

3.2. Mellin pseudodifferential operators

As a modification of Definition 2.1, we say that a complex-valued function a defined
on Ry xR belongs to the class 7 if a € C°(R; xR) and satisfies the estimates

|a|m = Z sup |(r6r)ﬁ6§a(r, )\)‘ (A\)* < o0

a<rg<t B+ xR

for all a, B € Ng = {0,1,2,3....}, where (A) = (1 +|\*)!/2
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Definition 3.4. Let a € 87 . The operator

p

where u € CP(Ry), s called the Mellin pseudodifferential operator with symbol
a.

Oputa)r) = (2 [ ax [ atr) (;)Mu@)dp (35)

The class of operators of the form (3.5) with a € 87 is denoted by OPSY .

The Mellin pseudodifferential operators in the class OPS%0 are the trans-
plantation on R of pseudodifferential operators in the class O PSTY, by means of
the mapping ¢ : Ry — R, ¢(r) = —logr.

Let us summarize some properties of Mellin pseudodifferential operators
which follow from the corresponding properties of pseudodifferential operators on
R.

By S(R.) we denote the class of functions ¢ on Ry such that p(exp ) € S(R).
From the boundedness of usual pseudodifferential operators in OPSY? ; on S(R)
it follows that an operator A € OPSY} is a bounded operator on S(Ry). An
operator At is called formally adjoint to the operator A if

/ A i@ = [ ) 6)

r

dr

: (3.6)

for arbitrary functions u,v € S(Ry4). Let A = Opa(a) € OPSY . Then the
formally adjoint operator A* € OPS?!O. Thus formula (3.6) allows us to consider
pseudodifferential operators on the space of distributions §'(R. ), and consequently
on the space of Holder functions.

We say that a symbol a(€ SRO) is slowly oscillating at the point 0, if

|(r0,)? 0% a(r, N)| < Cap(r) (A,
where
lirr%) Cop(r) =0,

for all @ € Ny and # € N.

We denote by SO the class of slowly oscillating at the point 0 symbols, and
by OPSOy the corresponding class of pseudodifferential operators.

The next propositions are reformulations for Mellin pseudodifferential oper-
ators of the corresponding propositions of Section 2.

Proposition 3.5. Let A = Opps(a) € SOy, B = Oppr(b) € SOy . Then
AB = Opp(ab) + Opar(t),
where Oppr(t) € OPS;(%, and
|(r0r)°054(r, )] < Cap(r) )™,
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where

}ii% Cap(r) =0,
for all a,, B € Np.
Proposition 3.6. Let A = Opy(a) € OPSY, . Then A is bounded on A (Ry)
([Xi(R.Q) and
0P (0)lg(Rs(myy) < Claly, 4yl > 2,02 > 1.

Let x be a function introduced in 2.4, Xr(r) = xr(— log r),r € Ry.We denote
by SO (R, ) the class of functions b € C°°(R ) such that b(r) = b(—logr), where
be SO>®(R).

Proposition 3.7. Let A = Opys(a) € OPSOg, b € SO® (R,). Then the commuta-
tor [a, )ZRZ;I] is a compact operator on A*(R,) (]\S_ (R+)) .

Definition 3.8. An operator A : A*(Ry) — A*(Ry) is called a locally Fredholm
operator at the point 0 if there exist operators Lr, Rr € B (AS(R+)> such that

LrYrAXRI = XrI + Thy XrRAVRRR = XrI + Th,

where Tr, Ty are compact operators on As (Ry).

A point ¢ € C is called a point of local Fredholm spectrum at the point O if
the operator A — (I : ]\S(RJr) — AS(R+) 18 not a locally Fredholm operator at the
point 0. We denote by spo(A) the local Fredholm spectrum of A at the point 0.

We denote by 810)0([’@) the class of symbols a € S such that a is extended

to a continuous function on R4 x R.
The next theorems are reformulations of the results of Subsection 2.4 with
respect to the Mellin pseudodifferential operators.

Theorem 3.9. Let A = Opy(a(r,\)) € OPSOy(R) = (’)’PSRO(HNQ)HOPSOO. Then

A: A% (Ry) — A% (Ry) is a locally Fredholm operator at the point 0, if and only
if

g£m+0 o%lé%g la(r, A)| > 0. (3.7
Moreover,
spo(4: KRy — ARy = () {¢ceCi¢=areR},

heQ)(a)

where Qo(a) is a set of all the sequences hy, — 40 such that the limits lim a(hn,, ) =

an(\) exist.
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We will also make use of Mellin pseudodifferential operators in Holder spaces
of vector-valued functions. By A% (R, C") we denote the space of vector-valued
functions u = (u1, ..., un), where u; € A® (R}) with the norm

[[ul A% (Ry,CN) = 1%%)(]\] s AS (Ry) > (3.8)

and by OPSOy (]li, CN*N) the class of matrix-valued pseudodifferential operators
Opar(a(r,\)) = Opar((aij(r, N)Y _,), where az;(r,\) € OPSOy(R).

ij=1

Theorem 3.10. Let A = Opy(a(r, ) € OPSOy(R,CN*N). Then A : A% (R, CN) —
As (R, CN) is a locally Fredholm operator at the point 0, if and only if

lim inf |deta(r,\)| > 0. (3.9
0—+00<r<p, eR

Moreover,
spo (A AL Ry, CY) = ARy, €)= () s (@)Y - V)
heQo(a) Ae R
where Qo(a) is the set of all the sequences hy, — +0 such that the limits lim a(h,, \) =

n—oo

an(\) exist.

4. Singular integral operators

4.1. Curves, weights, and coefficients

A set v C C is called a simple smooth arc if there exists a homeomorphism ¢ :
[0,1] — ~ such that ¢(r) € C*(0,1] and ¢'(r) # 0 for all » € (0,1). The points
©(0) and ¢(1) are called the endpoints of v. We refer to a set I' C C as a composed
curve if I' = Uszl I'y where I'y, ..., ' are oriented and rectifiable simple smooth
arcs each pair of which has at most endpoints in common. A node of I is a point
which is an endpoint of at least one of the arcs I'1, ..., I'x. The set of all the nodes
of T will be denoted by F.

A C*-function f : (0,¢] — C is said to be slowly oscillating at the origin if
d\*
(Tdr) f(r)

lim lrf'(r)| =0 (4.2)
We remark that (4.1) and (4.2) imply that actually

(r&) 500

To have an example, notice that if f(r) = g(log(—logr)),0 < r < 1, where
g € Cy°(R), then f is slowly oscillating at the origin.

sup
re(0,e)

<oo , keNy (41)

and

lim
r—0

=0, ke Np.
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Suppose I' is a composed curve and t; € F.

Definition 4.1. We say that T" is slowly oscillating at the point ty, if there exists
an € > 0 such that the portion T'(tg,c) := {7 € T : |1 — ti| < &} has the form

D(tg,e) = {te} U UL U,

where the arcs ’y]’? are defined by

%’?:{t: t:tk—l—re"“?(r), re(O,a)}, i=1,...,n, (4.3)

and the functions w*(r) may have the form

wf(r) = 0%(r) + 9;? (r)

where 0% and 0%, ... 0F are real-valued C>-functions such that
do* (r) ag; (r)

k
i) the functions dx(r) = r=5= and orj(r) = r—4— are slowly oscillating at
r =0,

i1) there exists constants mf and M]’-C such that for all r € (0,¢)

0<my <O¥(r) < MF <mh <05(r) <M} <...<mk <0F(r) < MF<2r.
(4.4)

Under assumption ), the functions 0}“ (j =1,...,n) are also slowly oscillating
at r=0.
For example, the functions

wf(r):eklogr+9§“; 0", 9?6]1%, (Gj=1,...,nk)

with 0 < 0¥ < 05 < ... < 0% < 27, satisfy all the assumptions of Definition 4.1.
The curve 7;-“ is a logarithmic spiral in this case, and T'(tg, €) is a star of logarithmic
spirals at the node .

A composed curve which is slowly oscillating at each of its nodes will be
referred to as a slowly oscillating composed curve.

Let w : I' — [0, +00] be a function which takes values in (0,+o00) on I' \ F'
and is C* on I' \ F. We call w a slowly oscillating weight at tj, € F' if, under the
above notation, w is of the form

w(ty + e M) =" e (0,e), € {1,...,m},
where
dv® (r)
dr
is slowly oscillating at » = 0. For instance, the weight w arising from
v(r) = f(log(—logr))logr, r € (0,¢)
with a bounded function f € C;°(R) is slowly oscillating at tx; in this case we
have

liminf ro’(r) = liminf(f(z) + f'(x)), limsuprv’(r) = limsup(f(x) + f'(x)).

r—0 T—+00 r—0 z—+00

w(r)=r
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Finally, a function a : I' — C is said to be piecewise slowly oscillating on T,
a € PSOT),if ais C*® onT'\ F and if for each node t; € F we have

a(ty +re™ ) =ay ;(r), r€ (0], j€{1,...,n}
where a;, 1(7),. .., as, o (r) are slowly oscillating at r = 0.
4.2. Boundedness of SIO on Holder spaces

We say that u € A*(T"), 0 < s < 1, if there exists a neighborhood F. of F such
that v € A®(I'\F,), that is, u is continuous on I'\ F,
|u(t) — u(7)]

AS(D\F.) — HUHLOC(F\FE) + tTS&liF w < 00,

[[ul

and u(tx + rei(ek(T)wf(T))) = uf@(r) € A*(0,¢), for every k = 1,..., K, and j =
1,...,nk. A norm in A*(T) is introduced in the evident way.

By A®"(T'), where w is a weight introduced in Subsection 4.1, we denote the
weighted Holder space of functions such that wu € A*(T). A norm in A%*(T) is
introduced as

[[ul

ase(ry = llwellpery -

Let
A =al +bSr,

where a,b € PSO(T), and

Sru(t) = lim — / undr e p

Tel:|t—7|>e

isa SIO on I

Let t;, € F, and ¢ € C°(T") be such that ¢ (7) = 1 for 7 in a neighborhood
Uy of the node t; and ¢k (1) = 0 outside a neighborhood U;, O Uy, and 0 <
or(T) < 1. Let ¢ have the properties similar to those of ¢y, and V¥ = @k.

Put 5% = 1 if ¢, is the starting point of the oriented arc ’y,i and let 5{3 =-1
if ¢; is the end point of the oriented arc ’y,i.

Define

v:[0,2m) x (C\iZ) - C
by
coth(rz), § =0,
V(0,2) = L0 s (0, 2m).

sinh(7z)’
For j,l € {1,...,nt}, let
Sk Ry x (C\iZ) — C,
be the functions
k o (2r+ 05(r) — k(). 9) . <L,
Shr) =4 a0, i=l (45)
€ky(9j (T) - gl (T), Z) s J > L.
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Let us introduce the map

w(r)

(@4, f) (r) = column (Sf (tk; + Teiek(r)+i01f(r)) T wlr)
T

;,nS
It follows from Proposition 3.3 that

Dy 0 AS(T(0,€),w) — By, (AG(T(0,),w)) C A% (R, C™)
is a Banach space isomorphism.

Proposition 4.2. Let s € (0,1), and the following condition hold:

s < liminf s, (r) < limsup s (r) <14 s (4.6)
r—+0 r—-+0

for every k =1,..., K. Then the operator
D4, 0k ST Dy,

is a Mellin pseudodifferential operator with the symbol si(r,\) = (sil(r, )\)) l; ) €
~ J’ =
OPSOH(R,C™) defined by

A+ i(s(r) — 5)

il R
5 () = a2y ()5S (r’ 1+ iop(r)

)%(r) Tt (@)
where @i(r) = oulty + rei(ek(r)-&-sz(T)))’ %m = on(ty + Tei(ek(r)-i-Of(T))), and
tfl(r, A) € Sié and

lim (rd, ) o5 t%, (r, ) (\)* =0

r—0

for every a, B € Ny.

Proof. See papers [3], [19], and also book [15], Chap. 4.6. O

Corollary 4.3. The operator @y, @kspwkcb;kl‘ is bounded on the space A% (Ry),0<
s < 1.

Proof. Indeed, condition (4.6) implies that Sj’?l (T, %W) € SOy(R). Thus

Opar(si(r,A)) is a bounded operator on A® (R;),0 < s < 1, by Proposition
3.6. (]

Theorem 4.4. Let s € (0,1), and the following condition hold:

s < liminf s, (r) < limsup s (r) <14 s (4.8)
r—+0 r—-+0

for every k =1,...,K. Then A: A" (T) — Ay (T) is a bounded operator.

Proof. Let ¢, € C°(T') and ¢i(7) = 1 if 7 € Uy a neighborhood of the node
tr, and (1) = 0 outside a neighborhood U}, D Uy, and 0 < ¢ (1) < 1. Let ¢y

f (tk 4 e ()i (1)

)
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have properties similar to the properties of ¢, and Yrpr = . We set g =
K
1—> 1 k- Then

K K
A= "o AT + oAl — )l
k=0 k=0

Note that a function u € A§(T") and the weight w satisfy the following estimates
in a neighborhood of the mode ¢

u(t)] < Clul

Ay [t =l (4.9)
and .

elt — O ) < ot — g (4.10)
It follows from (4.8), (4.9) and (4.10) that

Hw_luHLl(r) < Cllul

As(T) >

if u € A3(T). Since supp (1 — x) N supp o = 0, the operators prwAw =1 (1 —by) T
are operators with C'°°—kernels. Hence,

||w90kA(1 - 1/’16)1”7114 As(ry S c ||“’71“||L1(r) < Cllu|
Note that condition (4.8) implies that tlirgl w(t) = 0. Hence
—lk

tlgltlk (prwAw™ (1 = ¢p)u) (t) =0

for every function u € A°(I"). Thus the operator Zf:o wrA(l — )1 is bounded
on Ay (T"). From the well-known classical results (see for instance [12]) it follows
that the operator oAl is bounded on Ay*(I') because the supports of ¢, 1o
do not contain the nodes.

Hence, we reduced the proof of Theorem 4.4 to the problem of boundedness
of operators @i Ayl : AyY(T') — Ay™(T). Applying Proposition 4.2, we obtain
that gAYl : Ay™(T) — Ay (T) is bounded, if and only if the operator S =
Dy, gkapwkét_kr : A* (Ry) — A% (Ry) is bounded, but boundedness of S, follows
from Proposition 3.6. O

As(D)

4.3. Fredholm properties of singular integral operators on composed Carleson
curves

We say that an operator A : Ay"™(T') — Ay (T) is a locally Fredholm operator at
the point ¢ € I if there exists functions ¢, 1y € C° (1), (pi1hr = p¢), equal to one
in a neighborhood of ¢, and an operator L!, R : Ay (I') — A" (T) such that

Lt’l/)tAgOtI = QOtI + Tlt and g@tA’(/)th = QﬁtI + T2t, (411)

where T}, T4 are compact operators on the space Ay (T'). The operators Lf, R
are called local regularizers of A at the point ¢t € T

Below we use the following notation. Let a € PSO(T") and ¢t € F. Then
diag(a®(r)) = diag(af(r),...,ak (r)) is a diagonal matrix with components af (r) =

a(ty + re‘*’f(r)),r € (0,e). We say that an operator B : Ay (') — Ay™(T) is
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a local type operator, if for an arbitrary function a € C*°(T') the commutator
[B,al] = Bal — aB is a compact operator on Ay (T').

Let I' € C be a composed curve introduced in Subsection 4.1 and w be a
slowly oscillating weight satisfying conditions (4.8) for every point t; € F. Let

Ar = al +bSp : AYY(T) — ASP(D),0 < s < 1

be a singular integral operator on I' with piece-wise slowly oscillating coefficients
a,b € PSO(T). We set

4, (Ar) (1, A)

Jil=1
r € R,AeR,

where ¢;, € C*°(R) is equal to 1 near the point ¢, and has a support in a small
neighborhood of the point ¢, € F. We say that oy, (Ar) is a local symbol of Ar at
the point t; € F.

Theorem 4.5. (i) Ar is a locally Fredholm operator at the point ty, € F if and only
if
5115-10 ,nf |det oy, (Ar)(r, A)| > 0. (4.12)
AER
(ii) Ar is a locally Fredholm operator at the point t € T\F, if and only if
a®(t) — b3 (t) £ 0; (4.13)

If conditions (4.12) and (4.13) hold, then for every point t € T there exist local
regularizers of local type.

Proof. (i) Let t € F. Then Ap : Aj"(I') — Ay (T) is a locally Fredholm operator
at the point ¢y, if and only if the operator @tkkapz/kaI);kl‘ c A (Ry) — A% (Ry)
if locally Fredholm at the point 0, where the functions g, 1, have supports in a
small neighborhood at the point tx, and g (tx) = ¥i(tx) = 1. Hence, (i) follows
from Proposition 3.7. It follows from the construction of local regularizers and
Proposition 3.7 that the local regularizers at the point t; € F are local type
operators.

(ii) The curve I' is smooth in a small neighborhood of the point ¢t € I'\ F, and
the space Ay (T") coincides with the usual Holder space A*(I"), and the coefficients
of A are smooth. Hence (ii) follows from the well-known results for singular integral
operators on Lyapunov curves acting on Holder spaces (see for instance [12], [8]).
The local regularizer at the point ¢ty € I'\F has the form

Rty = ¢, (alto)] — b(to)Sr)e, 1,

where @y, , P, (€ C*°(T")) are functions with supports in a small neighborhood of
the point ty. It is clear that Ry, is a regularizer of local type. (]
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We denote by spi(Ar : AFY(T) — Ay™(T)) the set of complex numbers ¢
such that the operator A — (I is not locally Fredholm operator at the point ¢t € T.
Theorem 3.10 and Theorem 3.2 yield the following result.

Theorem 4.6. Let t;, € F. Then
sp, (Ar = AJY(T) — Ag™(D)) (4.14)
= U Usplonn(A):C™ —C™),  (4.15)
heQo(o¢, (A)) AeR
where

T n(A)(N) = Tim a1, (A) (hon, ), (4.16)

and h = (hm) € Qo(oy, (A)) is the set of all the sequences such that the limit (4.16)
exists.

Note that
) ) A+i(s) — s "
0 (Ar)(N) = diag(af) + diag(8}) (=" (A F 1) AER,
1+ idy; =1
(4.17)
where
a¥ = lim a®(hy),bF = lim b*(h,), s = lim sq(hy), (4.18)
o = lim Gp(hm), 00" = lim 05(hy),  j=1,..n,
and
oh elv(2r + Gf’h — Hf’h, z) , j<l,
Si(z) =< exv(0,2) . i=1, . (4.19)
kb pkh .
exv(0;" — 6,7, 2) , J>1L
Notice that oy, 5 (Ar) is the symbol of singular integral operator
s,wk 5wk
BPM = af T+ by Soen 1 AGY T (FF") — AFY (4P, (4.20)

where v*" is a union of logarithmic spirals staring in the node t = t;, that is

ng
yRh = L) U {t eEC:t=t,+ ret(Ok logr*‘ef‘h),r € R+} ,
j=1

h
whh = [t — ;| is a power weight at the node .

It was proved in [2] that the operator B . [Pw™" (k1) — Lpwt” (v*h),
where —1/p < w*" < 1 —1/p, is locally Fredholm at the point t, if and only
if B®" is invertible. One can prove that the same property holds for B¥" :

k,h k,h
A (R — AGY (4%"). Hence, the local spectrum of Ap : Ay™(I) —
A™(T)) is the union of spectrums of singular integral operators B*" on the log-
ol kb

k,h

k,h
arithmic star v¥" acting on the space AYY (v with power weight w
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Thus, the local massive Fredholm spectrum spy, (Ar : Ay () — Ay (1))
is generated by three forces: 1) oscillation of curves; 2) oscillation of weights; 3)
oscillation of coefficients a, b at the node t; € F.

If t;, is an end-point of a single curve only, then the logarithmic star %"
is transformed into a single logarithmic spiral. In this case the local essential
spectrum at the node t; is a union of the double logarithmic spirals (see [4], [3],
[15], Ch. 4.6).

Theorem 4.7. Let conditions (4.8) be satisfied for every point ty, € F. Then
Ar =al +bSr: Ag,w (F) — Ag,w (F)
is a Fredholm operator, if and only if
(1) for every point t, € F condition (4.12) holds;

(i) for every point t € T\F condition (4.13) holds.
If the conditions (i), (ii) are satisfied, then

L L
B 1 a(t) + b(t) 1. oo
Ind A = E - {arg a(t) —b(D) er, 1;:1 . r1—1>r—r|-10 [arg det oy, (Ar) (1, M)\ Z- o »

k=1
where I'; are the simple arcs composing the curve I' with orientation induced by
that of T.

Proof. From Propositions 3.7 and 4.2 it follows that the singular integral operator
A=al +bSp:AJ" () — Ay™(T) is a local type operator. Let conditions (4.12),
(4.13) be fulfilled. Then for every point ¢ € T" there exists a local regularizer of
local type, that is, for every t € T there exists a function ¢; € C*°(T") equal to one
in a neighborhood of ¢, and operator R' : AJ™(T') — Ay (T') such that equality
(4.11) is fulfilled. Since T is a compact set we can construct a partition of unity

N
doen®)=1,  teT
k=0

with the following properties:

(a) ¢, € C®(0),k=0,..,N,0< ¢, < 1;

(b) supp @i contains only one node 5,k = 1,...,N, and ¢r(t) = 1 in a
neighborhood of the t, where pg = 1 — 25:1 @k 1s such that supp g does not
contain the nodes;

(c)
RFA@I = o] + T}, o AR® = @1 I + T}/,
where T}, T}/ are compact operators.
Let functions ¢, € C(T),k = 0,..., N, be such that 0 < ¢, < 1, and
Crr = pr. We set

N
Riept = Z%Rk~
k=0
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Then,
N N N
RiepeA = D pRFA= " RFApel +> e RFA(L — op)1
k=0 k=0 k=0
N N
= T+) T+ [vnRFA =T+T.

k=0 k=0

Note that 7" is a compact operator, since R¥ and A are operators of local type.
Hence, Riepe is a left regularizer of A. In the same way one can prove that the
operator

N

Rright = ZR’WHJ

k=0
is a right regularizer of A, that is, ARyignt = I + 1", where T” is a compact
operator. Thus we proved that the singular integral operator A is a Fredholm
operator.

Let A : AJY(T) — AJ™(T) be a Fredholm operator. Then A is a locally
Fredholm operator at every point ¢ € I'. Hence condition (4.12) is fulfilled for
t =1t € F by Theorem 4.6, and condition (4.13) is fulfilled for ¢t € T'\ F.

The proof of the index formula is similar to that of the analogous formula for
singular integral operators acting on LP—spaces (see [19], Theorem 4.1.) O
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