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We present results on the boundedness of the maximal operator with oscillating weights on domains
in Euclidean space and maximal and singular operators with power weights on an arbitrary Carleson
curve in the Lebesgue spaces with variable exponent. There are also given weighted Sobolev type
theorems for potential operators on Carleson curves.

1. Introduction

Last years there was a strong rise of inter-
est to the study of the classical operators of har-
monic analysis - maximal, singular and potential
operators in the spaces known as the generalized
Lebesgue spaces Lp(·)(Ω), Ω ⊆ Rn, with variable
order p(x) (the generalized Lebesgue spaces with
variable exponent), or also as spaces with non-
standard growth.

These spaces and Sobolev spaces based on
them proved to be of importance in the study of
di�erential equations with p(x)-Laplacian, varia-
tional problems and applications to mechanics of
the continuum medium. In some problems of me-
chanics there arise variational problems with La-
grangians, for example, of the form |ξ|α(x) when
the character of non-linearity varies from point
to point (Lagrangians of the plasticity theory,
Lagrangians of the mechanics of the so-called
rheological �uids, and others).

These applications gave rise to a rapidly de-
veloping �eld of harmonic analysis related to
these spaces. The interest of many researchers,
apart from applications, was also stirred up
by the di�culties they met. These di�culties
are, in particular caused by the fact that the
spaces Lp(·)(Rn) are not invariant with respect
to translations and dilatations and convolutions
k ∗ f do not obey the standard Young theorem
‖k∗f‖Lp(·)(Rn) ≤ ‖k‖L1(Rn)‖f‖Lp(·)(Rn). Roughly
speaking, a convolution may be a candidate for
the boundedness, if its kernel nowhere has singu-

larities except for the origin. Calderon-Zygmund
singular operators are among them, as well as
the maximal operator.

The state of a�airs in this �eld up to the
beginning of 2004 was summarized in the sur-
vey papers [27], [16]. Meanwhile in the subse-
quent two years 2004-2005 there were obtained
further important results, concerning in partic-
ular weighted spaces and operators on Carleson
curves.

In this paper we will discuss some of these
results. We will mainly focus upon the following
items:
1) boundedness of the maximal operator in the
weighted spaces Lp(·)(Ω, ρ) in the case of bound-
ed domains Ω ∈ Rn and a certain class of non-
power weights characterized in terms of their
Boyd-type indices;
2) boundedness of the maximal operator in the
weighted spaces Lp(·)(Ω, ρ) over �nite or in�nite
Carleson curves in the complex plane in the case
of power weights;
3) boundedness of the Cauchy singular operator
in the same setting as in 2);
4) Sobolev-type theorem with variable expo-
nents for potential operators on Carleson curves,
�nite or in�nite;
5) generalization of 2)-4) to the case of homoge-
neous type spaces (HTS).

Sections 3.-7. of the paper correspond to the
above items 1)-5).
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2. Preliminaries

Let Ω be an open set in Rn. By Lp(·)(Ω) we
denote the space of functions f(x) on Ω with the
�nite norm

‖f‖Lp(·) = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}
.

(2.1)
We assume that p(x) satis�es the conditions

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ Ω, (2.2)

|p(x)−p(y)| ≤ A

ln 1
|x−y|

, |x−y| ≤ 1
2
, x, y ∈ Ω.

(2.3)
Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ ` ≤ ∞}

be a simple Carleson curve with arc-length mea-
sure ν(t) = s, ν{Γ(t, r)} ≤ c0r. In the sequel we
denote

Γ(t, r) := Γ ∩B(t, r), t ∈ Γ, r > 0,

where B(t, r) = {z ∈ C : |z − t| < r}. By
Lp(·)(Γ, w) we denote the weighted Banach space
of all measurable functions f : Γ → C such that

‖f‖Lp(·)(Γ,w) := ‖wf‖Lp(·)(Γ)

=

inf



λ > 0 :

∫

Γ

∣∣∣∣
w(t)f(t)

λ

∣∣∣∣
p(t)

dν(t) ≤ 1



 < ∞.

Similarly to (2.2) and (2.3) we assume that

1 < p− := ess inf
t∈Γ

p(t) ≤ ess sup
t∈Γ

p(t) =: p+ < ∞,

(2.4)
|p(t)− p(τ)| ≤ A

ln 1
|t−τ |

, t, τ ∈ Γ, |t− τ | ≤ 1
2
.

(2.5)

3. Maximal operators; the Euclidean
case

3.1 Existing results.
Let

Mβf(x) = sup
r>0

|x− x0|β
|B(x, r)|

∫

B(x,r)∩Ω

|f(y)|
|y − x0|β dy,

be be the weighted maximal operator, x0 ∈ Ω,
M = M0.

The �rst important result on the bounded-
ness of the maximal operator in the variable ex-
ponent spaces is due to L.Diening ([7] and [9])
who proved that for a bounded domain Ω the
operator M is bounded in Lp(·)(Ω) under con-
ditions (2.2) and (2.3). He also showed that this
statement is valid in the case Ω = Rn if p(x) is
constant outside some ball, see [8]-[10]. When Ω
is an unbounded domain, for the exponents p(x)
not necessarily constant at in�nity, the bound-
edness results for the maximal operator were ob-
tained in [5] and [23].

Theorem below with the criterion of the
boundedness of the operator Mβ in Lp(·)(Ω)
in the case of bounded domains was obtained
in [20], where the following restriction on the
boundary is used in the necessity part:

|Ωr(x0)| ∼ rn, x0 ∈ ∂Ω (3.6)

where Ωr(x0) = {y ∈ Ω : r < |y − x0| < 2r}.
The necessary and su�cient condition (3.7) in
the following theorem on the exponent β of the
weight |x − x0|β �xed to the point x0, is natu-
rally related to the local value of the exponent
p(x) at the point x0.

Theorem. Let Ω be a bounded domain and
p(x) satisfy conditions (2.2) and (2.3). In the
case x0 ∈ Ω the operator Mβ is bounded in
Lp(x)(Ω) if and only if

− n

p(x0)
< β <

n

p′(x0)
, (3.7)

where p′(x0) = p(x0)
p(x0)−1 . In the case x0 ∈ ∂Ω,

condition (3.7) is su�cient for the boundedness
of Mβ and also necessary if (3.6) is satis�ed.

3.2 About more general weights
We show that it is possible to obtain the

boundedness result for the weighted maximal
operator

Mwf(x) = sup
r>0

w(x)
|Br(x)|

∫

Br(x)∩Ω

|f(y)|
w(y)

dy.

where the weights ρ more general than power
weights may be admitted. We consider weights
of the form

w(x) =
m∏

k=1

wk(|x− xk|), xk ∈ Ω

where wk(r) belong to the Zygmund-Bary-
Stechkin (ZBS) class Φ2 and the corresponding
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statement on the boundedness is given in terms
of the Boyd-type indices of the wk(r).

A problem of more general weights remains
open. An explicit description of weights for
which the maximal operator is bounded in the
spaces Lp(·) is a challenging problem. What
should be the corresponding Ap(·)-condition? It
is natural to suppose that the Muckenhoupt con-
dition written in the natural terms of the in-
verse H�older inequality may be the correspond-
ing characterization. Whether this is true or not,
is an open question.

3.3 ZBS-type weights and the boundedness of
maximal operator

The detailed proofs of the statements of this
subsection will be given in [17], based on the
properties of the functions in the ZBS-class de-
veloped in [24], [25] and [14]. Here we only ex-
pose the main ideas of proofs.

Let

W = {w ∈ C([0, `]) : w(0) = 0,

w(x) > 0 for x > 0, w(x) is a.i.},
where a.i. = almost increasing. The numbers

mw = sup
x>1

ln
(

lim inf
h→0

w(hx)
w(h)

)

ln x

and

Mw = sup
x>1

ln
(

lim sup
h→0

w(hx)
w(h)

)

ln x

(see [24], [25]) are known as the lower and up-
per indices of the function w(x) (they are of the
type of Matuszewska-Orlicz indices, see [22], p.
20; the reference to the Boyd indices is also rele-
vant). We have 0 ≤ mw ≤ Mw ≤ ∞ for w ∈ W .

Let γ > 0. The following class Φ0
γ was in-

troduced and studied in [2] (with integer γ);
there are also known "two-parametrical"classes
Φβ

γ , 0 ≤ β < γ < ∞, see [28], p. 253; we refer also
to [14] where various properties of these classes
may be found).

The Zygmund-Bary-Stechkin type class
Φ0

γ , 0 < γ < ∞, is de�ned as Φβ
γ := Z0 ∩ Zγ ,

where Z0 is the class of functions w ∈ W satisfy-
ing the condition

∫ h

0
w(x)

x dx ≤ cw(h) and Zγ is
the class of functions w ∈ W satisfying the con-
dition

∫ `

h
w(x)
x1+γ dx ≤ cw(h)

hγ , where c = c(w) > 0
does not depend on h ∈ (0, `].

Theorem A. Let Ω be a bounded domain
in Rn and let p(x) satisfy conditions (2.2),
(2.3). The operator M is bounded in Lp(·)(Ω, ρ)
with the weight ρ(x) =

∏m
k=1 wk(|x − xk|),

xk ∈ Ω, where wk(r) are such functions that
r

n
p(xk) wk(r) ∈ Φ0

n, if

− n

p(xk)
< mwk

≤ Mwk
<

n

p′(xk)
, k = 1, 2, ..., m.

Omitting the details of the proof, we only
enumerate the basic facts on which the proof is
based.

a) Properties of functions ω ∈ Φγ Theorem
([25] for γ = 1 and [14] for an arbitrary γ > 0.)
A function w ∈ W belongs to Z0 if and only if
mw > 0 and it belongs to Zγ , γ > 0, if and only
if Mw < γ, so that

w ∈ Φ0
γ ⇐⇒ 0 < mw ≤ Mw < γ.

Besides this, for w ∈ Φ0
γ and any ε > 0 there ex-

ist constants c1 = c1(ε) > 0 and c2 = c2(ε) > 0
such that

c1t
Mw+ε ≤ w(t) ≤ c2t

mw−ε, 0 ≤ t ≤ `.

The following properties are also valid

mw = sup{λ ∈ (0, 1) : t−λw(t) is a.i.},
Mw = inf{µ ∈ (0, 1) : t−µw(t) is a.d.}.

b) Ap-Properties of the weights.
Lemma Let w be such that raw(r) ∈ W for

some a ∈ R, let λ ∈ R1 and let Ω be a bounded
domain in Rn. Then [w(|x− x0|)]λ ∈ Ap(Ω) if

[w(r)]λprn, [w(r)]−λqrn ∈ Z0. (3.8)

Condition (3.8) is equivalent to the following in-
equalities

− n

λp
< mw ≤ Mw <

n

λp′
when λ > 0

and

− n

|λ|p′ < mw ≤ Mw <
n

|λ|p when λ < 0.

c) Weighted averages of bounded functions.
Let Br(x) = {y ∈ Rn : |y − x| < r} and x0 ∈ Ω.
We prove that the weighted averages

[w(|x− x0|)]λ(x)

|Br(x)|
∫

Br(x)∩Ω

|f(y)|
[w(|y − x0|)]λ(x)

dy,
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of bounded functions f , where x0 ∈ Ω, are also
bounded functions if λ(x) ≥ 0 and sup

Ω
λ(x) <

n
Mω

.

4. Maximal operator; the case of Car-
leson curves

Let
Mβf(t) =

sup
r>0

1
ν{Γ(t, r)}

∫

Γ(t,r)

( |t− t0|
|τ − t0|

)β

|f(τ)|dν(τ)

and Mf(t) = M0f(t). We consider power
weights of the form

w(t) =
m∏

k=1

|t− tk|βk , tk ∈ Γ (4.9)

in the case of �nite curve and the weights

w(t) = |t− z0|β
m∏

k=1

|t− tk|βk , (4.10)

where tk ∈ Γ, z0 /∈ Γ in the case of in�nite curve.

4.1 The main statements

Theorem B. Let
i) Γ be a simple Carleson curve of a �nite length;
ii) p satisfy conditions (2.4)-(2.5).
Then the maximal operatorM is bounded in the
space Lp(·)(Γ, w) with weight (4.9), if and only
if

− 1
p(tk)

< βk <
1

p′(tk)
, k = 1, ..., n.

Theorem C. Let
i) Γ be an in�nite simple Carleson curve;
ii) p satisfy conditions (2.4)-(2.5) and let there
exist a circle B(0, R) such that p(t) ≡ p∞ =
const for t ∈ Γ\(Γ ∩B(0, R)).
Then the maximal operator M is bounded in
the space Lp(·)(Γ, w), with weight (4.10), if and
only if

− 1
p(tk)

< βk <
1

p′(tk)

and
− 1

p∞
< β +

n∑

k=1

βk <
1

p′∞
.

4.2 The ideas of the proof
The complete proofs of Theorems B and C

will be given in another publication, here we
dwell only on the principal facts on which the
proofs are based.

a) On averages of 1
p(t) . Let

1
pγ

=
1

ν(γ)

∫

γ

dν(t)
p(t)

, γ ⊂ Γ

where γ = Γ(t, r), t ∈ Γ, r > 0, and let χγ(τ)
be the characteristic function of γ. The follow-
ing statement is valid (which was proved in [10],
Lemma 3.4, for balls in the Euclidean space, the
proof for arcs γ on Carleson curves remains the
same).

Let p(t) satisfy condition (2.4) and the max-
imal operator M be bounded in Lp(·)(Γ). Then
there exists a constant C > 0 such that

‖χγ‖p(·) ≤ C[ν(γ)]
1

pγ for all γ = Γ(t, r) ⊂ Γ.

b) On weighted mean of a constant function.
Next, we observe that for an arbitrary Carleson
curve it proves to be possible to get the following
estimate

sup
t,t0∈Γ

r>0

|t− t0|β
ν(Γ(t, r))

∫

Γ(t,r)

dν(τ)
|τ − t0|β < ∞, 0 ≤ β < 1.

c) On the sharp maximal function. For the
sharp maximal function

M#f(t) =

sup
r>0

1
ν(Γ(t, r))

∫

Γ(t,r)

|f(τ)− fΓ(t,r)| dν(τ)

where fΓ(t,r) = 1
ν(Γ(t,r))

∫
Γ(t,r)

f(τ) dν(τ), the
following extension to the case of variable expo-
nent p(·) of the result known for Euclidean space
is valid.

Let Γ be an in�nite Carleson curve. Let p(t)
satisfy conditions (2.4)-(2.5) and p(t) = p∞ out-
side some ball B(t0, R). Let w(t) = |t−t0|β , t0 ∈
C, where

− 1
p(t0)

< β <
1

p′(t0)
and − 1

p∞
< β <

1
p′∞

if t0 ∈ Γ and only − 1
p∞

< β < 1
p′∞

if t0 /∈ Γ.
Then for f ∈ Lp(·)(Γ, w)

‖f‖Lp(·)(Γ,w) ≤ c
∥∥M#f

∥∥
Lp(·)(Γ,w)

. (4.11)

4



d) A pointwise estimate for the weighted
means. Let

Mβ
r f(t) =

1
r

∫

Γ(t,r)

( |t− t0|
|τ − t0|

)β

|f(τ)| dν(τ).

The statement below may be proved follow-
ing mainly the ideas of the proof in [20] where
the Euclidean case was treated.

Let p(t) satisfy conditions (2.4)-(2.5). If 0 ≤
β < 1

p′(t0)
, then

[Mβ
r f(t)

]p(t) ≤ c


1 +

1
r

∫

Γ(t,r)

|f(τ)|p(τ) dν(τ)




for all f ∈ L(p(·)(Γ) such that ‖f‖p(·) ≤ 1,
where c = c(p, β) is a constant not depending
on t, t0 ∈ Γ and r > 0.

5. Boundedness of the Cauchy singular
integral operator on Carleson curves

5.1 The main statements

Let
SΓf(t) =

1
πi

∫

Γ

f(τ)
τ − t

dτ.

Theorem D. Let
i) Γ be a simple Carleson curve ;
ii) p satisfy conditions (2.4)-(2.5), and the fol-
lowing condition at in�nity

|p(t)− p(τ)| ≤ A∞
ln 1

| 1t− 1
τ |

,

∣∣∣∣
1
t
− 1

τ

∣∣∣∣ ≤
1
2
,

for |t| ≥ L, |τ | ≥ L with some L > 0 in the case
Γ is an in�nite curve ;
Then the singular operator SΓ is bounded in the
space Lp(·)(Γ, w) with weight (4.9) or (4.10), if
and only if

− 1
p(tk)

< βk <
1

p′(tk)
, k = 1, ..., m, (5.12)

and also

− 1
p(∞)

< β +
n∑

k=1

βk <
1

p′(∞)
(5.13)

in the case Γ is in�nite.

For constant p Theorem D is due to G.David
[6] in the non-weighted case, for the weighted
case with constant p see [3]. For earlier results
on the subject we refer to [15], Theorem 2.2.
The statement of Theorem D for variable p(·)
was proved in [19] in the case of �nite Lyapunov
curves or curves of bounded rotation without
cusps.

Theorem E. Let assumptions i)-ii) of Theo-
rem E be satis�ed, and let a ∈ C(Γ). In the case
where Γ is an in�nite curve starting and end-
ing at in�nity, we assume that a ∈ C(Γ̇), where
Γ̇ is the compacti�cation of Γ by a single in�-
nite point, that is, a(t(−∞)) = a(t(+∞)). Then
under conditions (5.12)-(5.13). the operator

(SΓaI − aSΓ)f =
1
πi

∫

Γ

a(τ)− a(t)
τ − t

f(τ)dν(τ)

is compact in the space Lp(·)(Γ, w) with weight
(4.9)-(4.10).

The detailed proof of Theorem D will be giv-
en in [17]. Note that in [17] it is also proved that
for the operator SΓ to be bounded in Lp(·)(Γ), it
is necessary that Γ is a Carleson curve. Namely,
the following result is proved there.

Let Γ be a �nite recti�able curve. Let p :
Γ → [1,∞) be a bounded continuous function.
If the singular operator SΓ is bounded in the
space Lp(·)(Γ), then the curve Γ has the prop-
erty sup

t∈Γ,r>0

Γ(t,r)
r1−ε < ∞ for every ε > 0. If p(t)

satis�es the log-condition (2.5), then the above
property holds with ε = 0, that is, Γ is a Car-
leson curve.

5.2 Ideas of the proof.

a) Sharp maximal function of |SΓf |s. We
prove the following statement which was earlier
proved for the Euclidean case in [1].

Proposition Let Γ be a simple Carleson
curve. Then the following pointwise estimate is
valid

M# (|SΓf |s) (t) ≤ c[Mf(t)]s, 0 < s < 1.
(5.14)

The proof of the above Proposition is based
on the following Kolmogorov-type theorem ([21],
[6], [13]): Let Γ be a Carleson curve of a �nite
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length. Then for any s ∈ (0, 1)

 1

ν(Γ)

∫

Γ

|SΓf(t)|sdν(t)




1
s

≤ C

ν(Γ)

∫

Γ

|f(t)|dν(t),

(5.15)
which is a consequence of the fact that

the singular operator on Carleson curves has
weak (1,1)-type: ν {t ∈ Γ : |SΓf(t)| > λ} ≤
c
λ

∫
Γ

|f(t)|dν(t), the latter being proved in [6],
and on the following technical lemma.

Lemma Let Γ be a simple Carleson curve,
z0 ∈ Γ and γr = Γ(z0, r) and

Hr,z0(t) =
1

[ν(γr)]2

∫

γr

∫

γr

∣∣∣∣
1

z − t
− 1

τ − t

∣∣∣∣ dν(z)dν(τ).

Then for any locally integrable function f the
pointwise estimate holds

sup
r>0

∫

t∈Γ:|t−z0|>2r

|f(t)|Hr,z0(t)dν(t) ≤ CMf(z0)

where C > 0 does not depend on f and z0.
b). The case of in�nite curve and p con-

stant at in�nity. This case is derived from (5.14),
(4.11) and Theorem C, since ‖SΓf‖Lp(·)(Γ,w) =

‖|SΓf |s‖
1
s

L
p(·)

s (Γ,w)
for constant s ∈ (0, 1) and we

may take s as close to 1 as we wish.
c) The case of �nite curve and p constant on

some arc. It may be shown that this case can be
reduced to the previous one by the correspond-
ing fractional linear map.

d) The general case of �nite curve. This case
may be covered by application of the Riesz inter-
polation theorem known for the variable expo-
nent spaces, interpolating between the two cases
when p(t) is constant on one arc γ1 and another
one γ2, γ1 ∩ γ2 = ∅.

The general case of in�nite curve. This case
may be reduced to the previous one, as in c)
by a fractional linear map. It is important to
note that under both the mappings the trans-
formed exponent is also log-continuous on the
transformed curve.

6. Sobolev-type theorem for potential
operators on Carleson curves

Let

Iα(·)f(t) =
∫

Γ

f(τ) dν(τ)
|t− τ |1−α(t)

.

Theorem F. Let
i) Γ be a simple Carleson curve of a �nite length;
ii) p satisfy conditions (2.4)-(2.5);
iii) inf

t∈Γ
α(t) > 0 and sup

t∈Γ
α(t)p(t) < 1.

Then the operator Iα(·) is bounded from Lp(·)(Γ)
into Lq(·)(Γ) with 1

q(t) = 1
p(t) − α(t). This state-

ment remains valid for in�nite Carleson curves
if, in addition to conditions i)-iii), p(t) = p∞ =
const outside some circle B(0, R).

The next theorem is a weighted generaliza-
tion of Theorem F for �nite curves.

Theorem G. Under assumptions
i)-iii) of Theorem F, the operator Iα(·) is bound-
ed from the space Lp(·)(Γ, w) into the space
Lq(·)(Γ, w) where 1

q(t) = 1
p(t) − α(t), and w is

the weight (4.9) if

α(tk)− 1
p(tk)

< βk < 1− 1
p(tk)

, k = 1, ..., n.

Observe that Euclidean space version of The-
orem G was proved in [26] for the case of bound-
ed domains Ω ⊂ Rn and in [29] for the case of
the whole space Rn.

The proof of Theorems F and G is based on
the known Hedberg's approach and the estima-
tion of the following variable norm:

∥∥∥|t− τ |α(t)−1χr(|t− τ |)
∥∥∥

Lp(·)(Γ,|τ−t0|−βp′(τ))

≤ Crα(t)−1+ 1
p(t) (r + |t− t0|)−βp′(t)

where t, t0 ∈ Γ, 0 < r < ` < ∞ and χr(ρ) = 1 if
ρ > r and χr(ρ) = 0 otherwise, the proof of the
latter requiring the most e�orts.

7. The case of HTS
Let (X, µ) be a homogeneous type metric

space with quasi-distance d(x, y) and measure
µ and B(x, r) a ball in X of radius r > 0. (We
refer for instance to [11], [12] for the theory of
HTS). We assume that the following condition
is satis�ed:

c1r
s ≤ µB(x, r) ≤ c2r

s, s > 0

where c1 and c2 do not depend on r > 0
and x ∈ X. We consider the weighted spaces
Lp(·)(X, µ,w) de�ned by the modular

∫

X

|w(x)f(x)|p(x)dµ(x) < ∞

6



and admit weights of the form

w(x) =
m∏

k=1

[d(x, ak)]βk , (7.16)

when µ(X) > ∞ and

w(x) = [1 + d(a0, x)]β
m∏

k=1

[d(ak, x)]βk ,

when µ(X) = ∞, with ak ∈ X, k = 0, 1, ...,m.
The function p(x) is assumed to satisfy the stan-
dard conditions

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ X, (7.17)

|p(x)−p(y)| ≤ A

ln 1
d(x,y)

, d(x, y) ≤ 1
2
, x, y ∈ X.

(7.18)

7.1 The maximal operator.

Let

Mf(x) = sup
r>0

1
µB(x, r)

∫

B(x,r)

|f(y)|dµ(y)

The following generalizations of Theorems A
and C are valid.

Theorem A′. Let X be a metric space with
µ(X) < ∞ and let p(x) satisfy conditions
(7.17), (7.18). The operator M is bounded in
Lp(·)(X, µ,w) with weight (7.16), where wk(r)
are such functions that r

s
p(ak) wk(r) ∈ Φ0

s, if

− s

p(ak)
< mwk

≤ Mwk
<

s

p′(ak)
, k = 1, 2, ..., m.

Theorem C′. Let
i) X be a HTS with µ(X) = ∞;
ii) p satisfy conditions (7.17)-(7.18) and let
p(x) ≡ p∞ = const at in�nity, that is, for
x ∈ X\B(x0, R) for some x0 ∈ X.
Then the maximal operator M is bounded in
the space Lp(·)(X,w), with weight (7.16), if and
only if

− s

p(ak)
< βk <

s

p′(ak)

and

− s

p∞
< β +

n∑

k=1

βk <
s

p′∞
.

7.2 The singular operator.
Let

Tf(x) = lim
ε→0

∫

d(x,y)>ε

k(x, y)f(y) dµ(y)

be a generalized Calderon-Zygmund operator,
where

|k(x, y)| ≤ A[d(x, y)]−s, (7.19)

|k(x, y)− k(z, y| ≤ A
[d(x, z)]δ

[d(x, z)]δ+s
, (7.20)

|k(y, x)− k(y, z| ≤ A
[d(x, z)]δ

[d(x, z)]δ+s
(7.21)

with some A > 0 and δ > 0 (such operators, in
case X = Rn, if bounded in L2(X), are bounded
in Lp(Rn), 1 < p < ∞, see [4]).

Theorem D′. Let p satisfy conditions (7.17)-
(7.18) and p(x) ≡ p∞ = const outside some
large ball in the case µ(X) = ∞. Let assump-
tions (7.19)- (7.21) be satis�ed and the op-
erator T be bounded in the space L2(X,µ).
Then the singular operator T is bounded in
the space Lp(·)(Γ, w), if and only if − s

p(ak) <

βk < s
p′(ak) , k = 1, ...,m, and also − s

p∞
<

β +
n∑

k=1

βk < s
p′∞

in the case µ(X) = ∞.

7.3 The potential operator.
Let

Iα(·)f(x) =
∫

X

f(y) dµ(y)
[d(x, y)]s−α(x)

.

The following statements are valid.
Theorem F′. Let µ(X) < ∞, p satis-

fy conditions (7.17)-(7.18), inf
x∈X

α(x) > 0 and
sup
x∈X

α(x)p(x) < s. Then the operator Iα(·)

is bounded from Lp(·)(X) into Lq(·)(X) with
q(x) = 1

p(x) − α(x)
s . This statement remains valid

in the case µ(X) = ∞, if p(x) = const outside
some large ball.

Theorem G′. Let µ(X) < ∞. Under as-
sumptions of Theorem F′ on p(x) and α(x),
the operator Iα(·) is bounded from the space
Lp(·)(X, w) into the space Lq(·)(X, w) where
with weight (7.16) if

α(ak)− s

p(ak)
< βk < 1− s

p(ak)
, k = 1, ...,m.
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