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‘We present results on the boundedness of the maximal operator with oscillating weights on domains
in Euclidean space and maximal and singular operators with power weights on an arbitrary Carleson
curve in the Lebesgue spaces with variable exponent. There are also given weighted Sobolev type
theorems for potential operators on Carleson curves.

1. Introduction

Last years there was a strong rise of inter-
est to the study of the classical operators of har-
monic analysis - maximal, singular and potential
operators in the spaces known as the generalized
Lebesgue spaces LP()(Q), Q C R”, with variable
order p(z) (the generalized Lebesgue spaces with
variable exponent), or also as spaces with non-
standard growth.

These spaces and Sobolev spaces based on
them proved to be of importance in the study of
differential equations with p(z)-Laplacian, varia-
tional problems and applications to mechanics of
the continuum medium. In some problems of me-
chanics there arise variational problems with La-
grangians, for example, of the form |£|*(®) when
the character of non-linearity varies from point
to point (Lagrangians of the plasticity theory,
Lagrangians of the mechanics of the so-called
rheological fluids, and others).

These applications gave rise to a rapidly de-
veloping field of harmonic analysis related to
these spaces. The interest of many researchers,
apart from applications, was also stirred up
by the difficulties they met. These difficulties
are, in particular caused by the fact that the
spaces LP()(R™) are not invariant with respect
to translations and dilatations and convolutions
k x f do not obey the standard Young theorem
[k fll Locr @ny < Ikl @n) [ f]]Loc) @ny- Roughly
speaking, a convolution may be a candidate for
the boundedness, if its kernel nowhere has singu-

larities except for the origin. Calderon-Zygmund
singular operators are among them, as well as
the maximal operator.

The state of affairs in this field up to the
beginning of 2004 was summarized in the sur-
vey papers [27], [16]. Meanwhile in the subse-
quent two years 2004-2005 there were obtained
further important results, concerning in partic-
ular weighted spaces and operators on Carleson
curves.

In this paper we will discuss some of these
results. We will mainly focus upon the following
items:

1) boundedness of the maximal operator in the
weighted spaces LP() (€, p) in the case of bound-
ed domains € R™ and a certain class of non-
power weights characterized in terms of their
Boyd-type indices;

2) boundedness of the maximal operator in the
weighted spaces LP()(Q, p) over finite or infinite
Carleson curves in the complex plane in the case
of power weights;

3) boundedness of the Cauchy singular operator
in the same setting as in 2);

4) Sobolev-type theorem with variable expo-
nents for potential operators on Carleson curves,
finite or infinite;

5) generalization of 2)-4) to the case of homoge-
neous type spaces (HTS).

Sections 3.-7. of the paper correspond to the
above items 1)-5).



2.  Preliminaries

Let Q be an open set in R™. By LP()(Q) we
denote the space of functions f(z) on Q with the

finite norm
p(z)
der<15,.

1 llws = inf{A o [
(2.1)

We assume that p(z) satisfies the conditions

()

1 <p- <p(@) <pi < oo,
A

1 b
lz—yl

x €, (2.2)

1
Ip(z) —p(y)| < |z —y| < 30 TYER

In

(2.3)

Let T={teC:t=1(s), 0<s<{< o0}
be a simple Carleson curve with arc-length mea-
sure v(t) = s, v{T'(t,7)} < ¢or. In the sequel we
denote

L(t,r):=TnNB(tr),

tel, r>0,

where B(t,r) = {# € C : |z —t| < r}. By
LPO)(T', w) we denote the weighted Banach space
of all measurable functions f : I' — C such that

Hf”LP(')(F,w) = ”waLP(')(l")

p(t)

dv(t) <1 < oo.

inf )\>O;/’w(t)/\f(t)

r

Similarly to (2.2) and (2.3) we assume that

1< p_:=essinfp(t) < esssupp(t) =: py < o0,
tel’ ter
(2.4)
1
[t—71] < =.
2

(2.5)
3. Maximal operators; the Euclidean
case

3.1 Existing results.
Let

5 _ |z — 20|
MOf —sp ey [

£
v — 07

z,r)NQ

be be the weighted maximal operator, zo € €,

M= MO,

The first important result on the bounded-
ness of the maximal operator in the variable ex-
ponent spaces is due to L.Diening ([7] and [9])
who proved that for a bounded domain ) the
operator M is bounded in LP()(Q) under con-
ditions (2.2) and (2.3). He also showed that this
statement is valid in the case Q = R if p(z) is
constant outside some ball, see [§]-[10]. When
is an unbounded domain, for the exponents p(x)
not necessarily constant at infinity, the bound-
edness results for the maximal operator were ob-
tained in [5] and [23].

Theorem below with the criterion of the
boundedness of the operator M? in LP()(Q)
in the case of bounded domains was obtained
in [20], where the following restriction on the
boundary is used in the necessity part:

Q- (20)| ~ 7", o € OQ (3.6)

where Q. (zg) = {y € Q: r < |y —zo| < 2r}.
The necessary and sufficient condition (3.7) in
the following theorem on the exponent § of the
weight |x — x¢|? fixed to the point x¢, is natu-
rally related to the local value of the exponent
p(z) at the point .

Theorem. Let Q be a bounded domain and
p(x) satisfy conditions (2.2) and (2.3). In the
case 9 € € the operator MP is bounded in
LP®)(Q) if and only if

n n
— < B< — 3.7

o) <= W) (37

where p'(zg) = p(péf)oll. In the case z¢ € 09,

condition (3.7) is sufficient for the boundedness
of M” and also necessary if (3.6) is satisfied.

3.2 About more general weights

We show that it is possible to obtain the
boundedness result for the weighted maximal
operator

M dy.

w(y)

w(x)
MY f(x) = sup /
f( ) >0 ‘Br($)|
B, (z)NQ
where the weights p more general than power
weights may be admitted. We consider weights
of the form

w(z) = Hwk(\x —ai]), T €Q
k=1

where wg(r) belong to the Zygmund-Bary-
Stechkin (ZBS) class ®2 and the corresponding



statement on the boundedness is given in terms
of the Boyd-type indices of the wy(r).

A problem of more general weights remains
open. An explicit description of weights for
which the maximal operator is bounded in the
spaces LP() is a challenging problem. What
should be the corresponding A, (.y-condition? It
is natural to suppose that the Muckenhoupt con-
dition written in the natural terms of the in-
verse Holder inequality may be the correspond-
ing characterization. Whether this is true or not,
is an open question.

3.3 ZBS-type weights and the boundedness of
maximal operator

The detailed proofs of the statements of this
subsection will be given in [17], based on the
properties of the functions in the ZBS-class de-
veloped in [24], [25] and [14]. Here we only ex-
pose the main ideas of proofs.

Let

W ={w e C([0,4]) : w(0) =0,

w(z) >0 for = >0, w(r) is a.l.},

where a.i. = almost increasing. The numbers

w(hx)
In (hm inf & w(h) >

My = Sup
>1 Inx
and
w(hz)
In <hr}? sSup <7y )
M, = sup
z>1 Inz

(see [24], [25]) are known as the lower and up-
per indices of the function w(z) (they are of the
type of Matuszewska-Orlicz indices, see [22], p.
20; the reference to the Boyd indices is also rele-
vant). We have 0 < m,, < M,, < oo for we W.

Let v > 0. The following class ®J was in-
troduced and studied in [2] (with integer 7);
there are also known "two-parametricalclasses
<I>£j, 0 < B << oo,see[28], p. 253; we refer also
to [14] where various properties of these classes
may be found).

The Zygmund-Bary-Stechkin type class
P9, 0 < v < o0, is defined as @ := 20N Z,,
Where 2Y is the class of functions w € W satlsfy—
ing the condition fo wgp dz < cw(h) and Z, is
the class of functions w € W satisfying the con-
dition fh wl(fqd < M) where ¢ = c(w) > 0

hY ?

does not depend on h 6 (0, £].

Theorem A. Let Q be a bounded domain
in R™ and let p(x) satisfy conditions (2.2),
(2.3). The operator M is bounded in LPC) (€, p)
with the weight p(z) [T, wi(Jz — @),
xr € , where wg(r) are such functions that
rﬁlwwk(r) € Y if

< M, <L k=

w b 1 2
- ()

y2, ., M.

o <
—— m
p(xk) Wi

Omitting the details of the proof, we only
enumerate the basic facts on which the proof is
based.

a) Properties of functions w € ®, Theorem
([25] for v = 1 and [14] for an arbitrary v > 0.)
A function w € W belongs to Z° if and only if
my, > 0 and it belongs to Z,,, v > 0, if and only
if M, <=, so that

we D) = 0<my <M, <.

Besides this, for w € @3 and any € > 0 there ex-
ist constants ¢; = ¢1(e) > 0 and co = ca(e) > 0
such that

crtMete <ap(t) < cot™wE, 0<t<d.
The following properties are also valid
t~ w(t)

t~Hw(t)

my, = sup{A € (0,1) : is a.d.},

M, =inf{p € (0,1) : is a.d.}.

b) Ap-Properties of the weights.

Lemma Let w be such that r®w(r) € W for
some a € R, let A € R! and let Q be a bounded
domain in R”™. Then [w(|z — zo|)]* € A, () if

[w(r)]Pr", [w(r)] 2™ e 20 (3.8)

Condition (3.8) is equivalent to the following in-
equalities

n n
_Yp < My S Mu; < Tp/ when A>0
and

<M, <

n
_ A<O.
[Alp/ IA\p

when

c) Weighted averages of bounded functions.
Let By(z) ={y € R": |y — z| < r} and z¢ € Q.
We prove that the weighted averages

[w(|z — a0 )]} / /()]
[w(ly — o] )]

dy,
|B; ()]
B, ()N



of bounded functions f, where x¢ € 2, are also
bounded functions if A(z) > 0 and sup A(z) <
Q

n

M, *

4. Maximal operator; the case of Car-
leson curves

Let
MPF(t) =

su # |t_t()| ? r (T
o V{F(t,r)}r(t/) =N

and Mf(t) = MO f(t). We consider power
weights of the form

m

w(t) =TT 1t =™,

k=1

tp el (4.9)

in the case of finite curve and the weights

m
w(t) = [t — 20l [T 1t — tal™,
k=1

(4.10)

where t, € I', 20 ¢ I in the case of infinite curve.

4.1 The main statements

Theorem B. Let
i) I be a simple Carleson curve of a finite length;
i) p satisfy conditions (2.4)-(2.5).
Then the maximal operator M is bounded in the
space LPO)(T,w) with weight (4.9), if and only
if
1

o) < e

Theorem C. Let
i) T be an infinite simple Carleson curve;
ii) p satisfy conditions (2.4)-(2.5) and let there
exist a circle B(0, R) such that p(t) = pe =
const for t € T\(I' N B(0, R)).
Then the maximal operator M is bounded in
the space LP()(T, w), with weight (4.10), if and
only if .

—m</5k<

p'(tr)
and

1 - 1
—— < B+ ) Br< .
5 > Be<

> k=1 o0

4.2 The ideas of the proof

The complete proofs of Theorems B and C
will be given in another publication, here we
dwell only on the principal facts on which the
proofs are based.

a) On averages of ﬁ. Let
11 / dv(t)
py v/ p®)’
where v =T'(¢,7), t €, r >0, and let x,(7)
be the characteristic function of . The follow-
ing statement is valid (which was proved in [10],
Lemma, 3.4, for balls in the Euclidean space, the
proof for arcs v on Carleson curves remains the
same).
Let p(t) satisfy condition (2.4) and the max-

imal operator M be bounded in LP()(T"). Then
there exists a constant C' > 0 such that

XA llp¢y < Clv(m)]*

ycr

for all v =T(t,r) CT.

b) On weighted mean of a constant function.
Next, we observe that for an arbitrary Carleson
curve it proves to be possible to get the following
estimate

|t — to|” /
su
t,togl" V(F(t7{r))
>0

T'(t,r)

dv(T)
|T — t0|ﬁ

<oo, 0<B<I.

¢) On the sharp maximal function. For the
sharp maximal function

M#f(t) =
sup L
w0 v(T(t,7))

where frg,) =

/ F(7) = o] dv(r)
r'(t,r)

u(F(lt,T)) fI‘(t,r) f(r) dv(r), the
following extension to the case of variable expo-
nent p(-) of the result known for Euclidean space
is valid.

Let I' be an infinite Carleson curve. Let p(t)
satisfy conditions (2.4)-(2.5) and p(t) = poo out-
side some ball B(tg, R). Let w(t) = [t—to|?, to €
C, where

1 1 1 1
—— <0< TN and - < ﬁ < -
p(to) P (to) Poo b
if tg € T' and only _p% < ﬁ < p/l if g ¢ T.

Then for f € LPO(T, w)

100 < lMP sy - (A1D)



d) A pointwise estimate for the weighted
means. Let

Mmipw== [ (t‘t“>ﬁ|f<7>|du<7>'

‘T — t0|
I'(t,r)

The statement below may be proved follow-
ing mainly the ideas of the proof in [20] where
the Euclidean case was treated.

Let p(t) satisfy conditions (2.4)-(2.5). If 0 <
0 < m , then

MEF)]"" < e 1+% / F) P du(r)

D(t,r)

for all f € LPO(T) such that |f|,) < 1,
where ¢ = ¢(p,3) is a constant not depending
ont,tg €I and r > 0.

5. Boundedness of the Cauchy singular
integral operator on Carleson curves

5.1 The main statements

Let

Theorem D. Let
i) T be a simple Carleson curve ;
i) p satisfy conditions (2.4)-(2.5), and the fol-
lowing condition at infinity

Ip(t) —p(7)| < -

[+
for [t| > L, |7| > L with some L > 0 in the case
T' is an infinite curve ;

Then the singular operator Sp is bounded in the
space LPO)(T,w) with weight (4.9) or (4.10), if
and only if

t 1|~ 2

1 1
) - ——|<3
In

1 1
,m < B < m7 k=1,..,m, (5.12)
and also
sy iﬂ’f <L G
p(o0) k=1 p'(0)

in the case I' is infinite.

For constant p Theorem D is due to G.David
[6] in the non-weighted case, for the weighted
case with constant p see [3]. For earlier results
on the subject we refer to [15], Theorem 2.2.
The statement of Theorem D for variable p(-)
was proved in [19] in the case of finite Lyapunov
curves or curves of bounded rotation without
Cusps.

Theorem E. Let assumptions i)-ii) of Theo-
rem E be satisfied, and let a € C(T'). In the case
where I' is an infinite curve starting and end-
ing at infinity, we assume that a € C(T"), where
I' is the compactification of T' by a single infi-
nite point, that is, a(t(—o0)) = a(t(+00)). Then
under conditions (5.12)-(5.13). the operator

(Sral —aSr)f = % /@f’(ﬂdvm

is compact in the space LPC)(I',w) with weight
(4.9)-(4.10).

The detailed proof of Theorem D will be giv-
en in [17]. Note that in [17] it is also proved that
for the operator Sr to be bounded in LPO)(T), it
is necessary that I' is a Carleson curve. Namely,
the following result is proved there.

Let T" be a finite rectifiable curve. Let p :
I' — [1,00) be a bounded continuous function.
If the singular operator Sr is bounded in the

space LP()(T), then the curve I' has the prop-
T(t,r)
rl—e

erty sup < oo for every € > 0. If p(t)

tel,r>0
satisfies the log-condition (2.5), then the above
property holds with € = 0, that is, " is a Car-
leson curve.

5.2 Ideas of the proof.

a) Sharp maximal function of |Spf|°*. We
prove the following statement which was earlier
proved for the Euclidean case in [1].

Proposition Let I' be a simple Carleson
curve. Then the following pointwise estimate is
valid

M*(ISefI°) (1) < MF@OPF, 0<s<1.
(5.14)

The proof of the above Proposition is based
on the following Kolmogorov-type theorem ([21],
[6], [13]): Let I" be a Carleson curve of a finite



length. Then for any s € (0,1)

s

1 : gl
5 [ Iserran | <o / (0

r
(5.15)
which is a consequence of the fact that
the singular operator on Carleson curves has
weak (1 1)-type: v{tel:|Spf(t)|>A} <
N f|f )|dv(t), the latter being proved in [6],

and on the following technical lemma.
Lemma Let T' be a simple Carleson curve,
zo € I and ~, = I'(20,7) and

e 1=

Then for any locally integrable function f the
pointwise estimate holds

sup / | F(8) o (£)d

tel:|t—zo|>2r

HT‘,Z()(

z—1 T—t‘

(t) < CM[(20)

where C' > 0 does not depend on f and zj.

b). The case of infinite curve and p con-
stant at infinity. This case is derived from (5.14),
(4.11) and Theorem C, since ||Stf|Lr¢)(rw) =

1
I e for constant s € (0,1) and we
s (Cyw

may take s as close to 1 as we wish.

c¢) The case of finite curve and p constant on
some arc. It may be shown that this case can be
reduced to the previous one by the correspond-
ing fractional linear map.

d) The general case of finite curve. This case
may be covered by application of the Riesz inter-
polation theorem known for the variable expo-
nent spaces, interpolating between the two cases
when p(t) is constant on one arc v, and another
one vy, v1 Ny = 0.

The general case of infinite curve. This case
may be reduced to the previous one, as in c)
by a fractional linear map. It is important to
note that under both the mappings the trans-
formed exponent is also log-continuous on the
transformed curve.

6. Sobolev-type theorem for potential
operators on Carleson curves

s = [ LIS
r

Let

Theorem F. Let
i) T be a simple Carleson curve of a finite length;
ii) p satisfy conditions (2.4)-(2.5);

|dv(2), iii) inf a(t) > 0 and sup a(t)p(t) < 1.
tel’ tel

Then the operator Io‘( ) is bounded from LP()(T)
into LIO)(T) with q(t) = ﬁ — a(t). This state-
ment remains valid for infinite Carleson curves
if, in addition to conditions i)-iii), p(f) = peo =
const outside some circle B(0, R).

The next theorem is a weighted generaliza-
tion of Theorem F for finite curves.

Theorem G. Under assumptions
i)-iii) of Theorem F, the operator I*(") is bound-

dv(z)dv(r9d from the space LPO)(I',w) into the space

LIC)(T, w) where ﬁ = p(lt) — a(t), and w is
the weight (4.9) if
(tx) ! < B <1 ! k=1
a\lg) — —— k - o= 1., T
p(t) p(tr)

Observe that Euclidean space version of The-
orem G was proved in [26] for the case of bound-
ed domains @ C R™ and in [29] for the case of
the whole space R”.

The proof of Theorems F and G is based on
the known Hedberg’s approach and the estima-
tion of the following variable norm:

1t = rleO=1x it = 7|

Lr() (F7\7—_t0\—ffp’(f))

< CroO= 5T (p 4 |t — to])~PP'®

where t,tgp € I',0 <7 < ¢ < oo and x,(p) = 1 if
p > and x,r(p) = 0 otherwise, the proof of the
latter requiring the most efforts.

7. The case of HTS

Let (X,u) be a homogeneous type metric
space with quasi-distance d(z,y) and measure
w and B(z,r) a ball in X of radius r > 0. (We
refer for instance to [11], [12] for the theory of
HTS). We assume that the following condition
is satisfied:

cr® < upuB(x,r) <cor®, s$>0

where ¢; and co do not depend on r > 0
and z € X. We consider the weighted spaces
LPO)(X, p,w) defined by the modular

[

(2)P"dpu(z) < o0



and admit weights of the form

[d(l’, ak)}ﬁkv

s

w(x) = (7.16)

k=1

when u(X) > oo and

w(z) = [1 4 d(ag,

H aka a

when u(X) = oo, with ax € X,k =0,1,....m
The function p(z) is assumed to satisfy the stan-
dard conditions

1 <p- <plz) <ps <o,

zeX, (7.17)

DN | =

1. 1 d(l',y) S

(7.18)

7.1 The maximal operator.

Let

1
M) = sup o / F@)lduy)

B(z,r)

The following generalizations of Theorems A
and C are valid.

Theorem A’. Let X be a metric space with
w(X) < oo and let p(x) satisfy conditions
(7.17), (7.18). The operator M is bounded in
LPO) (X, i, w) with weight (7.16), where wy,(r)
are such functions that r7@r wy(r) € @Y, if

1,2

g Ly oee

S
<My € My, < ———, k=

= » (ak’)7

p(ak)

Theorem C’. Let
i) X be a HTS with pu(X) = oo;
ii) p satisfy conditions (7.17)-(7.18) and let
p(r) = pos = const at infinity, that is, for
x € X\B(xg, R) for some zo € X.
Then the maximal operator M is bounded in
the space LP) (X, w), with weight (7.16), if and
only if
s s
.
plak) P (ak)
and
s s
—— < B+ ) Bp< .
5 > Be<

> k=1 o0

z,y€X.

., M.

7.2 The singular operator.

Let

Tf) =tm [ Kwu)f) dut)
d(z,y)>e

be a generalized Calderon-Zygmund operator,

where

|k(z, y)| < Ald(z, )], (7.19)

o)~ Kl < AT (ra0)
xXr,z g

|k(y, z) — k(y, z| < AM (7.21)

with some A > 0 and 6 > 0 (such operators, in
case X = R", if bounded in L?(X), are bounded
in LP(R™),1 < p < o0, see [4]).

Theorem D’. Let p satisfy conditions (7.17)-
(7.18) and p(z) = pss = const outside some
large ball in the case pu(X) = oco. Let assump-
tions (7.19)- (7.21) be satisfied and the op-
erator T be bounded in the space L2(X,pu).
Then the singular operator T is bounded in

the space LPO)(T',w), if and only if — o <
O < m, k = 1,...,m, and also —p%.o <
B+ > B (X) = oo.
k=1 =
7.3 The potential operator.
Let
. dp(y)
Ia( )f($):/ f(y) )
[d(@, )]~
X
The following statements are valid.
Theorem F’. Let pu(X) < oo, p satis-

fy conditions (7.17)-(7.18), 12)f(a(x) > 0 and

sup a(z)p(x) < s. Then the operator 1)
zeX

is bounded from LP0)(X) into LV)(X) with
1 a(w)
q(z) — p(x)

in the case u(X) = o0, if p(x) = const outside
some large ball.

Theorem G’. TLet u(X) < oco. Under as-
sumptions of Theorem F’ on p(x) and a(z),
the operator I*() is bounded from the space
LPO)(X,w) into the space L)(X,w) where
with weight (7.16) if

alag)——— < B < 1—

. This statement remains valid

S
5 k=1,
plax)

m.

Crmucok auTeparypbl
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