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Abstract

We prove Sobolev-typg(-) — ¢(-)-theorems for the Riesz potential operat8rin the weighted
Lebesgue generalized spade’”) (R", p) with the variable exponent(x) and a two-parametrical
power weight fixed to an arbitrary finite point and to infinity, as well as similar theorems for a
spherical analogue of the Riesz potential operator in the corresponding weightedispakés, p)
on the unit spher8” in R"*1,
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1. Introduction

Recently, an obvious interest to the operator theory in the generalized Lebesgue spaces
with variable exponenp(x) could be observed in a variety of papers, the main objects be-
ing the maximal operator, Hardy operators, singular operators and potential type operators,
we refer, in particular to surveys [13,24].
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In the case of maximal operators, we refer to L. Diening [5] for bounded domai®’s in
and to D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer [3] and A. Nekvinda [22,23] for
unbounded domains, and to V. Kokilashvili and S. Samko [17] for weighted boundedness
on bounded domains.

Hardy operators, including the weighted case were treated in [17].

Singular operators were studied by L. Diening and M. Rkdi[8-10] in the non-
weighted case and by V. Kokilashviliand S. Samko [15,16] in the weighted case.

Sobolevp(-) — ¢(-)-theorem for potential operators on bounded domains was consid-
ered in S.G. Samko [25] and L. Diening [6], in [6] there being also treated the case of
unbounded domains under the assumption that the maximal operator is bounded. Some
version of the Sobolev-type theorem for unbounded domain was given in V. Kokilashuvili
and S. Samko [14]. The Sobolev theorem for unbounded domains in its natural form was
proved by C. Capone, D. Cruz-Uribe and A. Fiorenza [1]. Another proof may be found in
D. Cruz-Uribe, A. Fiorenza, J.M. Martell, and C. Perez [2] where there are also given new
insights into the problems of boundedness of singular and maximal operators in variable
exponent spaces.

A weighted statement op(-) — p(-)-boundedness for the Riesz potential operators
on bounded domains was obtained in V. Kokilashvili and S.G. Samko [17], limiting in-
equalities for bounded domains having been recently proved in S. Samko [27] (Hardy
type inequality,p(-) — p(-)-setting) and [28] (Stein—Weiss type inequality;) — ¢ (-)-
setting).

In this paper we prove a weighted Sobolev-type theorem for the Riesz potential operator

I% f(x )_/| F) dy, O<a<n, (1.2)

|ﬂ0(

over the whole spacR", in the weighted Lebesgue generalized spdc&s (R”, p) with
the variable exponeni(x) and power weight fixed to the origin and infinity.
We prove also a similar theorem for the spherical analogue

(K“f)(x)_/l Sl ) —do, x€S,, O<a<n, (1.2)

of the Riesz potentlal in the corresponding weighted spa€&XS”, p) on the unit sphere
S" in R+,

The main results are formulated in Theorems 3.1 and 3.5. Theorem 3.5 for the spherical
potential operators is derived from Theorem 3.1 for spatial potentials, while the proof of
Theorem 3.1 is based on usage of the estimates obtained in [28].

2. Preliminaries
2.1. The spacé&?) (R", p)
By L7 (82, p) we denote the weighted space of functigha) on £2 such that

/p(x)|f(X)|p(x)dx < 00,

2
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wherep(x) is a measurable function aR with values in[1, co) and 1< p_ < p(x) <
p+ <00, x € 2 andp is the weight function. This is a Banach function space with respect
to the norm

px)
£l Lpo (o) =inf{k > 0 / (x )<|f(x)|> dx < 1} (2.1)
2

(see, e.g., [18]). We refer to [11,12,18,25] for basics of the spa®é&s with variable
exponent.
We deal with$2 = R" and consider the weight fixed to the origin and infinity:

P(X) = Py yee (X) = [x[70(L+ |x[)7> 7. (2.2)

We assume that the exponeriitx) satisfies the conditions

l<p_<px)<pr<o0, xeR", (2.3)
A 1

!p(X)—p(y)Klil, ¥ —yl< 3, vy eR: (2.4)
lx—yl

observe that from (2.4) there follows that

NA
|p(x) — p(»)| < —¥ (2.5)

lx—yl

for x, y € £2, wheres2 is any bounded domain iR” andN = 2 diams2.

We treatp(x) as a function ofR” whereR” is the compactification dk” by the unique
infinite point. To manage with the weighted case under the consideration, we introduce an
assumption omp(x) at infinity stronger than the usually considered assumption

Ao
_ < —= R 2.6
|p@) = peo)| S s x e (2:6)
(see, for instance, [3,26]); namely, we suppose that
A 1
}p*(x)—p*(y)Kl = w—yI<35 X yeR”, 2.7
[x—yl

where p,(x) = p(#). Condition (2.7) will be essentially used in the proof of Theo-

rem 3.1, see the parfThe termA__" in Section 4. Namely, to be able to apply Theo-
rem 2.3 given below, we will need the fact that after the inversion change of variables
x—>x*= ﬁ the new exponengt, (x) = p(x,) satisfies the local log-condition.

Conditions (2.4) and (2.7) taken together are equivalent to the unique global condition

C
lpx) — p(»)] < m€¢m7¢mm)

lx=yl

x,yeR" (2.8)

(observe that inf ycgn Y=V D 1+"‘ N l+“ =1, see (2.25)).
From (2.7) it follows that there exists the limit(co) := lim,_,« p(x) and (2.6) holds.
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Remark 2.1. Condition (2.7) is indeed stronger than condition (2.6), that is, there exist
functions p(x) (and even radial ones) such that both the local log-condition and condi-
tion (2.6) are satisfied, but condition (2.7) does not hold. This is proved in Appendix A.

The Riesz—Thorin interpolation theorem is valid for the spac&s, as observed by
L. Diening [4, p. 20] (see also [7, p. 5]) and proved in a more general setting for Musielak—
Orlicz spaces in [21, Theorem 14.16]. Namely, the following statement holds.

Theorem 2.2. Let p;:£2 — [1,00) be bounded measurable functions= 1,2, and
A a linear operator defined oi.”1")(£2) U LP20)(£2) and IAFH oy < CHILFNnyoo,
j =12 Then A is also bounded inL?"(2) where % = % + % and
1Al Loo— ppor < C10CH.

Let g(x) be the limiting Sobolev exponent
1 1 o

S (2.9)
gx) px) n
we assume that
€SSSUp.rn p(x) < - (2.10)
o

so thatg (x) also satisfies conditions (2.3), (2.4), (2.6).

Weightedp(-) — ¢(-)-estimates for the operatdf* in the case of bounded domains
were proved in [28]. Namely, the following statement holds (in [28] it was proved in the
case when the order= «(x) is variable as well).

Theorem 2.3. Let £2 be a bounded domain iR” and xg € 2 and let p(x) satisfy condi-
tions(2.3)and(2.4)in 2 andesssup. p(x) < . Then the following estimate

||Iaf||Lq(-)(Q,|x_wa) < C”f”]‘p(-)(g,u_xom (2-11)
is valid, if
ap(xg) —n<y < n[p(xo) - 1] (2.12)
and
_ 4@ (2.13)
p(x0)

2.2. Onthe inversion, = #

Lemma 2.4. Letx, y € R". The following properties hold

X — 1— |x|?
|x*_)’*|=| y|’ |xs — |=—| x| |, (2.14)
lx[ -1yl x|
42 1— 2 1— 2
e — y2 = lx = y|©+ A —[x|9A — |yl )’ (2.15)

|x|2
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and

lx — ¥l
|xe — ¥ >
x|

Proof. Both the relations in (2.14) and (2.15) are verified directly:

for x| <1, |y|< L (2.16)

2_ 1 xoy 1 -y
=l = — 2 E e T e T e
|x] Ix[=lyle 1yl Ix1=1y
and similarly for the second relation in (2.14) and formula (2.15). The inequality in (2.16)
is a consequence of (2.15)0

Lemma 2.5. Let p satisfy condition(2.4). Then in the spherical Iaye% < x| € 2 the
inequality

C
|p(r) — p(0)| < ——— (2.17)
! 11—-1x1?|

is valid, whereC > 0 does not depend on

Proof. By (2.5), we have

PG = p()] < — 2 i
*) = 4 T 4
In In 2]
where we have used the second of the relations in (2.14). Hence (2.17) easily follows since
L<ixig2 o
2 X X .

[x—x]

2.3. The spacé?")(S", p)

We consider a similar weighted space with variable exponent on the unit sphere
{o eR" L o =1):

LPOS", pg,.p,) = {f: /pﬂa‘ﬁb(a)‘f(o)’p(g) do < oo},
S}'I
wherepg, p,(0) = lo —alfa - |o — b|? anda € S" andb € S" are arbitrary points on the
unit spheres”.
For the variable exponent(c) defined ors” we assume that

l<p_<ple)<ps<oo, oce¥, (2.18)
A
|P(Ul)_P(UZ)| < |73, o1€8", 028", (2.19)
lo1—032|
essSsupsn p(o) < E. (2.20)
o
Under assumption (2.18), this is a Banach space with respect to the norm
p(o)
_ Mo —alba 1o — pits]| LD
IIfIILp<->(sn,pﬂa,ﬂh)— {)»>0- [IG al’-lo —b|™ )\ do <1;.
Sn
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2.4. Stereographic projection

We use the stereographic projection (see, for instance, [19, p. 36]) of the sjphere
onto the spac®” = {x € R"*1: x, 1 = 0} generated by the following change of variables
in R"+1:

£=s5(x) = {s1(x),52(x), ..., snp2(x) }, (2.21)
where
2_
sk(x) = Gl =12...,n, and sn+1(x)=|x| 1

1+ |x|? Ix|2+ 1

1 2 2
x R x| = /xf - 40

We remind some useful formulas of passage fidfto S”:

n 2
x| = 1B el Ji+xP=——— (2.22)

B |& _en+l|’ |& _en+1|’
2|0 —&]| 2"do
lx —yl= ’ d)’:—zn’ (2.23)
lo —ent1l - 1§ — entil lo — ent1l
and inverse formulas of passage fr6fhto R":
2 2|x|
1§ —ent1l = —. 1€ +ent1l = —. (2.24)
n+ 1t |x|2 n+ ﬁ[—{— |x|2
2lx — y| 2'dy
& — o] (2.25)

= s do = PR N
V1+x2/14y)? 1+ 1y1?)"
wheret =s(x) , 0 =s(y), x,y e R"tande,411 =(0,0,...,0,1).

Lemma 2.6. If the spatial exponenp(x) defined onR" satisfies the logarithmic con-
ditions (2.4) and (2.7), then the spherical exponep{s—1(0)] satisfies the logarithmic
condition(2.19)onS". Inversely, if a functiorp (o), o € S" satisfies conditioi(2.19) then
the functionp[s(x)], x € R", satisfies condition@.4)and (2.7).

Proof. The proof is direct. O

3. Themain statements

Theorem 3.1. Under assumptiong.3), (2.4), (2.7) and (2.10) the spatial potential type
operator/® is bounded from the spade’”) (R", p,, ,...) into the space.d) (R", p,q 1)
where

0
_q(0) and _q(00)

= 00 = — Voo, 3.1
1o p(O)VO w p(oo)y (3.1)

ozp(O)—n<yo<n[p(0)—l], ap(o0) —n <yoo<n[p(oo)—l], (3.2)
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and the exponentg andy, are related to each other by the equality
q(0) . q(OO)y _ g (00)
PO p(o0)" T p(oo)

[(n +e)p(00) — 20]. (3.3)

In the case of constant(x) = p = const, the(p — ¢)-boundedness of the Riesz po-
tential operator with the power weight|*° is due to E.M. Stein and G. Weiss [29] without
the additional condition (3.3). The general weighted case for congtisrdue to B. Muck-
enhoupt and R. Wheeden [20]. The inequalities for the expongraady, in (3.2), as is
well known, are necessary and sufficient for power weight to belong to the Muckenhoupt—
Wheedem ,,-class.

Corollary 3.2. Let0 < @ < n, p(x) satisfy conditiong2.3), (2.4), (2.7) and (2.10) and
suppose that

1 1 1 1/ 1
TP S PR N EC T ) 60
2 p-) p(o) 20 2\py =n
Then the operatof® is bounded from the spade’"”) (R") into the space.?®) (R"), q(—lx) =
1
px) 0

The statement of the corollary was proved in [1] and [2] without assumption (3.4) and
under weaker assumption (2.6) instead of (2.7).

Remark 3.3. In the non-weighted case of Corollary 3.2 there are given bounds for the

differencep(—i@ — 232 which is more general than just to write the assumpuég[; 5 =

% which follows from condition (3.3) of Theorem 3.1. There might be similarly written
some inequalities instead of just equality (3.3) in the weighted case in Theorem 3.1 as well,
but the bounds of the corresponding intervals are not expressed in “nice” terms.

Remark 3.4. Theorem 3.1 is obviously valid also for the case of the wejght .. (x) =
|x — xo]"0 (1 + |x|)"> "o fixed to an arbitrary pointp € R”; in conditions (3.2) and (3.3)
the values (0) andg (0) should be replaced in this case pyxg) andg (xg), respectively.

Theorem 3.5. Let the functiorp : S" — [1, co) satisfy condition$2.18)—(2.20) The spher-

ical potential operatork® is bounded from the spade’” (S", pg,.5,) With pg, g, (0) =

lo —al|Pa - |o — b|Pr, wherea € S" andb e S" are arbitrary points on the unit sphef#,

a # b, into the spaceL?)(S", pg, g,) With py, v, (0) = |0 — al’ - |o — b|", where
1

_ 1
7©) = p ~ - and
ap(a) —n < B, <np(a) —n, ap(b) —n < By <np(b) —n, (3.5)
q(a) q(b)
_ 7 — 3.6
Va (@) Ba Vb »(b) Bo (3.6)
and the weight exponengs and g, are related to each other by the connection
(a) ()
T pe=T" . 3.7)

p@"™ " pb)
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Corollary 3.6. Under assumption§2. 18) (2.20the spherlcal potential operatoK® is

bounded fromL.?)(S") into L1 (SM), q(a) p(lg) e

4. Proof of Theorem 3.1

Proof. We denote
M«O ,uao(f) /|X|MO 1+ |x|)u°° M0|f(x)|17(x) dx.
]Rn

We have to show that}, ,. (I%¢) < ¢ < oo for all ¢ with A}, (¢) < 1, wherec > 0
does not depend an.
Let

By = {x eR" |x| < 1} and B_ = {x eR": |x| > 1}.
In view of (2.3) it is easily seen that

Al Q) <c(App + Ay + AL +A_L), (4.2)

where
le“" so(y)dy e
-y '
@)
_edy |
/|X|MO y|n—e dx,
and
x =y ’
B_ By
(x)
p(y)dy |
/| [Hoo 7|n " dx

so that we may separately estimate these terms. We note that the relation (3.3) will be used
only in the estimation of the “mixed” term$,_ andA_ .

ThetermA, .. Thistermis covered by Theorem 2.3, the condition (2.12) of Theorem 2.3
being fulfilled by the first assumption in (3.2).

ThetermA__. The estimation ofoA__ is reduced to that ol ; by means of the simul-
taneous change of variables (inversion):
u du v dv
xX=—>, dx = —5-, =—, dy=—5. 4.2
ul? e T T “2
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As a result, we obtain

/|x| Moo= ’/ e(y«)dy q*(X)dx
|Y|2n|x* Vsl ,

where we denoted

X
qx(x) = q(xy) = q(—)-
|x]

By (2.14), we obtain

qx(x)
/|X| Hoo— ‘I |(n a)q*(x)/ |y| " “fﬂ(y )dy dx.

|x — y|*—¢

Sincegq (x) satisfies the logarithmic condition (2.6) at infinity, the functigrix) satisfies
the local logarithmic condition (2.4) near the origin, so that' )4+ L ¢|x|"~0)4+0 —
clx| =) gand we get

qx(x)
/ |x|“1 ‘”(y Yy g 4.3)
|ﬂ o

where

1= (n—a)g(00) — 21— pioy and Y (y) = |y|"“<p<|y$). (4.4)
It is easily checked that

/|x|Vlyw(x) Pe) gy = / 7o) [P dx < 00 (4.5)

By B_

under the choice; = (n + o) p(c0) — 21 — y»,, and conditions

qx(0)
@
hold. By (2.7), the exponent, satisfies the local log-condition. Therefore, Theorem 2.3 is
applicable in (4.3) and theA__ < ¢ < c.

Estimation of the termd _ and A _ is less direct and requires condition (3.3) which
was not used when we estimated the tems andA__.

ap«(0) —n<y1<n[p«(0)—1] and p1=

The termA_,. By the inversion change — x, of the variablex, we have

_ oo e dy
_+ /|X| ‘/|x* |n «

g/|x|(n—Ol)Q*(0)—lioo—2n|h(x)|%k(x)dx2/|x|M1|h(x)|Q*(X)dx,

By By

qx(x)
dx
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where

h(x):f p(y)dy .
p (Ix] - x5 — yhn—e

In contrast to the case of the terms ; and A__, now the information about the inte-
grability of ¢(x) is known in terms ofp(x), while 2 (x) should be integrated to the power
g«(x), notg(x) (in the symmetrical ternd . _, on the contrary, we will have to deal with
q(x) preserved, bup(x) replaced byp,(x)). Fortunately, we may pass ¢ (x) thanks to
the properties of the inversiar, = l# and the logarithmic smoothness @fx) whenx

passes through the unit sphere. We proceed as follows. First we observe that

x| fxs =yl = lx =yl and |x|-|xx — y| > 1—|x]| (4.6)

for |x] < 1and|y| < 1. The former of the inequalities in (4.6) was given in (2.16), the latter
follows from the fact thatx,| > 1 and|y| < 1 and therx, — y| > |x«| — |y| = ﬁ — |yl =

1

= — 1.

|x|

y Let E1 ={x € By g«(x) <g(x)} andEz = {x € By: g«(x) > q(x)}. We have

A, < / Ix|* dx + / |x|”1|h(x)|q(X)dx
x€Eq, [h(x)I<1 x€Eq, |h(x)|>1

+/|x|ﬂ1\h<x>

E>

(%) dx =: A1+ Ar + As.

Here the term is finite sincew; > —n. For the termAs we have

Az < / el )| dx

x€E, |x|

<
+ / lel“2 R (o) [ 7Y | x)

x€Ep, |x|>1

7+()=4(x) dx =: A31+ A3p.

The termAs; is finite sincelx| - |x, — y| > 3 for |x| < § by (4.6) and therji(x)| <

cllell < c1||go||L,,<A)(Rn,pyO )" For the termA 3, we have to show that
Sup |h(.x) s (x)—q(x) < 00.

xeEa, |x|>3

To this end, we make use of the second inequality in (4.6) and obtain

o] < (1= 1x))*™" /|<p(t)|dt =c(1— )"
By

and then
|h(x)‘q*(x)—q(X) < e(a—n)[q*(x)—q(x)]|n(1—|x\)’
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which is bounded fofx| > 1 by Lemma 2.5.
Gathering the estimates, we obtain

A_+§C+C/|X|“l’h(x)|q(X)dx

d q(x)
§c+c/|x|”1</ oGl dy ) dx.
(Ix] - fxse — yn=e
By B,

Hence, by the first inequality in (4.6),
dy 40
At <C+C/ |x|"1< M) dx

lx — y|"=
By

and we are able now to apply Theorem 2.3. However, this requires the condition
o = 0 o) yl, that is,

Mo+ Moo < (1 — a)g(00) —
or equivalently,

q(0) q(00) q( 00)
—2n]. 4.7
20)"° p(oo)y (oo )[(n+a)p(0<>) ] (4.7)

Therefore, by (3.3) we may apply Theorem 2.3 which provides the necessary estimation
A_; <c<oo.

The termA_. After the inversion change of variables in the inner integralin. we

have
—2n q(x)
fl o /Iyl p(ppdy |1 i
= gyl
y(dy 1%
=/|x|ﬂ0 / dx, (4.8)
Iyl |x =y
By By
where

() =yl p(ye) € LPO (B, 1x ™)

is the same function as in (4.4). We distinguish the casps< 3 and|y| > 3. In the
first case we make use the second of the inequalities in (4.6) in the|j0rmx — V| =
11—yl =5 and then the estimation becomes trivial. In the cage> 3 5 we make use
of the f|rst inequality in (4.6){y| - |x — y«| > |x — y| which gives a possibility to make
use of Theorem 2.3, the passage to the expopginh = "”’;fx() in (4.8) is done in the
same way as in the estimation &f ;. by distinguishing the cases wheyéx) < g.(x) and

Q(-x) >CI*(X)
G+ (x)
A+—<C+/|x|"°( M) dx;
B

lx — y|"=
By
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we omit details of that passage to the expongiit), they are symmetrical to those in the
case ofA_ when we passed frog. (x) to ¢ (x). We only mention that when proving the
uniform boundedness of

’ / W ldy 107

(Iyl-1x =y
YEBy, Iy|>3

with g (x) > g«(x), we may use the obvious inequality — y.| > 1 — |x|.
When applying Theorem 2.3 with the exponepigx) andg.(x), according to condi-
tion (2.12) we have to assume that
> q+(0) Yy = q(00) "
T (07 ploo)”
which gives the condition
q(0) Yo g (00) Voo > g (00)
PO " p(00)" 7 p(oo)

contrary to (4.7), which holds because of condition (3.3). Therefore the application of
Theorem 2.3 ends the proof

Hno

[(n + &) p(oo) — 2n] (4.9)

Proof of Corollary 3.2. The statement of this corollary follows immediately from Theo-
rem 3.1 under condition (3.3) which in the non-weighted case takes the form

> 1.

p(o0) =B, ﬂ=n+a

We make use of the Riesz—Thorin interpolation theorem, see Theorem 2.2, to show that the
boundedness holds if insteadofoo) = 8 we require that the value g,f(iT) does not differ

much from%, namely,—3(1 — p%) < p(—?;o) — % < %(ﬁ — %) which is condition (3.4).
To avoid the conditiorp(co) = 8, we may interpolate between a constagt>- 1 and
somer (-) for which the condition-(co) = 8 holds. That is, we have to fimtle (0, 1) and
po € (1, ) such that
1 1-90 0

P po r@)’
wherer (x) satisfies the conditions

inf r(x) > 1, supr(x) < n and r(c0) =8 (4.10)

xeR” xeRn o
(note that any log-condition for(x) follows from the same log-condition gf(x)). Con-
ditions (4.10) take the form

1-6 1 1-6 1 1-6 0 1

40>, 7% <~ and +-=—, (4.11)

Po P po n py ro B p(o)

respectively. By direct calculations, it can be proved that conditions (4.11) may be satisfied
jointly with conditionspo € (1, 7) andé € (0, 1) if and only if assumption (3.4) holds. We
prove this in Appendix B. O
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5. Proof of Theorem 3.5

The statement of Theorem 3.5 is derived from that of Theorem 3.1 by means of the
stereographic projection. By Remark 3.4 and an appropriate rotation on the sphere, we
reduce the proof to the case where-¢,, 11 =(0,0,...,0,1) andb = —e,, 1.

Formulas (2.22)—(2.25) give the relations

/ e(dy / «(0)do (5.1)
=y =" g —ope '
R”
whereé =s(x), o0 = s(y) and
-1
0(0) = pls™(0)]

lo — eppa|tte ’

We have also the modular equivalence

/ o — eyl - |0 + e i1l |pu(0)| "7 do
Sn

~/|y|)/0,(1+|y|))’oc—)/0’(p(y)|ﬁ(y)dy’ (52)

where

P =p[sM]. Ba=—Voot@m+a)p(c0)—2n and By= 0.

The direct verification shows that the corresponding intervals for the spherical weight
exponents3, and B, coincide with the corresponding intervals for the spatial weight ex-
ponentsyo, yoo:

{ Yo € (@p(0) —n,np(0) —n),
Yoo € (@p(00) —n,np(c0) —n),
{ Bp € (ap(—en+1) —n,np(—epy1) —n),
Ba € (ap(eny1) —n,np(e,41) —n).

Similarly we have an equivalence between the relation (3.3) for spatial weight exponents
y0 andys and the relation (3.7) for spherical weight exponents, which in our case has the
form

q(ent1) = q(—ent1)

plent1) p(—eny1) @

whereg(c) = nﬁ’;if(()f) is the Sobolev limiting exponent on the sphere.
In view of the relation (5.1) and equivalence (5.2) of norms, we then easily derive The-
orem 3.5 from Theorem 3.1 after obvious recalculations.
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Appendix A

To prove what was stated in Remark 2.1, it suffices to consider thencasg. The
guestion we have to treat, is whether from the conditions

B

1
|p(x)—p(y)|<|n—l forjx -yl <5 and |p(x)—p(oo)|<7ln(l+|x|)

lx—yl

there follows that

02 n

lx—yl

wherex, y € Ri. This is equivalent to the following question. Let a continuous{@qr%]
function f (x) (= p(%)), satisfy the log-condition everywhere beyond the origin:

|f) = FO)| < Ci forall x, y [5, %} §>0, (A1)
[x=yl
and
C
|f(0) = FO)] < In—‘i (A.2)

X

Do conditions (A.1) and (A.2) guarantee that

C 1
!f(x) — f(y)\ < I forallx,y e |:O, §:|'7 (A.3)
[x—y]
The answer to this question is negative, because the only condition (A.2) may not pre-
vent from the constar@; in (A.1) to be tending to infinity whed — 0. The corresponding
counterexample is given in the lemma below.

Lemma A.1l. There exists a functiofi(x) continuous o010, %] such that condition§A.1)
and (A.2) are satisfied, bugA.3) is not valid.

Proof. Let u(x) € C*®°(RY) be an even smooth “cap” with support #-1,1), 0 <
(x) < 1, such thap(0) = 1 andu(3) = 3.

Letalso{b,};° , be a monotonically decreasing sequence of poin[t@,ié] tendingto 0
asn — oo. We construct the “narrow” caps

—ay, by + b, by — by

() = [ 22442 whereayq = On + On+1 andy, = it

An 2 2
supported ortb, 11, b,). By the choice ofu(x), we have
1 bp+1+ 3by
unB) =50 o= € (bura b). (A4)
We denotew (x) = |nll for brevity and construct the functiofi(x) in the form
. o
f)=0®G k), whereGx) =) Axur(x)o(lx —ar1]) (A.5)

k=1
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and the positive constants, will be chosen later. Obviously, for any fixed the series
in (A.5) contains one term only

f(x) = Ao () pn (o (|x — ant1l),  x € (bug1, by). (A.6)
Under any choice ofi,, condition (A.1) is satisfied automatically, becausefat [3, %],
the series in (A.5) contains a finite number of terms and

lo(lx — aks1]) — o(ly — ak+1l)| < o(lx — )

(where we took into account that the functierix) = é is the continuity modulus, that

is,w(x) —w(y) <wx —y), x> y).
To satisfy condition (A.2) and show that (A.3) does not hold, we have to show that

sup G(x)<oo and  sup &) = fOl

(A7)
xe[0,3] x,y€l0,3] o(lx =yl

To this end, we have to properly choose both the coefficigptand the point®,,. For the
former of conditions in (A.7) we need to show that

sup  sup Anﬂn(x)w“x - an+1|) < 00,
n xe[bn+lvbn]

for which it suffices to choosa,, so that

SUpA, (b, — ap41) < 0. (A.8)
n

As regards the latter of the conditions in (A.7), we have
lf ) = f(Y) S |f(x) = flant+1)]

ey @D T 0 oy @R —auel)

—sup sup Apo (X))o (|x — apyal)
n x€lbnit,bnl w(|x —apt1))
2 SUPA, @ (By) tn (Bn)-

Then, by (A.4) we obtain

|f(x) - f(y)| 2 }SUpAna)(ﬂn) — }Sup An . (A9)
w(lx —yD 2 n 2 Inﬂin

x,yel0, 1]

Now we choose
1
A, =In? =,
n
Then by (A.9), SUP (0,1 % = 0o so that condition (A.3) is not satisfied, inde-
pendently of the choice of the poinks. It remains to show that there exists a choice of

these points such that (A.8) holds. Under our choicd pfve have

21 2__ 4 1 _4 52
b — In Bn _ In bn+l+3hn _ (ln by + In 3+ln)
Ana)( n _an+1) - I 1 - | 2 - | 2 I 1 I 1
n bp—apt1 bp—bp+1 ne+in E +in 1-1,



244 S. Samko, B. Vakulov / J. Math. Anal. Appl. 310 (2005) 229-246

where we have denoteg = b—;fl < 1. Hence
n
21
In® 5=

Ayw(by, —apy1) <c 1 1
Inz=+1In =
n n

(A.10)

with some positive constant Now we wish to make a choice bf so that Inﬁ =1In2 %,
) In 2 ) .
thatis,r, = 1— b, ™ and we arrive at the recurrent relation tgr.

In 7=
bn+1 = bn(l — by )
(whence it follows thab,, tends monotonously to zero as-> oo). Then under this choice

of b,, from (A.10) there follows that

21
by

———— <
1 21
|nE+|nE

In
Ayw(by —apy1) <c

with ¢ not depending on which proves (A.8) and the lemmanQ

Appendix B

Lemma B.1. Let p; > p_ > 1, p(co) > 1 and g = ;2. The number® € (0, 1) and
po € (1, ) satisfying conditiong4.11)exist if and only if assumptiof8.4) holds.

Proof. Since% ando are related by the linear relation, the last one in (4.11), after ex-

cluding p—lo, we see that our problem is equivalent to the problem of existeng¢e @b, 1)
such that

1 1 1 1 0 1 0
———<9<1——>, - .- ¥ (B.1)
p—  p(o0) B p(x) B py n
and
1 1
N S € g,l. (B.2)
1-60]lp(o) B n
The restrictions o in (B.1) together are equivalent to the condition
41 1 1
0>a:= max( p_l _pl(oo) , p(o;)_ lp+ > (B.3)
B B

Observe (in the “only if” part) that this lower bourdmust be less than 1, which gives the
conditions

1 1 1 1
Sl [ (B.4)

P- = p(0) B = P+ n
It remains to take care about condition (B.2). After direct calculations we obtain that (B.2)
is equivalent to the following restriction ahfrom above:
1—--1 1 _«a
0 <b:= min( : p(o) " pco) _n ) (B.5)

1 1
-5 1%
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Finally, according to (B.3) and (B.5) the requirécxists if and only ifa < b. This gives

the condition
1 « 2 1
—+—-< <1+ —
p- n p(c0) D+

which is nothing else but (3.4).0
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