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Abstract

We study the Riemann boundary value problem(t) = G(t)®~ (¢) + g(t), for an-
alytic functions in the class of analytic functions represented by the Cauchy type integral
with density in the spaceb”()(T") with variable exponent. We consider both the cases
when the coefficien is piecewise continuous or it may be of a more general anrure,
admitting its oscillation. The solvability conditions are derived and in all the cases of
solvability the explicit formulas are given. The related boundary singular integral equa-
tions in LP(')(F) are treated. The solution of the boundary value problem (1.1) allows
us to obtain the weight results for Cauchy singular integral operatb?iI')-spaces,
among them some extension of the well known Helson-8iegorem.
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Introduction

Let I" be an oriented rectifiable closed simple curve in the complex glané&/e denote by
DT andD~ the bounded and unbounded componertt §fT’, respectively.

The main goal of the paper is to investigate the Riemann problem: find an analytic func-
tion & on the complex plane cut aloigwhose boundary values satisfy the conjugacy con-

() =Gt)Dd (t) +g(t), teT, (1.1)
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whereG andg are the given functions ohi and®* and®~ are boundary values @ onT’
from inside and outsidg, respectively. This problem is also known as the problem of linear
conjugation.

We seek the solution of (1.1) in the class of analytic functions represented by the Cauchy
type integral with density in the spacés®) (T") with variable exponent assuming thabe-
longs to the same class. We consider the cases when the coefficien$ continuous or
piecewise continuous as well as the case of oscillating coefficient. The solvability conditions
are derived and in all the cases of solvability the explicit formulas are given. The related
boundary singular integral equations f#i¢)(T") are treated. The solution of the boundary
value problem (1.1) allows us to obtain the weight results for Cauchy singular integral opera-
tor in LP1)(I")-spaces, among them some extension of the well known Helsoro 8zegrem.

The problem (1.1) is first encountered in Riemann [45]. Important results on which the
posterior solution of problem (1.1) was based, were obtained by Yu. Sokhotski, D.Hilbert,
|.Plemely and T.Carleman. The complete solution of the Riemann problem was first given in
the works of F.D.Gakhov [11], [12] and N.l.Muskhelishvili [34], [35]; we refer also to the
works [19], [20], [22], [18] on investigation of the last decades on the Riemann problem in
L,-spaces (with constap).

The generalized Lebesgue spaces, i.e. Lebesgue spaces with variable exponent have been
intensively studied since 1970’s. One may see an evident rise of interest to these spaces during
the last decade, especially last years. The interest aroused, apart from mathematical curiosity,
by possible applications to models with the so called non-standard growth in fluid mechanics,
elasticity theory, in differential equations, see for example, [46], [9] and references therein.

The development of the operator theory in the spacés encountered essential diffi-
culties from the very beginning. For example, the translation operator and the convolution
operators are not in general bounded in these spaces. The boundedness of the maximal oper-
ator was recently proved by L. Diening [5], [7]. See the further results in [38], [37], [2], [3].
There is also an evident progress in this direction for singular operators [8], [9], [25].

As is known, for applications to singular integral equations and boundary value problems
the weighted boundedness of singular operators is required. The weighted estinites in
spaces with power weight were proved for the maximal operator on bounded domains in [28],
[26] and for singular operators in [25]. It is worthwhile mentioning that the Fredholmness
criteria for singular integral equations with Cauchy kernel was proved in [27] for the spaces
LPY) and in [16] for such spaces with power weight.

2. Preliminaries

Throughout the paper in all statements we supposdthat{t € C : ¢t = t(s), 0 < s < (},
with an arc—lengtls, is a simple closed rectifiable curve. Let a measurablé' — [1,00).
The L*¢)-space o’ may be introduced via the modular

L
L) = [170P jdt = [ 171 ds @)



By LP1) = LPO)(I') we denote the set of all measurable complex-valued functfoos I
such thatl,(\f) < oo for some\ = A(f) > 0.
This set becomes a Banach space with respect to the norm

Hpr(.) = inf {)\ >0: [p (§> < 1} . (2.2)

Sometimes norm (2.2) is called Luxemburg norm because of a similar norm for Orlicz
spaces [31], 1955. However, just in the form (2.2), this norm for the sp&itesvas intro-
duced before W.Luxemburg by H.Nakano [36] (1951). The spaéeX|0, 1]) probably first
appeared in the book [36] as an example illustrating the theory of modular spaces developed
by H.Nakano.

The spaced.”") were studied by W. Orlicz [39] for the first time in 1931. They are the
special cases of the Musielak-Orlicz spaces generated by Young functions with parameter,
see [33], [32], [41],[42].

However, that was namely the specifics of the spd@&swhich attracted an interest of
many researchers and allowed to develop rather rich basic theory of these spaces, this interest
being also roused by applications in various areas.

Meanwhile, the norm of the type (2.2), as well as a similar norm for the Orlicz spaces
is nothing else but the realization of a general norm for "normalizable” topological spaces
provided by the famous Kolmogorov theorem. This theorem runs as follows, see [15, Ch. 4]
and [29].

Kolmogorov theorem. A Hausdorff linear topological spac& admits a norm if and
only if it has a convex bounded neighbourhood of the null-element and in this case Minkowsky
functional of this neighbourhood is a norm.

We remind that the Minkowsky functional of a s€t ¢ X is the functionalM (z),

x € X, defined as

1
My (z) =inf{\: A > 0, Xa:e U}, zeX,

so that the infinum of,, (£) is nothing else but the Minkowsky functional gfe X = L0
related to the set’ = {f : L,(f) < 1}.
Therefore, there are much more reasons to call the norm (2.Kpth@gorov-Minkowsky
norm.
If
I <p=essinf p(t), p=-esssup p(t) < oo, (2.3)

then the spacé”®) is reflexive. Its associate space coincides, up to equivalence, with the
spaceL?), where g5 + 15 = 1.

In the sequel, byP(T"), or simply byP, we denote the class of functiopameasurable
with respect to the arc measure and satisfying condition (2.3). Under this condition the space

LP®) coincides with the space
f(t): /f(t)g(t) dt| < oo forall ge L)
r
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up to equivalence of the norms

Wby~ oo | [ 10 @)

Hglqu( ) e

see [30]. There holds the following generalization of th@der inequality

/f 0)dt| < callf oy o @9

wherec, = 1+ 1 + 1. We refer also to [30] and [10] for other properties of the spdcés
Note that - L
min (ggﬁ) < |1l < max (@,ﬁ) . (2.6)

If p(t) < p1(t), then
||f||p(~) <1+ g)”f”m(')' (2.7)

In the sequel we need the following condition xi):

1,2 € Fa (28)

1
|ty —to| < >

|p(t1) _p<t2)| S 1
In ==

whereA > 0 does not depend an andt,, or on the functior(s) = p[t(s)]

A
In —+—~

[s1—s2|

1
Ipo(s1) — po(s2)] < |s1 — sa] < > s1,52 € [0,4]. (2.9)

Sincelt(s;) —t(s2)| < |s1 — s2, condition (2.8) always implies (2.9). Inversely, (2.9) implies
(2.8), if for instance there existsya> 0 such thats; — so| < C|t; — t5]” with someC' > 0.
Therefore, conditions (2.8) and (2.9) are equivalent, for example on curves with the so called
chord condition.

Let p be a measurable, almost everywhere positive functiohi.dBy Lﬁ(')(F) we denote
the Banach space of functiorior which

1 lpcy.0 = Nofllpey < o0

One of the main tools of our investigation is the Cauchy singular integral

(Srf)(t m/f dT tel, felLY).

In the case the operatét : f — Srf is bounded from the spade)(I) into the space
LPO(T') we denote its norm asSr ||p()—p, () and asl|S||,.) whenp(t) = pi(t).

Let

21 T—2z
r

Kn(r) = {@(z); D(2) = (Krp)(2) = i,/90<7)d7, 2¢T with e LI;O(P)}



and let B
KE(L) = {®(2) : ®(2) = Po(2) + const, Py e KE(D)}.
We write K7(I') = K2(I') andK2(I) = K#(I) in the case(t) = 1.
For a simply connected domain, bounded by a rectifiable curdg by £°(D), § > 0,
we denote the Smirnov class of functiobéz) analytic in D for which

sup / 1B(2)[°|dz] < oo,
r 2

whereTl’, is the image ofy, = {z : |z| = r} under conformal mapping @f = {z : |z] < 1}
onto D. (WhenD is an infinite domain, then the conformal mapping means the one which
transformg) into infinity).

A function ® € E°(D) possesses almost everywhere angular boundary valuEsaod
the boundary function belongs 16 (T") (see [43, p. 205].

It is known thatE'(D) coincides with the class of analytic functions represented by
Cauchy integrals. Therefore for the functidriz) which is analytic on the plane cutting
along closed curv€ and belongs tds' (D*), then

d(z) = Kp(dF — @) (2.10)
(see, for example, [20, p. 98]).
We make use of the following notations:
R = {I': Sr is bounded in LPO(")}
and
WrO(r) = {p : pSp% is bounded in Lp(‘)(l‘)} .

As shown in [25] the following statement is true:

Proposition 2.1.LetI" be a Lyapunov curve or a curve of bounded turniRgdon curve
without cusps. Assume that P and condition(2.8) is satisfied. Then

n

w(t) =[] It tl™*

k=1
wheret,, are distinct points of", belongs tdV?()(T") if and only if
1 1

Tl T )

(2.11)

3. Some properties of the Cauchy type integrals with den-
sities in LPO)(T)

In this section we present some auxiliary results which provide an extension of known prop-
erties of the Cauchy singular integrals in the Lebesgue spaces with comstetiie case of
variablep(-).



Proposition 3.1. Letp € P andI a closed Jordan curve. Then the set of rational
functions with a unique pole inside Bfis dense inL?¢)(T").

The validity of this statement follows from the densenes&An (') of the set of con-
tinuous functions and the fact that any continuous function may be approximatéd in
by rational functions, whatsoever Jordan cufvee have according to the Walsh’s theorem
(see, for instance, [49, Chapter I, Theorem 7]).

Proposition 3.2. Let T be a rectifiable Jordan curve, le(t) € P. If - € L¢(T), then
the operatorSr is continuous in measure, i.e., for any sequeficeonverging inLﬁ(')(F) to
function f, the sequenc#r f,, converges in measure - f;.

The validity of this statement may be obtained by word-for-word repetition of the proof
of Theorem 2.1 from [18, p. 21], sindez(')(F) C LY(T) according to our assumption.

Theorem 3.3.LetI" be a simple closed rectifiable curve bounding the domainsand
D~. The following statements are valid:
i) Letpandyu belong toP and letSy mapL’;(‘)(F) to LZ(')(F) for some weight functions
andw. Then? € L7)(T") and Sr is bounded fronL2") (T') into L (T).
i) Let Sy be bounded froni2”)(I) to L(T'), o > 0. Then for arbitraryy € LEV(T) the
Cauchy type integral KT¢)(z) belongs toE*( D).
iii) Let p € P and letSr be bounded ir.?")(I"). Then for arbitraryy € LPO)(I") we have

(Krp)(2) € EP.

iv) Forp € WPO(T) andy € LPO)(T) the functionk (%) belongs toE (D*).

Proof.i). SinceS; is defined for any function i.5”(I'), we have the embedding
LB ¢ LYT). Then for anyy € LPO(T) the function is integrable or". There-
fore, % € LO)(T). According to the Proposition 3.2 we conclude that for the sequence of
functions, converging tap in LP()(T) the sequencéry, converges tdry in measure.
Thus, if St mapsL’;(‘)(F) into Lﬁ(')(l“), thenSt is a closed operator and by the closed graph
theorem we conclude that it is bounded.

ii). Let Sr be bounded froni2"(I') into L*(T'), a > 0. Lety € LEY(T') and lety, be
a sequence of rational functions (with a unique poléin) such thatp,, converges ta in
Lﬁ(')(l“) (see Proposition 3.1). Then for the functiohg(z) = (Kr¢,)(z) we haved, (z) €
L*(D*) and||® || < M||¢nllp),, @and by Proposition 3.2 converges in measure to the
function i%(p + %SF(,D. Applying G. Tumarkin’s Theorem [43, p. 269], we conclude that
d(z) = lim ®,(2) belongs taE*(D*). In our caseb(z) = (Kry)(2).

iii). From the embedding?")(I'") C L2(T") and the boundedness 6f in LPO)(T) it
follows thatSr mapsLr®)(T') into L2(T"). Then byi) St is bounded fron?.?")(T") into L2(T").
In view ofii) thenKrp € EP(D*) for arbitraryp € LPO(T).

iv). Sincep € W*U(T), we have; € LO(I') and thenSr <%> e LYT)for any
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¢ € LPO(T). The last follows from the equalityr (%) =3 (,OSF %) Therefore, the

operatorSp% is defined onZ?)(T") and acts intaL!(I"). Then it is continuous in measure
and consequently is a closed operator and therefore, it is boundedZfoifi’) to L'(I').
Applying ii) whenL2(T") ¢ L'(T") we conclude thakt <f> (z) € EY(D?). O

Corollary 3.4. If T € R andp € P(T), thenl is a Smirnov curve.

Indeed, sincd € RPV) and LP(T') ¢ LPO)/(T) c L&(T) follows thatSr mapsL?(T) into
L2(T"). ThenI' is a Smirnov curve (see [14] and [18, p.22]).

Corollary 3.5. LetT' € R*() andp € P(I'). Then for arbitrary bounded functiop we
have(Kry)(2) € () E°(D*).
B>1

Proof. Sincep € (N L*?") according to the statemeit) from Theorem 3.3 we ob-

tain that(Kry)(z) € ﬁ>1EO‘B(Di). Therefore(Krp)(2) € () E°(D*), i.e., (Krp)(z) €
a>1 B>p
N E°(D*). O

B>1

Theorem 3.6. Letp € P and Sr be bounded in the spade””)(I'). ThenSr is also
bounded in the spack®?")(T") for anya > 1 and the inequality

T
ISellancy < et 7 15ty (3.1)
holds.

Proof. We follow Cotlar’s idea [1] and paper [21]. We base ourselves on the well known
relation

(Sre)? = —¢* + 25r(pSre), (3.2)

see for instance, [18], p. 33, which follows also as a particular case from the Rmincar
Bertrand formula (see, for example, [12, Section 7.2] or [20, p. 96])

i dTi a(T’Tl)dl—att—ir—/dT / ol 71) dT
) ) v

) T—1tm T — T T—t Tl—t
r r

under the choice(t, 7) = ¢(t)¢(7); we takep a rational function.
We observe that

162 (1p0) = lellzp
and obtain from (3.2)

1Sel500) < lellzpey + 215t lloe loSrellpe- (3.3)

By the usual Wlder inequality we havélpSrol,) < [[¢ll2pe) - [|Srell2p) and then from
(3.3)

1S 11350y = 208t llpe) 1 Srellzpe 12 ll2p0) — Nellzp() <0 (3.4)
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whence the estimate

[Srell2p() < (HSer(-) +4/115rl2) + 1) [ll2n,) (3.5)

follows for any rational functiorp. By denseness of rational functionsiif’®), this estimate
is extended to the whole spaté()
Further by induction we prove that
m
HSFHQk—lp(.) < ctg W ”Sp”p(), k € N. (36)

Indeed, from (3.5) we obtain that

m
ISty < St (et s + 1+ et 57 ) <

1

< 5t (et s + e ) = Syt s @)

2k+1

Now we apply the Riesz type interpolation theorem known for the spages(see [6,
p. 20], [32, Theorem 14.16]) in the following formf a linear operator A is bounded in
the spaced.?'7()(I") and L¥"'#()(T"), then it is also bounded in the spa¢e”®)(I") with
o€ [2F,2F1), L =927k 4 (1 —6)27! and

1Allapey < ANy ANy (3.8)

Then from (3.6) and (3.7) we get

IS lapts < 15l {ete (5ms7) } {eta (5mg) } -

Obviously,

T 0 T 1-6 T T 1
{Ctg (2k+1>} {Ctg <2k+2>} = ctg (2k+2> =ctely )
But o > 2%. Therefore,

{ets (gfm) Y o (57) " < (§2) = ()

Consequently,
T
15e llapy = cte 1~ 15 lnc) -



4. On belongness ofxp( K1) to the Smirnov classes when
I e RPC)

Theorem 4.1.Let a closed curvé& € R*") andp € P(T"). Lety be a bounded measurable
function onI’. Assume that, € D*. Then
i) there exists an integer > 0 such that

exp{(Kry)(2)} =: X(2) € E°(D') and % € E°(D")

where 7
0<d< = , M =su t);
30+ DTSl o o)

ii) in casep € C(I)

e(VE (D) and X(z)—1€()E(D™

6>1 6>1

Proof. We use an idea developed in [21]. LCetbe the image of,, = {z: |z| =r},r <
1, under the conformal mapping 6f = {z : |z| < 1} ontoD*. We have

/yX ]|dz|</2—\5¢> )["dz| where ®(z) — 2;/*‘;(%);”. (4.1)

r

According to Corollary 3.5 we havé(z) € E"(D™) for anyn > 1. Then by the known
property of the clas&? (see [43], [44, Chapter III]), we have

[1eiria < [ ot o @2)
% r

and then from (4.1) we obtain

[ ||dz|<2/y<sq>+ ] < i%/\&’%@ 2 (S| 1

=1
— d t
z%n/ww |t|+2 o [ wtseeter e

r

no—1
/|X(z)|5|dz| < 0eM 4+ ( ) /]5 Sr(0)|" |dt|
I, n=no

Hence



where we take any, > p. Itremains to show that the serigs, converges. Let, =
n=ngo

Thenn = a,p < a,,p(t) and by (2.7) we have

1Sreplln < (1 + O)1Srellanm()

Then by (3.1) we obtain

[Sreplln < (1+4)

o) 1@ llann()

Taking (2.6) into account, we see th@t||,, ») < M max <1, ﬁ) and then

1 4
ISel < conmas (165) Sl 0= — (L+OM

Therefore,

o0 n [e.9]

0 cod
> / B(Sre )" ] < 3 T lselly < max (1,0 3 OO g

n= no n=ng n=ng

where the series on the right-hand side converge jfSr|,()e < 1.
Thus it was proved thaX (») € E°(D*) when

™

0<d<dg= ;
7 4(1+ 0)eM||Srll

(4.3)

Inthe casé)~ and forl < § < §y and arbitrary- we are enable to obtain the similar estimates
by the same way as in cagke™. Astod < 1 itis necessary to consider two cases: r < rg
andry, < r < 1 for some fixedr,. In the last case the appropriate estimates can be proved as
in the cas& > 1. Asto the cas® < r < r, the needed inequalities we obtain by means of

1

choice of numbek > [].

Now we are able to get more stronger result, namely, ¥hat) € £°(D*) and é(jo’)i €

E°(D~) for 6 < 25.

Indeed,
[ - [
<e 2271'/‘ (Sre)(t
Z /‘ SFSD

et (Sre)(t)| Jat] <

J

no—1

M 1
dt| < e’z — [ =
< (Zn!/F2

n=1
)| ).
whereng > p.
From the previous proof it is clear that last series converges whefd,.

(Sre)®)| 1dt+
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Now apply Smirnov’s following theorem (see, e.g., [43, Chapter Ill], [44pt ®
E"(D)and®* € L"*(I") wherey, > v1, then® € E7(D). According to this statement in
our case we hav& (z) € E°(D*) and (f(fz)(;)i € E°(D~) whené < 23, with &, from (4.3).

By this ) is proved.

Now proveii). For arbitrary= > 0 we can find a Wlder functiony) onT" such that

esssup |p(t) — P(t)| < e. (4.4)

tel

On the other hand, for thedder functiony(¢) there exist positive numbers anda,
such thab < a; < |exp(K1)(2)] < ag < 0.
Thus fromi) and (4.3) we concludg). O

Remark 4.2. As it follows from the proof of the final part of previous theorem the number
M in formula (4.3) can be replaced byy) = inf ||¢ — ||c, where the infinum is taken over
all rational functions).

5. The problem of linear conjugation with continuous coef-
ficients

In the present paper we proceed to the solution of problem (1.1) in theﬁéf;‘ié(sf) under
various assumptions with respect to the data.

We begin with the case whenc P, T' € RP()(I') andG is a non-vanishing continuous
function onT. The functiong is assumed to be ih?")(T"). We look for a function® <
KPO)(T") whose boundary values® satisfy relation (1.1) almost everywhere Bn

Let sc = 5-[arg G(t)]r be the index of7 onT'. Below we shall show that for the above
formulated problem all the statements for its solvability known for congta@main valid in
the general case of variable exponent; namely, the following statement is valid.

Theorem 5.1.Letp € P,T € R and letg € LPO)(T). Assume that: € C(T') and
G(t) #0,t € I". Then for problent1.1) the following statements hold:
i) for > > 0 problem(1.1) is unconditionally solvable in the clags?)(I") and all its
solutions are given by

0() = 50 [T+ X 5.1)
with M) b
exp h(z), zZ e
X(z) = { (z—20) "exph(z), z€ D™, z € DT, (5.2)
where

h(z) = Kr (ln G(t)(t — zo)%> (2)

and(@,._1(z) is an arbitrary polynomial of degreg — 1 (Q_1(z) = 0);

11



i) for >z < 0 problem (1.1) is solvable in this class if and only if

9)
= =0,1,... -1 .
/X+(t)t dt=0, k=0,1,...,|~| (5.3)
T

and under these conditions problem (1.1) has the unique solution given by (5.1) with=
0.

Proof. Consider first the case= 0. We choose a rational functiaf() such that

G(t)

——1

1 1
50 < = (L4 ISrllpe) ™ - (5.4)

sup 5

tel’

Obviouslyind G = 0 and therefore the functioX (z) = exp <KF(1H é)) (z) is continuous

in the domainsD*. Now recall that ifd € KP()(T), then according to Theorem 3.3 (see
iii)) we haved € E2(D<). Sincep > 1, the equalityd(z) = (Kp(®* — ®_)) (z) holds (see

(2.10)). Now we have ) B
(2) :Ei(i) v+ (5.5)
X G \X X+

whereX (z) = exp {Kp(ln @)(z)}. Let us show tha§ e K*1)(T). To this end, we observe
that® ¢ £70)(D*) and is bounded so tha} € E2(D*) and therefore

From the Sokhotsky-Plemelj formula and from the condifioa R*®) it follows that ®* &
LPO(T) and hence2 € KPO(T).
Let *

®(z) — P p(-)
<0 (Kry)(z), ¢ e LPY(T).
Then equality (5.5) yields
(G (1 1 g(t)
u(t) = <—@<t> 1) (5et0+ 3500 ) + 22 56)

i.e. the functiony is a solution of the equation of the type= K< in the space.?")(I'),
whereK is a contractive operator. Therefore, equation (5.6) and consequently problem (1.1)
has the unique solution k") (T"). Basing on Theorem 4.1 we construct the solution. Let

X(z) =exp (Kr(ln G)) (2).
As far as»c = 0, we find that
In G(t) = In |G(t)| +iarg G(t)

12



is a continuous function, and by Theorem 4.1

1

X 1€ () E(D).

6>1

If & is a solution of problem (1.1), theh € K2(T") and therefore$ € E2(D*). Moreover,
2 € Er<(D*) for arbitrarye € (O, é) Thereforel € KP~<(I'). So thaty € K'(I). At

the same time
\" [P\ g
X X) Xt
Since this problem has a unique solutiorkih(T"), then the function

(z) = X()Kr () () (5.7)

is the solution of (1.1) in the clags”")(T").
Let nowsc > 0. We choose a point; € D' and rewrite (1.1) in the form

O (t) = Gu(t)(t — 20)" @ (t) + 9(t)
whereG(t) = (t — zp)~*G(t) is a continuous function with zero index. We introduce a new

unknown function ) .
P(2), zeD
F(z) = { (2 —20)*®(2), z€ D™~ (5.8)

For F'(z) there exists a polynomi#),, ;(z) such that
U(z) = F(2) — Qi (2) € BN(D7) (5.9)
ThenV(z) = Kp(U*™ — ¥™). But
V() — U (t) = FH(t) — F~(t) = ®F(t) — (t — 2)”®(t) € LPO(D)
so that¥ € KP0)(T). Moreover,
UH(t) = GL() ¥ (1) + 0 (t)

whereg, (t) = g(t) — Q,—1(t) + G1(t)Q..—1(t). Sinceind G, = 0, according to what was
proved above,

U(z) = X1(2)Kr <—) (z) where X;(z)=exp{(Krin Gy)(2)}.

i (45) ) = e () (Z)_Q%”'r %é}ig)fz+%mr/%zt§§)i’;.
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But

1 /Qm(t) dt :{ Q;(_(g) L e D+

2mi ) X[ (t) t—=z 0, z€ D~
r
and
1 Q%—l(t dt o 1 / Q% 1(t dt 1 /Q%—l(t>
QWi/Xl(t) t—z  2mi X7 (%) Qe (0) Pz 2mi t—2z at
r r r
{ Q%_1<Z), z € D+
— %8 1 Q. 4(2), z€ D"
Therefore,

5:) = X2 (L) () = Xl () (54 Xi(2)0ers(2) - Qurs(2): (520)

Then by (5.8) and (5.9) we arrive at formula (5.1).

It can be easily verified that the latter provides the solution of problem (1.1) for an arbi-
trary polynomial@,._; (z) which does not depend on the choice of the pajnt

Finally we consider the case < 0. This time the functior” given by (5.8) is inC?)(T").
Moreover,I't = G F~ + g, whence

F(z) = X (:)Kr (Xi) ®

and the condition(z) = (2 — z) *F € E'(D™) is fulfilled if and only if the conditions
(5.3) are satisfied. O

Via the solution of (1.1) inc?®)(I") with non-vanishingz € C(T') andg € L*Y)(T") we
are now able to derive the following weight result for Cauchy singular integrals.

Theorem 5.2. LetI’ € R*") andp € P(I'). Lety be a real-valued function i'(T").

Then the function
1
exp (_/ gp(T)dT)
2w T—1

r

p(t) =

belongs to the clasd’?")(I").

Proof. Consider the problem (1.1) in the cla€&") (") with G(t) = exp (ip(t)) and
g € LPU)(T). Obviously,G € C(T') andind G = 0. Consequently, the function

(z) = X()Kr () ()

belongs takC?()(I) for arbitraryg € LPO)(I"). This implies that the function
g
OH(H) = X0 (S5 ) ()

14



belongs tal?()(T), i.e.

' -1

—iarg Xt (r
elarg X*(t)p(t)/g(T)e 9 X7 dr c Lp()(F)
i p(7) T
I

Since |e*ors XT(T)| — 1, by statement) of Theorem 3.3 we immediately conclude that

p € WrO(T). m

6. The problem of linear conjugation with continuous coef-
ficients in the weighted classc:"”

If we assume that € W?()(I") and choose the functiod in the proof of Theorem 5.1 such
that instead of condition (5.4), the condition

1

—1
< 5 <1 + ”SF”y;('))

is fulfilled, then forsc = 0 we conclude that problem (1.1) is uniquely solvabldﬂﬁ')(F)
for arbitraryg € L2 (I"). If, in addition, we assume thate L40)*=(T), then formula (5.1)

remains valid because in this ca$ec E'*9(D*),§ > 0. The last inclusion is valid since
® € E'*¢(D*), + € Ny E°(D*) and

\" [P\ g
X X)) X+
Consequently, we arrive at the following statement.

Theorem 6.1. Let the exponent € P satisfy condition (2.8)p € W»()(T) and ;€

L1OF (e > 0). Assume thatl € C(T'),G(t) # 0,t € T',g € L3"(T"). Then for problem
(1.1) in the classlcﬁ(')(F) all the statements of Theoreirl remain valid.

Corollary 6.2. Let the exponeni ¢ P satisfy condition (2.8)p € W*"(T') and | €
L1O+(T) (e > 0). Then the function
1 /gp(r) dr
27 T—1

T

r(t) = p(t) exp

with real continuousp, belongs tdv?¢)(T).
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7. The problem of linear conjugation with a piecewise con-
tinuous coefficient

The Proposition 2.1 allows us to investigate problem (1.1) in the 8f&SKT") in the case of
piecewise continuous coefficietandg € L) (T).

Thus letG € C(T,ty,ta,...,tn), i.e. G be continuous on the ards;, ty 1],k =
1,...,m — 1. Assume tha%&ﬁ |G(t)| > 0. We will follow [12], [35], [19].

Let

G(te) _ omin,
—s =" kE=1,2,... 7.1
G(t’—:) € ) )y , T, ( )

where the real part of the complex numbeis = a4 + i, is defined up to an arbitrary
additive integer. We assume that

1
o # = mod (1), ae=a(t). alt) = . (7.2)
and choosey;, in the interval
1 1
—— <l < —, Pk = p(tk). (73)
Pk gk

In D* we choose an arbitrary poing. Let~, be a simple smooth curve (a cut) from the
point 2, to co which crossed only at the point;, so that the functiofz — 2)** is analytic
on the complex plane cut along and

(tk — Zo)ik = (tk - Zo)j\_k exXp (27”)%)
where(t), — z)} = lim (¢ — 2)*. Then the function
tel
G(t
Gi(t) = m# (7.4)
[T(t = z0)*
k=1

is continuous ([12, p. 432]) and, (t) # 0,t € T".
Consider now the function

m ) (Z — tk)A"', S D+,
p(z) = Hptk(z) with — py, (2) = oty \ ' (e—ti)k _ (7.5)
el =20 = —(Z—Zo))‘k’ zeD s

A
where the branch for the functi(<nj:—i’;> " is chosen so that it tends tas> — 00,z € D7,

so thatp;, (z) is analytic inD*.
Assuming that the curvE at the pointg,, has at least one-sided tangents, and taking into
account inequalities (7.3), we conclude from the equality

Py (Z) — okln |2ty =By arg(z—tr) ,i(Brln |z—ty|[+ar arg (z—tx))
k
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that there exists an> 0 such that

1
(2) € EP"TE(DY), —— € E*T(DF),
pu.(2) (D% 5 (D)
Therefore, we have .
2) € E™(D*), — € E®(D%), (7.6)
() € (D), s € En(D*)
wherepy = min py, go = min g
Let
X(2) = p(2) X1 (2)
where
Xi(z) = exp{Kr (In G1(t))}, (7.7)
and introduce a new unknown function
®(2)
D(z 7.8
1( ) p(z) ( )

As farasd € E2(D¥) and (7.6) holds, we have thé{(2) € E°(D*),§ > 0. By Proposition

2.1 we havep € WPO(T) and therefore s € L/0*<, ¢ > 0. So thatdy € L'*7(T) for

somen > 0. According to Smirnov’s theorem we conclude tdgt € E'*7(D*). Now by
(2.10) the equalityp; = Kr(®] — ®;) holds and therefor®, € K'*"(T"). From (7.1) and
(7.8) we derive that

O (t) = G1(t) @1 (1) + g(1)p(D). (7.9)
Having resolved (7.9), we find that all the possible solutions of problem (1.1) in the case
» =ind G1(t) > 0 are given by

9
8(:) = oK () () HAX () (7.10)
1

where(,._(z) is an arbitrary polynomial of degree

By Proposition 2.1 we have € W*(T') and; € L0*<(T). Thus all the conditions of
Corollary 6.2 are satisfied. Therefore, for the functipfrom (7.10) we getb* ¢ L0 (T").
Consequently, (7.10) with an arbitrary polynomil, _; provides us the solution of (1.1) in
KCPO(T).

The case of negative index is considered in standard way.

As a result, we arrive at the following theorem.

Theorem 7.1.LetI" be a closed Lyapunov curve or a curve of turning without cusps. Let
the exponent € P satisfy condition2.8) and

G e C(Tty,te, ... tn), ig£|G(t)| >0
and suppose that the cunié has at least one-sided tangent lines at the poits =
1,2,...,m. Letsx = ind G,(t), whereG, is given by(7.4). Under assumption§7.1)—

(7.3), the statements of Theoreim holds for problem(1.1), if X (z) is replaced byX,(z)
and formula(5.1) is replaced by formul&7.10).
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8. The problem of linear conjugation with bounded mea-
surable coefficient

On the base of various approaches to investigate problem (1.1), we are able to study this
problem in the classgs?")(T") either when

I. T belongs to rather narrow class of curves (Lyapunov curves)aigin a sufficiently

wide class of bounded measurable functions, or

Il. T belongs to a wide class of curves lglis in a more narrow class than in the previous
case.

l. In this situation we assume thatc P and satisfies the logarithmic condition (2.8),
is a Lyapunov curve. We assume tidiat A(M), A > 1, whereA()) is the Simonenko class.
We remind its definition.

Definition 8.1. A measurable functio on T is said to be in4(\), A > 1, if it satisfies
the conditions
1) 0< essmf]G( )], esssup]G( )| < o0,

2) foranyty € T’ there eX|sts o’ a neighborhoody;, of ¢, such that all the values of

G(t), t € v, lie in the sector centered at the origin and of the angle = ﬁ where

N = ﬁ andé > 0 is constant ony,, see [47, pp. 278-279] and [48], on several versions of
this class.

In [47] and [48] for everyG € A()\) there was introduced an argumerit) of G(t) at
every pointt € I' and its incremen2r ¢, (G) and it was shown that there exists a function
Go(t) = exp{iag(t)} satisfying the Lipschitz conditior, € Lip 1) such that

a(A)

esssup |a(t) — ap(t)| < ——= and x(Gyp) = s\ (G)
ter 2

and thus
G(t) = |G(t )\emO(t ellat)—ao ()] (8.1)
In the sequel the index = »(G) of a functionG € A, is interpreted, by definition, as
x = x(G) = n,\(G). (8.2)

Il . It is known that in the general case bfe R?() even for constanp,1 < p < oo,
problem (1.1) with real-valued functiad under the conditiod < m; < |G(t)| < my < o0,
the statements of Theorem 5.1 may become invalid (see [4]). In this general ¢asef#()
we restrict ourselves to oscillatory coefficients of the form

G(t) = e (8.3)

with a real-valued function(t).

Theorem 8.2.Let p belong toP and satisfy conditiori2.8). Suppose that either
1) T'isaLyapunov curve an@ € A(\), where

v ()
- maX ) q Y
2 arcetg || Sty [|p()
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or
1) T € RV and G is an oscillating function having forngs.3) with real-valued
a(t),e® e A(\) where

(o T 2 Ol
= max , )
2 arcetg [|Sr||p() p

Then for problem(1.1) in XP()(T") all the conclusions of Theorem1 hold, where in(5.2)
we mean that
h(z) = Kr (In|G(t)| + ia(t) — s In(t — 20)) (2).

Proof. Let® be a solution of problem (1.1) ik?")(T") and@,,_1(z) such a polynomial
that the function(z — 20)*®(z) — Q,._1(z) belongs taC?)(T") (Q,._1(z) = 0 whense < 0).
We rewrite problem (1.1) as

() = (t — 20) 7C() [27(1)( — 20)* — Qua (1)]

+9(t) + (t — 20) "G (t)Qse-1 (t).
By (8.1) we have

_ ila(t)—ap(t X(jo(t)
G(t)=e [a(t)—ao ()] Xo(t) (8.4)
where
Xao(z> = exp (%m/ln [(t B ZO)_t%_e};p(iQO(t>>] dt) exp (QLM / lnt|f<zt>’ dt)

Sincel is a Lyapunov curveX; (z) are bounded functions (see [13] or [43, pp. 253, 260]).
The functionG, (t) = (t — z9) *exp(iag(t)) belongs to Lip 1 andind G; = 0. Hence
X;f are continuous iD* and Xi* # 0. Therefore, X, (2) andm are bounded analytic
functions inD*. By (8.4) our boundary problem takes the form

Sy = esplita(t) = ool LIl )
wnere (1) + (¢ = 20) G Qs (1)
g — 20 —1
= X4, '
Put
Xi(z()z), ze DT,
vz =4
Mol * Q@) ¢ p-
Then¥(z) € KPO(T) and
W (1) = expli(a(t) — ag(®) T (1) + g1(t) 8.5)
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Since¥(z) € KPO(T), we put¥(z) = (K)(z) with ¢» € LPO(T') and rewrite (8.5) as
(G1+ 1) = (G1 — 1)Sr + 291, (8.6)

where
G1(t) = exp{i(a(t) — ao(t)} =: exp(iB(1)).
Equation (8.6) yields

_ B 20:1(t)
Y(t) = itg—=(Sry)() + FwenTE
Let My = i tg i (Srup) (1) + s so that = M+ where)M will be a contraction operator

in LPO(T") when|3(t)| = |a(t) — ao(t)| < 2arcctg ||ty i€

™

et e A\ with = (8.7)

2 arcctg ||Sr||p(.)'
Thus under condition (8.7), the boundary value problem (1.1) has the unique solution in
the caser = 0.
Now we need that the following condition

Yo (2) = exp { ! /M} _ 1 e KO 8.8)

% t—z
r

should be satisfied. The last inclusion holds if, for example,

M e A(max(2,7)), 7= esssupq(t) (8.9)
ter

(see [47)).

Assuming that conditions (8.7) and (8.8) (or (8.9)) are fulfilled and taking into account
that in this case equation (8.5) is uniquely solvable, just in the same way as in Section 6 we
establish that the function given by (5.1) and (5.2) provides us again the solution of BVP
(1.1) in KPO)(I') whens > 0, while in the caser < 0 for the solvability it is necessary and
sufficient that conditions (5.3) are fulfilled.

When the curve is such that the operator

o)) = L j 60t0) (5 D~ b, 1=

e —t(s) e — eirs

is compact in the space“))([0, ¢]), then in the same manner as for constain [18, p.
101], we can conclude that for such curves statement$) amdlii) of Theorem 5.1 are valid
under the condition

|6(t)] < 2arcctg ||Sry |lp(.)- (8.10)

From the compactness of the operators with a weak singularity in the spécesee The-
orem C in [23] and [26]) it follows that wheh is a Lyapunov curve, thef is a compact
operator inL?("),
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Therefore, wherp € P andp satisfies condition (2.8), then in the case of Lyapunov
boundaryl” all the statements of Theorem 5.1 remain valid under conditions (8.8) and (8.10)
(in particular, when (8.9) and (8.10) are fulfilled).

[I. Condition (8.9) bring fulfilled, condition (8.8) is also satisfied, when

() =

€SS Sup |« < —

er 4(1 + L)eq]|Srlp
which can be easily verified by means of Theorem 4.1.

Then following the arguments in the proof of partwe again obtain an analogous state-
ment. O

Remark 8.3. In the casep(t) = p = const one has||Sp [, = ctg 57, see [13],

Section 13.3, so that Theorem 8.2 is a generalization to the spacéE) of the well-known
Simonenko results [47], [48].

9. Onthe boundedness of the singular operator in weighted
L2")-spaces

As is well known, when investigating the problem of linear conjugatioriCtiI") by the
method of factorization, the most important is the fact that the singular opéhat®bounded
in Lebesgue weighted spaces, see for instance, [20, pp. 113-114].

In Section 7 it was shown that basing on the boundedness af L’g(')(F) whenp is
a power weight, we can solve the problem of linear conjugation in the &I&S$I), if the
coefficientG is piecewise continuous.

Another approach is known when solving the problem of linear conjugation with a mea-
surable bounded coefficient in the explicit form, in this or other way, not making use of
the boundedness results, one is able to conclude that the singular operator is bounded in the
Lebesgue space with weight generated by the coeffi¢ierihis approach was developed by
|. Simonenko [47] in the case of constant

Basing on the solution of BVP with continuous coefficient in Section 5, we proved the
weighted inequality for the singular integral operator, see Theorem 5.2. Now we base our-
selves on the solution of problem (1.1) with oscillating coefficient in the d&SST") given
in Section 8 avoiding weighted boundedness results, and deduce the boundedness statements
for the operatofSt in the weighted space[ﬁ(')(F) with weights more general than the power
ones.

Theorem 9.1. Letp € P and satisfy conditiori2.8) andI" be a Lyapunov curve or a
curve of bounded turning. Assume that

: T
esssup |a(t)| < min (2 arcctg ||Sry |lprecs E) . (9.1)

tel’
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Then the function

belongs tdV?O)(T).

Proof. Taking into account that the functioh(t) = exp(i«(t)) under condition (9.1)
satisfies conditions (8.7) and (8.9), we can state that for arbigrary.*)(I) the function

X(2) g(t) dr
)= 27 /X+(T) T—2
X(z) =exp (%m/%ch) = exp (%/:&(7’1 dT)

r

with

belongs taC?)(I"). Consequently, the functioh™ and thus
X+
/ XJr (1 —1t)
belong toL?")(T).

Then by virtue of statemeri} of Theorem 3.3 we conclude thatc W?()(T") (see also
the proof of Theorem 5.2). O

Remark 9.2. According to Remark 4.2, the numbﬁs sup |a(t)]in (9.1) can be replaced
el

by v(a) = inf || — ¥||¢ in the case of bounded(t), where the infinum is taken over all
rational functions).

The following example given on the basis of Theorem 9.1 is of interest.;,Lét =
1,2,...) be arbitrary distinct points oh. Then the function

oo
= [t —tl™
k=1

belongs to??)(T") under the conditions

1 1
p(t) 7T gty

< 00

10. Trzc)e problem of linear conjugation in weighted spaces
Ly (T

Let I' be a simple rectifiable curve bounding the domaiis andp € W»")(T"). We con-
sider the problem: find function® < IC’;(')(F) whose boundary conditions satisfy almost
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everywhere ol" the condition
T(t) = G)P(t) + g(1), (10.1)

whereg € L’;(')(F) andG is a bounded measurable functionlosuch thabsts ian |G(t)| > 0.
S

We show that under certain assumptions on the clirtke exponeng(¢) and the weight
function p(t¢) in this general setting is reduced to the problem of conjugation without weight.
We consider weight functions of the form

p(t) = exp (%Spu) e WPO(I) (10.2)
wherey is a real valued function o, and assume that

rer! and peP. (10.3)

We need the following auxiliary statements well known for consteaud easily proved
for the variable exponent(-) under assumptions (10.2)-(10.3).

Lemma 10.1. If p € W?O(I), then! € WeO(I') and for all p € Lj”(I) and v €

L ) the equality

1/p

[ew s / (1) (509) (104

r

holds.

Proof. We observe that equality (10.4) is well known, for instance on, rational functions.
Let @ be the set of rational functions dh For functions) € ) according to (2.4) we have

ISctllgom ~ s | [emisood] = s | [ oo

lell ey, <1 pEQ
Ly @M1 Hsolle O )7 r

= sup /%D(t)(Srw)(t) dt) < cl[9]] oo 150l oo
PeQ J e P

12150 ey <1

The obtained estlmaliBSﬂ/)HLq( ) < c||w||Lq< ) is extended to all) € L% )( I') by dense-

ness of in weightedZ?") (I')-spaces, see [24 Theorem 2.3]. Theref%re Wae(T). The

validity of equality (10.4) on the whole rangé(') X L‘{(') follows in the same way since
both the left-hand side and the right-hand side of (10.4) are bounded bilinear functionals in

p() ()
L, ><L1/p O

Lemma 10.2.1f & € K5(T") and ¥ € IE;’SZ(F), thendw € K(T).
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Lemma 10.1 having been proved, the proof of this lemma is obtained in the same way as
in the case of constapt see [17] or [20, p. 98-99].
Now we get back to problem (10.1). The following statement is valid.

Theorem 10.3.Letp € P andl’ € RP()(I") and assume that conditiqn0.2) is fulfilled.
If ®(z) is a solution of problen(10.1) in the classlc’;(')(F) and

Y(z) = exp [—i (Krp) ()], (10.5)
then the function )
P(z
YO=v6
is a solution of the problem
Tt (t) = G(t)e DT (t) 4 g1 (t) (10.6)

in the classc?(T'), whereg; (t) = 4%:.

Conversely, it (z) is a solution of problent10.6) in the classC?")(I"), then the function
®(z) = ¥(2)Y(z) is a solution of problen(10.1) in the classlcﬁ(')(F).

Proof. We follow the papers [21], [22] (see also [18, p. 119-120]). SiheeR?") and
u is bounded, by Theorem 4.1 there exists a nunaber 0 such thatl/Y € E°(D*) and
(z — 20)* (1/Y — 1) € E°(D~) for some nonnegative integkr Moreover, the functions

1\* in i in
(?) = exp (ﬂ:; + §Spu> = pexp (i§>

belongs taL?")(T). Therefore,(%)i € L2(T'). Sincel is a Smirnov curve (see Corollary
3.4), we cantaké = p andk = 0. Butthenl/Y —1 € E'(D*)and henca/Y —1 € K'(T).
In addition, (£)* € L!/)(I") and consequently,/Y € KI0)(I"). By virtue of Lemma 10.2,

: 1/p
from the equality

1
—P. —
¥ Y

we conclude thalr € '(I). But ¥(co) = 0 so thatl € K(I'). As far as

D) _ OH) 0
VR T el ©

we havel+ — &_ ¢ LPO(T). Then from the equality = Kp(¥+ — ) the inclusion
¥ € KPO(T) follows.

The inverse statement can be analogously proved.

We have taken advantage of the fact thab it X7()(I), then¥+ — ¥~ € LPO)/(T) and
U(z) = Kp(U+ — U7)(2). Indeed, sincel € KPO(T'), we have¥(z) = (Kri)(z) with
¢ € LPO(T). This implies that

UE(t) =

W (1) = +50(0) + 5(Se0)()
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and hencelt — U~ = ¢, O

Relying on the results of Sections 5, 7 and 8, we may use Theorem 10.3 to get a picture of
solvability of the problem of linear conjugation in the weighted cmg@(r) under certain
assumptions on the coefficieit

Theorem 10.4.Letp € P, T € RV and let
p e WP()  andhasthe form p=exp <%Sm) (10.7)

wherey is a bounded real measurable function. Suppose that the ¢uarel the function

G,(t) = G(t) exp(in(t))

satisfy the appropriate conditions of one of Theorémis 7.1, 8.2 with G(t) replaced by
G, (t), and putse = ind G ,(t). Then for problen{10.1) in the weighted clasgﬁ(')(l“) all the
statements of Theorefl are valid.

The following remarks gives us a good reason to consider the assumptomE?")(T")
andp = exp (%SFN) of Theorem 10.4 as natural and rather general.

Remark 10.5. The latter condition in (10.7) is fulfilled automatically in the case when
p(t) = const andI" is a Lyapunov curve: in this case all the weight functions of the class
WP(T') have the fornp = exp (4 Sru) with a real-valued bounded functign(see [40], [18,

p. 64]). As regards the former of conditions (10.7), this is a necessary condition for the
elementary BVP

OF(t) + O (t) = g(¢)
to have a solution ikc2")(I") for any g € LE"(T"). From the boundary condition it follows
that Srp = ¢. Together with this, by the conditions € P andy € L2(T') we have
p = 2t with ¢ € LPO)(T"). Consequently, by the statemew} of Theorem 3.3 we derive
that Cr (%) € EY(DT). Therefore,S2 (%) = Sg (see for instance [20, p. 103)), that is,
Sg = £ so thatpSrg € L*0)(I") and thenSrg € L5 (T) for anyg € LL7(I). Thus, the
equationSrp = g being uniquely solvable inlﬁ(')(l“) foranyg € Lﬁ(')(F), the operatoiSr
maps the spacéﬁ(')(F) onto itself. Applying the statemeii} of Theorem 3.3, we conclude
that the operatosy is bounded inZ2"”(I), that is,p € W?O(T).

Remark 10.6. It should be noted that it is impossible to derive Theorem 6.1 from Theo-
rem 10.4. By this reason it was separately presented.

11. Onsingular integral equations inLﬁ(')(F)
We apply now the above results to the singular integral equation
a(t)p(t) +b(t)(Sre)(t) + Vo = f(t) (11.1)
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in the spacelﬁ(')(F), whereV is any operator compact in the spd&')(F).

We assume that the assumptions of Section 10 are fulfilled, tHatssg rectifiable curve
bounding the domain®* and conditions (10.2) and (10.3) are satisfied. The coefficients
a(t) andb(t) are assumed to be bounded measurable functiot’s on

Theorem 11.1.LetI" € RPY), the weight functiop satisfy the assumptions {#0.2) and
ess irnf la(t) + b(t)| > 0. Assume that for the function
S

a(t) = b(t)
G = T

the conditions of Theorem2 with G replaced byG,, are fulfilled. Then for the equation
(11.1) the Noether theorems are valid and its index in the spbﬁé(l“) is equal tosx =
»(G ), wheres is interpreted in accordance witf8.2). In the casé/ = 0 the solutions of
equation(11.1) in the spac@ﬁ(')(F) are given by the formula = &+ — &, whered(z) is
the solution of the following BVP

PH(1) = G () +a(0),  ga(t) = Wp {;m) - %(Sru)(t)} -

Proof. It suffices to give the proof for the cage= 0. In this case equation (11.1) in the
spaceL’,i(')(F) is equivalent to a boundary value problem of type (10.1) in the dﬁ%é(F),
which is established in the usual way via the Cauchy integral

D(z) = % / % € KPO(I) (11.2)
r

so that equation (11.1) may be rewritten in the form

ST () = G(t)D (t) + g(t) (11.3)

with G (t) = 28128 andg(t) = % under the assumption that

estselrnf la(t) + b(t)| # 0.

Thus any solutiorp € L’;(')(F) of equation (11.1) generates a solution of (11.3/)3?1')@)
of form (11.2). Conversely, i (=) is a solution of problem (11.3) in the clagg(')(F), then
the functionp(t) = ®*(t) — ®(¢) is a solution of equation (11.1).
Let
Y(z) = exp{—i (Krp) (2)}.

By Theorem 10.3 the function

U(z) = = ®(z) exp {i (Krp) (2)}
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is a solution inkC?)(T") of the BVP

Ut (t) = G(t) exp{ip(t) }¥(t) + g1 (t) (11.4)
whereg, (t) = {425 = rlifv=r- Via U(z) = (Kry)(2) this is equivalent ifl*()(T') to
the equation

ar (£)y () + by (1) (Sre)(1) = 6 (?) (11.5)
where
a(t) = 5 a1~ #0) 4 b(r)(1 4 #O)].
bi(t) = % [a(t)(1+ D) 4+ b(t)(1 — )]

Thus any solution € KP1)(I') of problem (11.4) generates the solutionf equation (11.4)
via the equality

R p " » " .
_ + -_ - -  _Fr 155 —iy 1553 —1
Y=V v =7+ Y—_2[<6 +e )(,0—|-<6 +e

SIS

)sie

wherep = exp (£Srp). Conversely, ifestseirnf lay(t) + by (t)] = 2 estseirnf la(t) + b(t)] > 0,
then for the solution) € LP0)(I") of equation (11.5) the function

]_ ) s " "
p=B O WY WY = o [(615 n 6_25> b+ (e’5 . e_’5> Spw]

is a solution of equation (11.1) in the sp%,/%')(F). O
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