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Abstract

We study the Riemann boundary value problemΦ+(t) = G(t)Φ−(t) + g(t), for an-
alytic functions in the class of analytic functions represented by the Cauchy type integral
with density in the spacesLp(·)(Γ) with variable exponent. We consider both the cases
when the coefficientG is piecewise continuous or it may be of a more general anrure,
admitting its oscillation. The solvability conditions are derived and in all the cases of
solvability the explicit formulas are given. The related boundary singular integral equa-
tions inLp(·)(Γ) are treated. The solution of the boundary value problem (1.1) allows
us to obtain the weight results for Cauchy singular integral operator inLp(·)(Γ)-spaces,
among them some extension of the well known Helson-Szegö theorem.
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1. Introduction

Let Γ be an oriented rectifiable closed simple curve in the complex planeC. We denote by
D+ andD− the bounded and unbounded component ofC \ Γ, respectively.

The main goal of the paper is to investigate the Riemann problem: find an analytic func-
tion Φ on the complex plane cut alongΓ whose boundary values satisfy the conjugacy con-
dition

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ, (1.1)
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whereG andg are the given functions onΓ andΦ+ andΦ− are boundary values ofΦ on Γ
from inside and outsideΓ, respectively. This problem is also known as the problem of linear
conjugation.

We seek the solution of (1.1) in the class of analytic functions represented by the Cauchy
type integral with density in the spacesLp(·)(Γ) with variable exponent assuming thatg be-
longs to the same class. We consider the cases when the coefficientG is is continuous or
piecewise continuous as well as the case of oscillating coefficient. The solvability conditions
are derived and in all the cases of solvability the explicit formulas are given. The related
boundary singular integral equations inLp(·)(Γ) are treated. The solution of the boundary
value problem (1.1) allows us to obtain the weight results for Cauchy singular integral opera-
tor inLp(·)(Γ)-spaces, among them some extension of the well known Helson-Szegö theorem.

The problem (1.1) is first encountered in Riemann [45]. Important results on which the
posterior solution of problem (1.1) was based, were obtained by Yu. Sokhotski, D.Hilbert,
I.Plemely and T.Carleman. The complete solution of the Riemann problem was first given in
the works of F.D.Gakhov [11], [12] and N.I.Muskhelishvili [34], [35]; we refer also to the
works [19], [20], [22], [18] on investigation of the last decades on the Riemann problem in
Lp-spaces (with constantp).

The generalized Lebesgue spaces, i.e. Lebesgue spaces with variable exponent have been
intensively studied since 1970’s. One may see an evident rise of interest to these spaces during
the last decade, especially last years. The interest aroused, apart from mathematical curiosity,
by possible applications to models with the so called non-standard growth in fluid mechanics,
elasticity theory, in differential equations, see for example, [46], [9] and references therein.

The development of the operator theory in the spacesLp(·) encountered essential diffi-
culties from the very beginning. For example, the translation operator and the convolution
operators are not in general bounded in these spaces. The boundedness of the maximal oper-
ator was recently proved by L. Diening [5], [7]. See the further results in [38], [37], [2], [3].
There is also an evident progress in this direction for singular operators [8], [9], [25].

As is known, for applications to singular integral equations and boundary value problems
the weighted boundedness of singular operators is required. The weighted estimates inLp(·)-
spaces with power weight were proved for the maximal operator on bounded domains in [28],
[26] and for singular operators in [25]. It is worthwhile mentioning that the Fredholmness
criteria for singular integral equations with Cauchy kernel was proved in [27] for the spaces
Lp(·) and in [16] for such spaces with power weight.

2. Preliminaries

Throughout the paper in all statements we suppose thatΓ = {t ∈ C : t = t(s), 0 ≤ s ≤ `},
with an arc–lengths, is a simple closed rectifiable curve. Let a measurablep : Γ → [1,∞).
TheLp(·)-space onΓ may be introduced via the modular

Ip(f) =

∫

Γ

|f(t)|p(t) |dt| =
`∫

0

|f [t(s)]|p[t(s)] ds (2.1)
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By Lp(·) = Lp(·)(Γ) we denote the set of all measurable complex-valued functionsf on Γ
such thatIp(λf) < ∞ for someλ = λ(f) > 0.

This set becomes a Banach space with respect to the norm

‖f‖p(·) = inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
. (2.2)

Sometimes norm (2.2) is called Luxemburg norm because of a similar norm for Orlicz
spaces [31], 1955. However, just in the form (2.2), this norm for the spacesLp(·) was intro-
duced before W.Luxemburg by H.Nakano [36] (1951). The spacesLp(·)([0, 1]) probably first
appeared in the book [36] as an example illustrating the theory of modular spaces developed
by H.Nakano.

The spacesLp(·) were studied by W. Orlicz [39] for the first time in 1931. They are the
special cases of the Musielak-Orlicz spaces generated by Young functions with parameter,
see [33], [32], [41],[42].

However, that was namely the specifics of the spacesLp(·) which attracted an interest of
many researchers and allowed to develop rather rich basic theory of these spaces, this interest
being also roused by applications in various areas.

Meanwhile, the norm of the type (2.2), as well as a similar norm for the Orlicz spaces
is nothing else but the realization of a general norm for ”normalizable” topological spaces
provided by the famous Kolmogorov theorem. This theorem runs as follows, see [15, Ch. 4]
and [29].

Kolmogorov theorem. A Hausdorff linear topological spaceX admits a norm if and
only if it has a convex bounded neighbourhood of the null-element and in this case Minkowsky
functional of this neighbourhood is a norm.

We remind that the Minkowsky functional of a setU ⊂ X is the functionalMU(x),
x ∈ X, defined as

MU(x) = inf{λ : λ > 0,
1

λ
x ∈ U}, x ∈ X,

so that the infinum ofIp

(
f
λ

)
is nothing else but the Minkowsky functional off ∈ X = Lp(·)

related to the setU = {f : Ip(f) ≤ 1}.
Therefore, there are much more reasons to call the norm (2.2) theKolmogorov-Minkowsky

norm.
If

1 < p = ess inf p(t), p = ess sup p(t) < ∞, (2.3)

then the spaceLp(·) is reflexive. Its associate space coincides, up to equivalence, with the
spaceLq(·), where 1

q(t)
+ 1

p(t)
= 1.

In the sequel, byP(Γ), or simply byP, we denote the class of functionsp measurable
with respect to the arc measure and satisfying condition (2.3). Under this condition the space
Lp(·) coincides with the space



f(t) :

∣∣∣∣∣∣

∫

Γ

f(t)g(t) dt

∣∣∣∣∣∣
< ∞ for all g ∈ Lq(·)(Γ)




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up to equivalence of the norms

‖f‖p(·) ∼ sup
‖g‖

Lq(·)(Γ)
≤1

∣∣∣∣∣∣

∫

Γ

f(t)g(t) dt

∣∣∣∣∣∣
, (2.4)

see [30]. There holds the following generalization of the Hölder inequality
∣∣∣∣∣∣

∫

Γ

f(t)g(t) dt

∣∣∣∣∣∣
< c0‖f‖p(·)‖g‖q(·) (2.5)

wherec0 = 1 + 1
p

+ 1
p
. We refer also to [30] and [10] for other properties of the spacesLp(·).

Note that
min

(
`

1
p , `

1
p

)
≤ ‖1‖p(·) ≤ max

(
`

1
p , `

1
p

)
. (2.6)

If p(t) ≤ p1(t), then
‖f‖p(·) ≤ (1 + `)‖f‖p1(·). (2.7)

In the sequel we need the following condition onp(t):

|p(t1)− p(t2)| ≤ A

ln 1
|t1−t2|

, |t1 − t2| ≤ 1

2
, t1, t2 ∈ Γ, (2.8)

whereA > 0 does not depend ont1 andt2, or on the functionp0(s) = p[t(s)]

|p0(s1)− p0(s2)| ≤ A

ln 1
|s1−s2|

, |s1 − s2| ≤ 1

2
, s1, s2 ∈ [0, `]. (2.9)

Since|t(s1)− t(s2)| ≤ |s1−s2|, condition (2.8) always implies (2.9). Inversely, (2.9) implies
(2.8), if for instance there exists aγ > 0 such that|s1 − s2| ≤ C|t1 − t2|γ with someC > 0.
Therefore, conditions (2.8) and (2.9) are equivalent, for example on curves with the so called
chord condition.

Let ρ be a measurable, almost everywhere positive function onΓ. By L
p(·)
ρ (Γ) we denote

the Banach space of functionsf for which

‖f‖p(·),ρ = ‖ρf‖p(·) < ∞.

One of the main tools of our investigation is the Cauchy singular integral

(SΓf)(t) =
1

πi

∫

Γ

f(τ)dτ

τ − t
, t ∈ Γ, f ∈ L1(Γ).

In the case the operatorSΓ : f → SΓf is bounded from the spaceLp(·)(Γ) into the space
Lp1(·)(Γ) we denote its norm as‖SΓ‖p(·)→p1(·) and as‖S‖p(·) whenp(t) ≡ p1(t).

Let

Kp
ρ(Γ) =



Φ(z) : Φ(z) = (KΓϕ)(z) =

1

2πi

∫

Γ

ϕ(τ)dτ

τ − z
, z /∈ Γ with ϕ ∈ Lp(·)

ρ (Γ)




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and let
K̃p

ρ(Γ) =
{
Φ(z) : Φ(z) = Φ0(z) + const, Φ0 ∈ Kp

ρ(Γ)
}

.

We writeKp(Γ) = Kp
ρ(Γ) andK̃p

ρ(Γ) = K̃p(Γ) in the caseρ(t) ≡ 1.
For a simply connected domainD, bounded by a rectifiable curveΓ, by Eδ(D), δ > 0,

we denote the Smirnov class of functionsΦ(z) analytic inD for which

sup
r

∫

Γr

|Φ(z)|δ|dz| < ∞,

whereΓr is the image ofγr = {z : |z| = r} under conformal mapping ofU = {z : |z| < 1}
ontoD. (WhenD is an infinite domain, then the conformal mapping means the one which
transforms0 into infinity).

A function Φ ∈ Eδ(D) possesses almost everywhere angular boundary values onΓ and
the boundary function belongs toLδ(Γ) (see [43, p. 205].

It is known thatE1(D) coincides with the class of analytic functions represented by
Cauchy integrals. Therefore for the functionΦ(z) which is analytic on the plane cutting
along closed curveΓ and belongs toE1(D±), then

Φ(z) = KΓ(Φ+ − Φ−) (2.10)

(see, for example, [20, p. 98]).
We make use of the following notations:

Rp(·) =
{
Γ : SΓ is bounded in Lp(·)(Γ)

}

and

W p(·)(Γ) =

{
ρ : ρSΓ

1

ρ
is bounded in Lp(·)(Γ)

}
.

As shown in [25] the following statement is true:

Proposition 2.1.LetΓ be a Lyapunov curve or a curve of bounded turning(Radon curve)
without cusps. Assume thatp ∈ P and condition(2.8) is satisfied. Then

w(t) =
n∏

k=1

|t− tk|αk

wheretk are distinct points ofΓ, belongs toW p(·)(Γ) if and only if

− 1

p(tk)
< αk <

1

q(tk)
. (2.11)

3. Some properties of the Cauchy type integrals with den-
sities inLp(·)(Γ)

In this section we present some auxiliary results which provide an extension of known prop-
erties of the Cauchy singular integrals in the Lebesgue spaces with constantp to the case of
variablep(·).
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Proposition 3.1. Let p ∈ P and Γ a closed Jordan curve. Then the set of rational
functions with a unique pole inside ofΓ is dense inLp(·)(Γ).

The validity of this statement follows from the denseness inLp(·)(Γ) of the set of con-
tinuous functions and the fact that any continuous function may be approximated inC(Γ)
by rational functions, whatsoever Jordan curveΓ we have according to the Walsh’s theorem
(see, for instance, [49, Chapter II, Theorem 7]).

Proposition 3.2. Let Γ be a rectifiable Jordan curve, letp(t) ∈ P. If 1
ρ
∈ Lq(·)(Γ), then

the operatorSΓ is continuous in measure, i.e., for any sequencefn converging inLp(·)
ρ (Γ) to

functionf0 the sequenceSΓfn converges in measure toSΓf0.
The validity of this statement may be obtained by word-for-word repetition of the proof

of Theorem 2.1 from [18, p. 21], sinceLp(·)
ρ (Γ) ⊂ L1(Γ) according to our assumption.

Theorem 3.3.Let Γ be a simple closed rectifiable curve bounding the domainsD+ and
D−. The following statements are valid:
i) Let p andµ belong toP and letSΓ mapL

p(·)
ρ (Γ) to L

µ(·)
ω (Γ) for some weight functionsρ

andω. Then1
ρ
∈ Lq(·)(Γ) andSΓ is bounded fromLp(·)

ρ (Γ) into L
µ(·)
ω (Γ).

ii) Let SΓ be bounded fromLp(·)
ρ (Γ) to Lα

ω(Γ), α > 0. Then for arbitraryϕ ∈ L
p(·)
ρ (Γ) the

Cauchy type integral(KΓϕ)(z) belongs toEα(D±).
iii) Let p ∈ P and letSΓ be bounded inLp(·)(Γ). Then for arbitraryϕ ∈ Lp(·)(Γ) we have

(KΓϕ)(z) ∈ Ep.

iv) For ρ ∈ W p(·)(Γ) andϕ ∈ Lp(·)(Γ) the functionKΓ

(
ϕ
ρ

)
belongs toE1(D±).

Proof. i). SinceSΓ is defined for any function inLp(·)
ρ (Γ), we have the embedding

L
p(·)
ρ (Γ) ⊂ L1(Γ). Then for anyϕ ∈ Lp(·)(Γ) the functionϕ

ρ
is integrable onΓ. There-

fore, 1
ρ
∈ Lq(·)(Γ). According to the Proposition 3.2 we conclude that for the sequence of

functionsϕn converging toϕ in Lp(·)(Γ) the sequenceSΓϕn converges toSΓϕ in measure.
Thus, ifSΓ mapsLp(·)

ρ (Γ) into L
µ(·)
ω (Γ), thenSΓ is a closed operator and by the closed graph

theorem we conclude that it is bounded.

ii) . Let SΓ be bounded fromLp(·)
ρ (Γ) into Lα(Γ), α > 0. Let ϕ ∈ L

p(·)
ρ (Γ) and letϕn be

a sequence of rational functions (with a unique pole inD+) such thatϕn converges toϕ in
L

p(·)
ρ (Γ) (see Proposition 3.1). Then for the functionsΦn(z) = (KΓϕn)(z) we haveΦn(z) ∈

Lα(D±) and‖Φ±
n ‖α ≤ M‖ϕn‖p(·),ρ and by Proposition 3.2Φ±

n converges in measure to the
function±1

2
ϕ + 1

2
SΓϕ. Applying G. Tumarkin’s Theorem [43, p. 269], we conclude that

Φ(z) = lim
n→∞

Φn(z) belongs toEα(D±). In our caseΦ(z) = (KΓϕ)(z).

iii) . From the embeddingLp(·)(Γ) ⊆ Lp(Γ) and the boundedness ofSΓ in Lp(·)(Γ) it
follows thatSΓ mapsLp(·)(Γ) into Lp(Γ). Then byi) SΓ is bounded fromLp(·)(Γ) into Lp(Γ).
In view of ii) thenKΓϕ ∈ Ep(D±) for arbitraryϕ ∈ Lp(·)(Γ).

iv). Sinceρ ∈ W p(·)(Γ), we have1
ρ
∈ Lq(·)(Γ) and thenSΓ

(
ϕ
ρ

)
∈ L1(Γ)for any
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ϕ ∈ Lp(·)(Γ). The last follows from the equalitySΓ

(
ϕ
ρ

)
= 1

ρ

(
ρSΓ

ϕ
ρ

)
. Therefore, the

operatorSΓ
1
ρ

is defined onLp(·)(Γ) and acts intoL1(Γ). Then it is continuous in measure

and consequently is a closed operator and therefore, it is bounded fromLp(·)(Γ) to L1(Γ).

Applying ii) whenLα
ω(Γ) ⊂ L1(Γ) we conclude thatKΓ

(
ϕ
ρ

)
(z) ∈ E1(D±). 2

Corollary 3.4. If Γ ∈ Rp(·) andp ∈ P(Γ), thenΓ is a Smirnov curve.

Indeed, sinceΓ ∈ Rp(·) andLp(Γ) ⊂ Lp(·)(Γ) ⊂ Lp(Γ) follows thatSΓ mapsLp(Γ) into
Lp(Γ). ThenΓ is a Smirnov curve (see [14] and [18, p.22]).

Corollary 3.5. Let Γ ∈ Rp(·) andp ∈ P(Γ). Then for arbitrary bounded functionϕ we
have(KΓϕ)(z) ∈ ⋂

β>1

Eβ(D±).

Proof. Sinceϕ ∈ ⋂
α>1

Lαp(·) according to the statementiii) from Theorem 3.3 we ob-

tain that(KΓϕ)(z) ∈ ⋂
α>1

Eαp(D±). Therefore(KΓϕ)(z) ∈ ⋂
β>p

Eβ(D±), i.e., (KΓϕ)(z) ∈
⋂

β>1

Eβ(D±). 2

Theorem 3.6. Let p ∈ P and SΓ be bounded in the spaceLp(·)(Γ). ThenSΓ is also
bounded in the spaceLαp(·)(Γ) for anyα > 1 and the inequality

‖SΓ‖αp(·) ≤ ctg
π

4α
‖SΓ‖p(·) (3.1)

holds.

Proof. We follow Cotlar’s idea [1] and paper [21]. We base ourselves on the well known
relation

(SΓϕ)2 = −ϕ2 + 2SΓ(ϕSΓϕ), (3.2)

see for instance, [18], p. 33, which follows also as a particular case from the Poincaré-
Bertrand formula (see, for example, [12, Section 7.2] or [20, p. 96])

1

πi

∫

Γ

dτ

τ − t

1

πi

∫

Γ

a(τ, τ1)

τ1 − τ
dτ1 = a(t, t) +

1

πi

∫

Γ

dτ1
1

πi

∫

Γ

a(τ, τ1)

(τ − t)(τ1 − t)
dτ

under the choicea(t, τ) = ϕ(t)ϕ(τ); we takeϕ a rational function.
We observe that

‖ϕ2‖p(·) = ‖ϕ‖2
2p(·)

and obtain from (3.2)

‖SΓϕ‖2
2p(·) ≤ ‖ϕ‖2

2p(·) + 2‖SΓ‖p(·)‖ϕSΓϕ‖p(·). (3.3)

By the usual Ḧolder inequality we have‖ϕSΓϕ‖p(·) ≤ ‖ϕ‖2p(·) · ‖SΓϕ‖2p(·) and then from
(3.3)

‖SΓϕ‖2
2p(·) − 2‖SΓ‖p(·)‖SΓϕ‖2p(·)‖ϕ‖2p(·) − ‖ϕ‖2

2p(·) ≤ 0 (3.4)
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whence the estimate

‖SΓϕ‖2p(·) ≤
(
‖SΓ‖p(·) +

√
‖SΓ‖2

p(·) + 1
)
‖ϕ‖2p(·) (3.5)

follows for any rational functionϕ. By denseness of rational functions inL2p(·), this estimate
is extended to the whole spaceL2p(·).

Further by induction we prove that

‖SΓ‖2k−1p(·) ≤ ctg
π

2k+1
‖SΓ‖p(·), k ∈ N. (3.6)

Indeed, from (3.5) we obtain that

‖SΓ‖2kp(·) ≤ ‖SΓ‖p(·)

(
ctg

π

2k+1
+

√
1 + ctg2 π

2k+1

)
≤

≤ ‖SΓ‖p(·)

(
ctg

π

2k+1
+

1

sin π
2k+1

)
= ‖SΓ‖p(·) ctg

π

2k+2
. (3.7)

Now we apply the Riesz type interpolation theorem known for the spacesLp(·) (see [6,
p. 20], [32, Theorem 14.16]) in the following form:if a linear operatorA is bounded in
the spacesL2kp(·)(Γ) and L2k+1p(·)(Γ), then it is also bounded in the spaceLαp(·)(Γ) with
α ∈ [2k, 2k+1), 1

α
= θ2−k + (1− θ)2−k−1, and

‖A‖αp(·) ≤ ‖A‖θ
2kp(·)‖A‖1−θ

2k+1p(·) (3.8)

Then from (3.6) and (3.7) we get

‖SΓ‖αp(·) ≤ ‖SΓ‖p(·)
{

ctg
( π

2k+1

)}θ {
ctg

( π

2k+2

)}1−θ

.

Obviously,

{
ctg

( π

2k+1

)}θ {
ctg

( π

2k+2

)}1−θ

≤ ctg
( π

2k+2

)
= ctg

(
π

4
· 1

2k

)
.

But α ≥ 2k. Therefore,

{
ctg

( π

2k+1

)}θ {
ctg

( π

2k+2

)}1−θ

≤ ctg

(
π

4
· 1

α

)
= ctg

( π

4α

)
.

Consequently,

‖SΓ‖αp(·) ≤ ctg
π

4α
‖SΓ‖p(·) .

2
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4. On belongness ofexp(KΓϕ) to the Smirnov classes when
Γ ∈ Rp(·)

Theorem 4.1.Let a closed curveΓ ∈ Rp(·) andp ∈ P(Γ). Letϕ be a bounded measurable
function onΓ. Assume thatz0 ∈ D+. Then
i) there exists an integerk ≥ 0 such that

exp{(KΓϕ)(z)} =: X(z) ∈ Eδ(D+) and
X(z)− 1

(z − z0)k
∈ Eδ(D−)

where
0 < δ <

πp

2(1 + `)eM‖SΓ‖p(·)
, M = sup

t∈Γ
|ϕ(t)|;

ii) in caseϕ ∈ C(Γ)

X(z) ∈
⋂

δ>1

Eδ(D+) and X(z)− 1 ∈
⋂

δ>1

Eδ(D−).

Proof. We use an idea developed in [21]. LetΓr be the image ofγr = {z : |z| = r}, r <
1, under the conformal mapping ofU = {z : |z| < 1} ontoD+. We have

∫

Γr

|X(z)|δ|dz| ≤
∫

Γr

∞∑
n=0

1

n!
|δΦ(z)|n |dz| where Φ(z) =

1

2πi

∫

Γ

ϕ(τ) dτ

τ − z
. (4.1)

According to Corollary 3.5 we haveΦ(z) ∈ En(D+) for any n ≥ 1. Then by the known
property of the classEp (see [43], [44, Chapter III]), we have

∫

Γr

|Φ(z)|n|dz| ≤
∫

Γ

|Φ+(t)|n|dt| (4.2)

and then from (4.1) we obtain

∫

Γr

|X(z)|δ|dz| ≤
∞∑

n=0

∫

Γ

|δΦ+(t)|n|dt| ≤
∞∑

n=0

1

n!

∫

Γ

∣∣∣∣
δϕ(t)

2
+

δ

2
(SΓϕ(t))

∣∣∣∣
n

|dt|

≤
∞∑

n=0

1

n!

∫

Γ

|δϕ(t)|n|dt|+
∞∑

n=0

1

n!

∫

Γ

|δ(SΓϕ(t))|n |dt|.

Hence ∫

Γr

|X(z)|δ|dz| ≤ `eδM +

(
n0−1∑
n=0

+
∞∑

n=n0

)
1

n!

∫

Γ

|δ(SΓϕ(t))|n |dt|

9



where we take anyn0 > p. It remains to show that the series
∞∑

n=n0

converges. Letαn = n
p

> 1.

Thenn = αnp ≤ αnp(t) and by (2.7) we have

‖SΓϕ‖n ≤ (1 + `)‖SΓϕ‖αnp(·)

Then by (3.1) we obtain

‖SΓϕ‖n ≤ (1 + `) ctg
π

4αn

‖SΓ‖p(·)‖ϕ‖αnp(·)

Taking (2.6) into account, we see that‖ϕ‖αnp(·) ≤ M max
(
1, `

1
n

)
and then

‖SΓϕ‖n ≤ c0n max
(
1, `

1
n

)
‖SΓ‖p(·), c0 =

4

πp
(1 + `)M.

Therefore,

∞∑
n=n0

1

n!

∫

Γ

|δ(SΓϕ(t))|n |dt| ≤
∞∑

n=n0

δn

n!
‖SΓϕ‖n

n ≤ max (1, `)
∞∑

n=n0

(c0δ)
nnn

n!
‖SΓ‖n

p(·)

where the series on the right-hand side converges ifc0δ‖SΓ‖p(·)e < 1.
Thus it was proved thatX(z) ∈ Eδ(D+) when

0 < δ < δ0 =
πp

4(1 + `)eM‖SΓ‖p(·)
, (4.3)

In the caseD− and for1 < δ < δ0 and arbitraryr we are enable to obtain the similar estimates
by the same way as in caseD+. As toδ ≤ 1 it is necessary to consider two cases:0 < r < r0

andr0 < r < 1 for some fixedr0. In the last case the appropriate estimates can be proved as
in the caseδ > 1. As to the case0 < r < r0 the needed inequalities we obtain by means of
choice of numberk >

[
1
δ

]
.

Now we are able to get more stronger result, namely, thatX(z) ∈ Eδ(D+) and X(z)−1
(z−z0)k ∈

Eδ(D−) for δ < 2δ0.
Indeed, ∫

Γ

|X±(t)|δ|dt| =
∫

Γ

∣∣∣e± δϕ(t)
2

∣∣∣
∣∣∣e δ

2 (SΓϕ)(t)
∣∣∣ |dt| ≤

≤ e
δM
2

∞∑
n=0

1

n!

∫

Γ

∣∣∣∣
δ

2
(SΓϕ)(t)

∣∣∣∣
n

|dt| ≤ e
δM
2

( n0−1∑
n=1

1

n!

∫

Γ

∣∣∣∣
δ

2
(SΓϕ)(t)

∣∣∣∣
n

|dt|+

+
∞∑

n=n0

1

n!

∫

Γ

∣∣∣∣
δ

2
(SΓϕ)(t)

∣∣∣∣
n

|dt|
)

,

wheren0 > p.
From the previous proof it is clear that last series converges whenδ < 2δ0.
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Now apply Smirnov’s following theorem (see, e.g., [43, Chapter III], [44]):Let Φ ∈
Eγ1(D) andΦ+ ∈ Lγ2(Γ) whereγ2 > γ1, thenΦ ∈ Eγ2(D). According to this statement in
our case we haveX(z) ∈ Eδ(D+) and X(z)−1

(z−z0)k ∈ Eδ(D−) whenδ < 2δ0 with δ0 from (4.3).
By this i) is proved.
Now proveii). For arbitraryε > 0 we can find a Ḧolder functionψ onΓ such that

ess sup
t∈Γ

|ϕ(t)− ψ(t)| < ε. (4.4)

On the other hand, for the Ḧolder functionψ(t) there exist positive numbersa1 anda2

such that0 < a1 ≤ |exp(KΓψ)(z)| ≤ a2 < ∞.
Thus fromi) and (4.3) we concludeii). 2

Remark 4.2.As it follows from the proof of the final part of previous theorem the number
M in formula (4.3) can be replaced byν(ϕ) = inf ‖ϕ−ψ‖C , where the infinum is taken over
all rational functionsψ.

5. The problem of linear conjugation with continuous coef-
ficients

In the present paper we proceed to the solution of problem (1.1) in the classKp(·)
ρ (Γ) under

various assumptions with respect to the data.
We begin with the case whenp ∈ P, Γ ∈ Rp(·)(Γ) andG is a non-vanishing continuous

function onΓ. The functiong is assumed to be inLp(·)(Γ). We look for a functionΦ ∈
Kp(·)(Γ) whose boundary valuesΦ± satisfy relation (1.1) almost everywhere onΓ.

Let κ = 1
2π

[arg G(t)]Γ be the index ofG on Γ. Below we shall show that for the above
formulated problem all the statements for its solvability known for constantp remain valid in
the general case of variable exponent; namely, the following statement is valid.

Theorem 5.1. Let p ∈ P , Γ ∈ Rp(·) and letg ∈ Lp(·)(Γ). Assume thatG ∈ C(Γ) and
G(t) 6= 0, t ∈ Γ. Then for problem(1.1) the following statements hold:
i) for κ ≥ 0 problem(1.1) is unconditionally solvable in the classKp(·)(Γ) and all its
solutions are given by

Φ(z) =
X(z)

2πi

∫

Γ

g(τ)

X+(τ)

dτ

τ − z
+ X(z)Qκ−1(z) (5.1)

with

X(z) =

{
exp h(z), z ∈ D+

(z − z0)
−κ exp h(z), z ∈ D−, z0 ∈ D+,

(5.2)

where

h(z) = KΓ

(
ln G(t)(t− z0)

−κ
)

(z)

andQκ−1(z) is an arbitrary polynomial of degreeκ − 1 (Q−1(z) ≡ 0);

11



ii) for κ < 0 problem (1.1) is solvable in this class if and only if
∫

Γ

g(t)

X+(t)
tk dt = 0, k = 0, 1, . . . , |κ| − 1 (5.3)

and under these conditions problem (1.1) has the unique solution given by (5.1) withQκ−1 =
0.

Proof. Consider first the caseκ = 0. We choose a rational functioñG(t) such that

sup
t∈Γ

∣∣∣∣∣
G(t)

G̃(t)
− 1

∣∣∣∣∣ <
1

2

(
1 + ‖SΓ‖p(·)

)−1
. (5.4)

Obviouslyind G̃ = 0 and therefore the functioñX(z) = exp
(
KΓ(ln G̃)

)
(z) is continuous

in the domainsD±. Now recall that ifΦ ∈ Kp(·)(Γ), then according to Theorem 3.3 (see
iii) ) we haveΦ ∈ Ep(D±). Sincep > 1, the equalityΦ(z) = (KΓ(Φ+ − Φ−)) (z) holds (see
(2.10)). Now we have (

Φ

X̃

)+

=
G

G̃

(
Φ

X̃

)−
+

g

X̃+
, (5.5)

whereX̃(z) = exp
{

KΓ(ln G̃)(z)
}

. Let us show thatΦ
X̃
∈ Kp(·)(Γ). To this end, we observe

thatΦ ∈ Ep(·)(D±) and 1
X

is bounded so thatΦ
X̃
∈ Ep(D±) and therefore

Φ

X̃
= KΓ

(
Φ+

X̃+
− Φ−

X̃−

)
.

From the Sokhotsky-Plemelj formula and from the conditionΓ ∈ Rp(·) it follows thatΦ± ∈
Lp(·)(Γ) and henceΦ

X̃
∈ Kp(·)(Γ).

Let
Φ(z)

X̃(z)
= (KΓψ)(z), ψ ∈ Lp(·)(Γ).

Then equality (5.5) yields

ψ(t) =

(
G(t)

G̃(t)
− 1

)(
−1

2
ψ(t) +

1

2
SΓψ(t)

)
+

g(t)

X̃(t)
(5.6)

i.e. the functionψ is a solution of the equation of the typeψ = Kψ in the spaceLp(·)(Γ),
whereK is a contractive operator. Therefore, equation (5.6) and consequently problem (1.1)
has the unique solution inKp(·)(Γ). Basing on Theorem 4.1 we construct the solution. Let

X(z) = exp (KΓ(ln G)) (z).

As far asκ = 0, we find that

ln G(t) = ln |G(t)|+ i arg G(t)

12



is a continuous function, and by Theorem 4.1

1

X(z)
− 1 ∈

⋂

δ>1

Eδ(D±).

If Φ is a solution of problem (1.1), thenΦ ∈ Kp(Γ) and therefore,Φ ∈ Ep(D±). Moreover,
Φ
X
∈ Ep−ε(D±) for arbitraryε ∈

(
0, 1

p

)
. ThereforeΦ

X
∈ Kp−ε(Γ). So thatΦ

X
∈ K1(Γ). At

the same time (
Φ

X

)+

−
(

Φ

X

)−
=

g

X+
.

Since this problem has a unique solution inK1(Γ), then the function

Φ(z) = X(z)KΓ

( g

X+

)
(z) (5.7)

is the solution of (1.1) in the classKp(·)(Γ).

Let nowκ > 0. We choose a pointz0 ∈ D+ and rewrite (1.1) in the form

Φ+(t) = G1(t)(t− z0)
κΦ−(t) + g(t)

whereG1(t) = (t− z0)
−κG(t) is a continuous function with zero index. We introduce a new

unknown function

F (z) =

{
Φ(z), z ∈ D+

(z − z0)
κΦ(z), z ∈ D− . (5.8)

ForF (z) there exists a polynomialQκ−1(z) such that

Ψ(z) = F (z)−Qκ−1(z) ∈ E1(D−) (5.9)

ThenΨ(z) = KΓ(Ψ+ −Ψ−). But

Ψ+(t)−Ψ−(t) = F+(t)− F−(t) = Φ+(t)− (t− z0)
κΦ−(t) ∈ Lp(·)(Γ)

so thatΨ ∈ Kp(·)(Γ). Moreover,

Ψ+(t) = G1(t)Ψ
−(t) + g1(t)

whereg1(t) = g(t) − Qκ−1(t) + G1(t)Qκ−1(t). Sinceind G1 = 0, according to what was
proved above,

Ψ(z) = X1(z)KΓ

(
g1

X+
1

)
(z) where X1(z) = exp {(KΓln G1)(z)}.

Here

KΓ

(
g1

X+
1

)
(z) = KΓ

(
g

X+
1

)
(z)− 1

2πi

∫

Γ

Qκ−1(t)

X+
1 (t)

dt

t− z
+

1

2πi

∫

Γ

Qκ−1(t)

X−
1 (t)

dt

t− z
.
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But
1

2πi

∫

Γ

Qκ−1(t)

X+
1 (t)

dt

t− z
=

{
Qκ−1(z)

X1(z)
, z ∈ D+

0, z ∈ D−

and

1

2πi

∫

Γ

Qκ−1(t)

X−
1 (t)

dt

t− z
=

1

2πi

∫

Γ

[
Qκ−1(t)

X−
1 (t)

−Qκ−1(t)

]
dt

t− z
+

1

2πi

∫

Γ

Qκ−1(t)

t− z
dt

=





Qκ−1(z), z ∈ D+

−Qκ−1(z)
X1(z)

+ Qκ−1(z), z ∈ D−
.

Therefore,

Ψ(z) = X1(z)KΓ

(
g1

X+
1

)
(z) = X1(z)KΓ

(
g

X+
1

)
(z)+X1(z)Qκ−1(z)−Qκ−1(z). (5.10)

Then by (5.8) and (5.9) we arrive at formula (5.1).
It can be easily verified that the latter provides the solution of problem (1.1) for an arbi-

trary polynomialQκ−1(z) which does not depend on the choice of the pointz0.
Finally we consider the caseκ < 0. This time the functionF given by (5.8) is inKp(·)(Γ).

Moreover,F+ = G1F
− + g, whence

F (z) = X1(z)KΓ

(
g

X+
1

)
(z)

and the conditionΦ(z) = (z − z0)
−κF ∈ E1(D−) is fulfilled if and only if the conditions

(5.3) are satisfied. 2

Via the solution of (1.1) inKp(·)(Γ) with non-vanishingG ∈ C(Γ) andg ∈ Lp(·)(Γ) we
are now able to derive the following weight result for Cauchy singular integrals.

Theorem 5.2. Let Γ ∈ Rp(·) and p ∈ P(Γ). Let ϕ be a real-valued function inC(Γ).
Then the function

ρ(t) =

∣∣∣∣∣∣
exp


 1

2π

∫

Γ

ϕ(τ)dτ

τ − t




∣∣∣∣∣∣
belongs to the classW p(·)(Γ).

Proof. Consider the problem (1.1) in the classKp(·)(Γ) with G(t) = exp (iϕ(t)) and
g ∈ Lp(·)(Γ). Obviously,G ∈ C(Γ) andind G = 0. Consequently, the function

Φ(z) = X(z)KΓ

( g

X+

)
(z)

belongs toKp(·)(Γ) for arbitraryg ∈ Lp(·)(Γ). This implies that the function

Φ+(t) = X+(t)
(
SΓ

g

X+

)
(t)
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belongs toLp(·)(Γ), i.e.

eiarg X+(t)ρ(t)

πi

∫

Γ

g(τ)e−iarg X+(τ)

ρ(τ)

dτ

τ − t
∈ Lp(·)(Γ).

Since
∣∣∣e±iarg X+(τ)

∣∣∣ = 1, by statementi) of Theorem 3.3 we immediately conclude that

ρ ∈ W p(·)(Γ). 2

6. The problem of linear conjugation with continuous coef-
ficients in the weighted classKp(·)

ρ

If we assume thatρ ∈ W p(·)(Γ) and choose the functioñG in the proof of Theorem 5.1 such
that instead of condition (5.4), the condition

sup
t∈Γ

∣∣∣∣∣
G(t)

G̃(t)
− 1

∣∣∣∣∣ <
1

2

(
1 + ‖SΓ‖L

p(·)
ρ

)−1

is fulfilled, then forκ = 0 we conclude that problem (1.1) is uniquely solvable inKp(·)
ρ (Γ)

for arbitraryg ∈ L
p(·)
ρ (Γ). If, in addition, we assume that1

ρ
∈ Lq(·)+ε(Γ), then formula (5.1)

remains valid because in this caseΦ
X
∈ E1+δ(D±), δ > 0. The last inclusion is valid since

Φ ∈ E1+ε(D±), 1
X
∈ ∩δ>1E

δ(D±) and

(
Φ

X

)+

−
(

Φ

X

)−
=

g

X+
.

Consequently, we arrive at the following statement.

Theorem 6.1. Let the exponentp ∈ P satisfy condition (2.8),ρ ∈ W p(·)(Γ) and 1
ρ
∈

Lq(·)+ε (ε > 0). Assume thatG ∈ C(Γ), G(t) 6= 0, t ∈ Γ, g ∈ L
p(·)
ρ (Γ). Then for problem

(1.1) in the classKp(·)
ρ (Γ) all the statements of Theorem5.1 remain valid.

Corollary 6.2. Let the exponentp ∈ P satisfy condition (2.8),ρ ∈ W p(·)(Γ) and 1
ρ
∈

Lq(·)+ε(Γ) (ε > 0). Then the function

r(t) = ρ(t) exp

∣∣∣∣∣∣
1

2π

∫

Γ

ϕ(τ) dτ

τ − t

∣∣∣∣∣∣

with real continuousϕ, belongs toW p(·)(Γ).
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7. The problem of linear conjugation with a piecewise con-
tinuous coefficient

The Proposition 2.1 allows us to investigate problem (1.1) in the classKp(·)(Γ) in the case of
piecewise continuous coefficientG andg ∈ Lp(·)(Γ).

Thus let G ∈ C(Γ, t1, t2, . . . , tm), i.e. G be continuous on the arcs[tk, tk+1], k =
1, . . . , m− 1. Assume thatinf

t∈Γ
|G(t)| > 0. We will follow [12], [35], [19].

Let
G(t−k )

G(t+k )
= e2πiλk , k = 1, 2, . . . , m, (7.1)

where the real part of the complex numbersλk = αk + iβk is defined up to an arbitrary
additive integer. We assume that

αk 6= 1

qk

mod (1), qk = q(tk), q(t) =
p(t)

p(t)− 1
(7.2)

and chooseαk in the interval

− 1

pk

< αk <
1

qk

, pk = p(tk). (7.3)

In D+ we choose an arbitrary pointz0. Let γk be a simple smooth curve (a cut) from the
point z0 to∞ which crossesΓ only at the pointtk so that the function(z − z0)

λk is analytic
on the complex plane cut alongγk and

(tk − z0)
λk− = (tk − z0)

λk
+ exp (2πiλk)

where(tk − z0)
λk± = lim

t→tk±
t∈Γ

(t− z0)
λk . Then the function

G1(t) =
G(t)

m∏
k=1

(t− z0)λk

(7.4)

is continuous ([12, p. 432]) andG1(t) 6= 0, t ∈ Γ.
Consider now the function

ρ(z) =
m∏

k=1

ρtk(z) with ρtk(z) =

{
(z − tk)

λk , z ∈ D+,(
z−tk
z−z0

)λk

= (z−tk)λk

(z−z0)λk
, z ∈ D−,

(7.5)

where the branch for the function
(

z−tk
z−z0

)λk

is chosen so that it tends to1 asz →∞, z ∈ D−,

so thatρtk(z) is analytic inD±.
Assuming that the curveΓ at the pointstk has at least one-sided tangents, and taking into

account inequalities (7.3), we conclude from the equality

ρtk(z) = eαkln |z−tk|−βk arg(z−tk) ei(βkln |z−tk|+αk arg (z−tk))
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that there exists anε > 0 such that

ρtk(z) ∈ Epk+ε(D±),
1

ρtk(z)
∈ Eqk+ε(D±).

Therefore, we have

ρ(z) ∈ Ep0(D±),
1

ρ(z)
∈ Eq0(D±), (7.6)

wherep0 = min pk, q0 = min qk.
Let

X(z) = ρ(z)X1(z)

where

X1(z) = exp {KΓ (ln G1(t))}, (7.7)

and introduce a new unknown function

Φ1(z) =
Φ(z)

ρ(z)
. (7.8)

As far asΦ ∈ Ep(D±) and (7.6) holds, we have thatΦ1(z) ∈ Eδ(D±), δ > 0. By Proposition
2.1 we haveρ ∈ W p(·)(Γ) and therefore 1

ρ(t)
∈ Lq(·)+ε, ε > 0. So thatΦ±

1 ∈ L1+η(Γ) for
someη > 0. According to Smirnov’s theorem we conclude thatΦ1 ∈ E1+η(D±). Now by
(2.10) the equalityΦ1 = KΓ(Φ+

1 − Φ−
1 ) holds and thereforeΦ1 ∈ K1+η(Γ). From (7.1) and

(7.8) we derive that
Φ+

1 (t) = G1(t)Φ
−
1 (t) + g(t)ρ(t). (7.9)

Having resolved (7.9), we find that all the possible solutions of problem (1.1) in the case
κ = ind G1(t) ≥ 0 are given by

Φ(z) = ρ(z)X1(z)KΓ

(
g

ρ+X+
1

)
(z) + ρ(z)X(z)Qκ−1(z) (7.10)

whereQκ−1(z) is an arbitrary polynomial of degreeκ.
By Proposition 2.1 we haveρ ∈ W p(·)(Γ) and 1

ρ
∈ Lq(·)+ε(Γ). Thus all the conditions of

Corollary 6.2 are satisfied. Therefore, for the functionΦ from (7.10) we getΦ± ∈ Lp(·)(Γ).
Consequently, (7.10) with an arbitrary polynomialQκ−1 provides us the solution of (1.1) in
Kp(·)(Γ).

The case of negative index is considered in standard way.
As a result, we arrive at the following theorem.

Theorem 7.1.LetΓ be a closed Lyapunov curve or a curve of turning without cusps. Let
the exponentp ∈ P satisfy condition(2.8) and

G ∈ C(Γ, t1, t2, . . . , tm), inf
t∈Γ
|G(t)| > 0

and suppose that the curveΓ has at least one-sided tangent lines at the pointstk, k =
1, 2, . . . ,m. Let κ = ind G1(t), whereG1 is given by(7.4). Under assumptions(7.1)–
(7.3), the statements of Theorem5.1 holds for problem(1.1), if X(z) is replaced byX1(z)
and formula(5.1) is replaced by formula(7.10).
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8. The problem of linear conjugation with bounded mea-
surable coefficient

On the base of various approaches to investigate problem (1.1), we are able to study this
problem in the classesKp(·)(Γ) either when
I . Γ belongs to rather narrow class of curves (Lyapunov curves) andG is in a sufficiently
wide class of bounded measurable functions, or
II . Γ belongs to a wide class of curves butG is in a more narrow class than in the previous
case.

I . In this situation we assume thatp ∈ P and satisfies the logarithmic condition (2.8),Γ
is a Lyapunov curve. We assume thatG ∈ A(λ), λ > 1, whereA(λ) is the Simonenko class.
We remind its definition.

Definition 8.1. A measurable functionG onΓ is said to be inA(λ), λ > 1, if it satisfies
the conditions
1) 0 < ess inf

t∈Γ
|G(t)|, ess sup

t∈Γ
|G(t)| < ∞,

2) for any t0 ∈ Γ there exists onΓ a neighborhoodγt0 of t0 such that all the values of
G(t), t ∈ γt0, lie in the sector centered at the origin and of the anglea(λ) = 2π−δ

max(λ,λ′) , where

λ′ = λ
λ−1

andδ > 0 is constant onγt0, see [47, pp. 278–279] and [48], on several versions of
this class.

In [47] and [48] for everyG ∈ A(λ) there was introduced an argumentα(t) of G(t) at
every pointt ∈ Γ and its increment2πκλ(G) and it was shown that there exists a function
G0(t) = exp{iα0(t)} satisfying the Lipschitz condition (G0 ∈ Lip 1) such that

ess sup
t∈Γ

|α(t)− α0(t)| < a(λ)

2
and κ(G0) = κλ(G)

and thus
G(t) = |G(t)|eiα0(t)ei[α(t)−α0(t)]. (8.1)

In the sequel the indexκ = κ(G) of a functionG ∈ Aλ is interpreted, by definition, as

κ := κ(G) = κλ(G). (8.2)

II . It is known that in the general case ofΓ ∈ Rp(·) even for constantp, 1 < p < ∞,
problem (1.1) with real-valued functionG under the condition0 < m1 ≤ |G(t)| ≤ m2 < ∞,
the statements of Theorem 5.1 may become invalid (see [4]). In this general case ofΓ ∈ Rp(·)

we restrict ourselves to oscillatory coefficients of the form

G(t) = eiα(t) (8.3)

with a real-valued functionα(t).

Theorem 8.2.Letp belong toP and satisfy condition(2.8). Suppose that either
I ) Γ is a Lyapunov curve andG ∈ A(λ), where

λ = max

(
π

2 arcctg ‖SΓ0‖p(·)
, q

)
,
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or
II ) Γ ∈ Rp(·) and G is an oscillating function having form(8.3) with real-valued
α(t), eiα(t) ∈ A(λ) where

λ = max

(
π

2 arcctg ‖SΓ‖p(·)
,
2(1 + `)e‖SΓ‖p(·)

p

)
.

Then for problem(1.1) in Kp(·)(Γ) all the conclusions of Theorem5.1 hold, where in(5.2)
we mean that

h(z) = KΓ (ln |G(t)|+ iα(t)− κ ln(t− z0)) (z).

Proof. LetΦ be a solution of problem (1.1) inKp(·)(Γ) andQκ−1(z) such a polynomial
that the function(z − z0)

κΦ(z)−Qκ−1(z) belongs toKp(·)(Γ) (Qκ−1(z) ≡ 0 whenκ < 0).
We rewrite problem (1.1) as

Φ+(t) = (t− z0)
−κG(t)

[
Φ−(t)(t− z0)

κ −Qκ−1(t)
]

+g(t) + (t− z0)
−κG(t)Qκ−1(t).

By (8.1) we have

G(t) = ei[α(t)−α0(t)]X
+
α0

(t)

X−
α0

(t)
(8.4)

where

Xα0(z) = exp


 1

2πi

∫

Γ

ln [(t− z0)
−κ exp(iα0(t))] dt

t− z


 exp


 1

2πi

∫

Γ

ln |G(t)|
t− z

dt




= X1(z)X2(z).

SinceΓ is a Lyapunov curve,X±
2 (z) are bounded functions (see [13] or [43, pp. 253, 260]).

The functionG1(t) = (t − z0)
−κ exp(iα0(t)) belongs to Lip 1 and ind G1 = 0. Hence

X±
1 are continuous inD± andX±

1 6= 0. Therefore,Xα0(z) and 1
Xα0(z)

are bounded analytic

functions inD±. By (8.4) our boundary problem takes the form

Φ+(t)

X+
α0

(t)
= exp[i(α(t)− α0(t))]

Φ−(t)(t− z0)
κ −Qκ−1(t)

X−
α0

(t)
+ g1(t),

where

g1(t) =
g(t) + (t− z0)

−κG(t)Qκ−1(t)

X+
α0

(t)
.

Put

Ψ(z) =





Φ(z)
Xα0(z)

, z ∈ D+,

Φ(z)(z−z0)−κ−Qκ−1(z)
Xα0 (z)

, z ∈ D−.

ThenΨ(z) ∈ Kp(·)(Γ) and

Ψ+(t) = exp(i(α(t)− α0(t)))Ψ
−(t) + g1(t). (8.5)
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SinceΨ(z) ∈ Kp(·)(Γ), we putΨ(z) = (Kψ)(z) with ψ ∈ Lp(·)(Γ) and rewrite (8.5) as

(G1 + 1)ψ = (G1 − 1)SΓψ + 2g1, (8.6)

where
G1(t) = exp{i(α(t)− α0(t))} =: exp(iβ(t)).

Equation (8.6) yields

ψ(t) = i tg
β(t)

2
(SΓψ)(t) +

2g1(t)

1 + G1(t)
.

LetMψ = i tg β(t)
2

(SΓψ)(t)+ 2g1(t)
1+G1(t)

so thatψ = Mψ whereM will be a contraction operator

in Lp(·)(Γ) when|β(t)| = |α(t)− α0(t)| < 2 arcctg ‖SΓ‖p(·), i.e.

eiα(t) ∈ A(λ) with λ =
π

2 arcctg ‖SΓ‖p(·)
. (8.7)

Thus under condition (8.7), the boundary value problem (1.1) has the unique solution in
the caseκ = 0.

Now we need that the following condition

Yα(z) := exp



−

1

2πi

∫

Γ

α(t) dt

t− z



− 1 ∈ Kq(·)(Γ) (8.8)

should be satisfied. The last inclusion holds if, for example,

eiα(t) ∈ A(max(2, q)), q = ess sup
t∈Γ

q(t) (8.9)

(see [47]).

Assuming that conditions (8.7) and (8.8) (or (8.9)) are fulfilled and taking into account
that in this case equation (8.5) is uniquely solvable, just in the same way as in Section 6 we
establish that the function given by (5.1) and (5.2) provides us again the solution of BVP
(1.1) inKp(·)(Γ) whenκ ≥ 0, while in the caseκ < 0 for the solvability it is necessary and
sufficient that conditions (5.3) are fulfilled.

When the curve is such that the operator

(Tϕ)(t) =
1

πi

`∫

0

ψ(t(σ))

(
t′(σ)

t(σ)− t(s)
− iγeiγσ

eiγσ − eiγs

)
dσ, γ =

2π

`

is compact in the spaceLp(t(·))([0, `]), then in the same manner as for constantp in [18, p.
101], we can conclude that for such curves statements andi) andii) of Theorem 5.1 are valid
under the condition

|β(t)| < 2 arcctg ‖SΓ0‖p(·). (8.10)

From the compactness of the operators with a weak singularity in the spacesLp(·) (see The-
orem C in [23] and [26]) it follows that whenΓ is a Lyapunov curve, thenT is a compact
operator inLp(·).
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Therefore, whenp ∈ P and p satisfies condition (2.8), then in the case of Lyapunov
boundaryΓ all the statements of Theorem 5.1 remain valid under conditions (8.8) and (8.10)
(in particular, when (8.9) and (8.10) are fulfilled).

II. Condition (8.9) bring fulfilled, condition (8.8) is also satisfied, when

ess sup
t∈Γ

|α(t)| < πp

4(1 + `)eq‖SΓ‖p(·)

which can be easily verified by means of Theorem 4.1.
Then following the arguments in the proof of partI., we again obtain an analogous state-

ment. 2

Remark 8.3. In the casep(t) = p = const one has‖SΓ0‖p = ctg π
2max(p,q)

, see [13],

Section 13.3, so that Theorem 8.2 is a generalization to the spacesLp(·)(Γ) of the well-known
Simonenko results [47], [48].

9. On the boundedness of the singular operator in weighted
L

p(·)
ρ -spaces

As is well known, when investigating the problem of linear conjugation inKp(Γ) by the
method of factorization, the most important is the fact that the singular operatorSΓ is bounded
in Lebesgue weighted spaces, see for instance, [20, pp. 113–114].

In Section 7 it was shown that basing on the boundedness ofSΓ in L
p(·)
ρ (Γ) whenρ is

a power weight, we can solve the problem of linear conjugation in the classKp(·)(Γ), if the
coefficientG is piecewise continuous.

Another approach is known when solving the problem of linear conjugation with a mea-
surable bounded coefficientG in the explicit form, in this or other way, not making use of
the boundedness results, one is able to conclude that the singular operator is bounded in the
Lebesgue space with weight generated by the coefficientG. This approach was developed by
I. Simonenko [47] in the case of constantp.

Basing on the solution of BVP with continuous coefficient in Section 5, we proved the
weighted inequality for the singular integral operator, see Theorem 5.2. Now we base our-
selves on the solution of problem (1.1) with oscillating coefficient in the classKp(·)(Γ) given
in Section 8 avoiding weighted boundedness results, and deduce the boundedness statements
for the operatorSΓ in the weighted spacesLp(·)

ρ (Γ) with weights more general than the power
ones.

Theorem 9.1. Let p ∈ P and satisfy condition(2.8) and Γ be a Lyapunov curve or a
curve of bounded turning. Assume that

ess sup
t∈Γ

|α(t)| < min

(
2 arcctg ‖SΓ0‖p[t(·)],

π

q

)
. (9.1)
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Then the function

ρ(t) =

∣∣∣∣∣∣
exp


 1

2π

∫

Γ

α(τ)

τ − t
dτ




∣∣∣∣∣∣
belongs toW p(·)(Γ).

Proof. Taking into account that the functionG(t) = exp(iα(t)) under condition (9.1)
satisfies conditions (8.7) and (8.9), we can state that for arbitraryg ∈ Lp(·)(Γ) the function

Φ(z) =
X(z)

2πi

∫

Γ

g(τ)

X+(τ)

dτ

τ − z

with

X(z) = exp


 1

2πi

∫

Γ

lnG(τ)

τ − z
dτ


 = exp


 1

2π

∫

Γ

α(τ)

τ − t
dτ




belongs toKp(·)(Γ). Consequently, the functionΦ+ and thus

Y (t) =
X+(t)

2πi

∫

Γ

g(τ) dτ

X+(τ)(τ − t)

belong toLp(·)(Γ).
Then by virtue of statementi) of Theorem 3.3 we conclude thatρ ∈ W p(·)(Γ) (see also

the proof of Theorem 5.2). 2

Remark 9.2.According to Remark 4.2, the numberess sup
t∈Γ

|α(t)| in (9.1) can be replaced

by ν(α) = inf ‖α − ψ‖C in the case of boundedα(t), where the infinum is taken over all
rational functionsψ.

The following example given on the basis of Theorem 9.1 is of interest. Lettk (k =
1, 2, . . . ) be arbitrary distinct points onΓ. Then the function

ρ(t) =
∞∏

k=1

|t− tk|βk

belongs toW p(·)(Γ) under the conditions

− 1

p(tk)
< βk <

1

q(tk)
, k = 1, 2, . . . , and

∣∣∣∣∣
∞∑

k=1

βk

∣∣∣∣∣ < ∞

10. The problem of linear conjugation in weighted spaces
L

p(·)
ρ (Γ)

Let Γ be a simple rectifiable curve bounding the domainsD± andρ ∈ W p(·)(Γ). We con-
sider the problem: find functionsΦ ∈ Kp(·)

ρ (Γ) whose boundary conditions satisfy almost
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everywhere onΓ the condition

Φ+(t) = G(t)Φ−(t) + g(t), (10.1)

whereg∈L
p(·)
ρ (Γ) andG is a bounded measurable function onΓ such thatess inf

t∈Γ
|G(t)| > 0.

We show that under certain assumptions on the curveΓ, the exponentp(t) and the weight
functionρ(t) in this general setting is reduced to the problem of conjugation without weight.
We consider weight functions of the form

ρ(t) = exp

(
i

2
SΓµ

)
∈ W p(·)(Γ) (10.2)

whereµ is a real valued function onΓ, and assume that

Γ ∈ Rp(·) and p ∈ P . (10.3)

We need the following auxiliary statements well known for constantp and easily proved
for the variable exponentp(·) under assumptions (10.2)-(10.3).

Lemma 10.1. If ρ ∈ W p(·)(Γ), then 1
ρ
∈ W q(·)(Γ) and for all ϕ ∈ L

p(·)
ρ (Γ) and ψ ∈

L
q(·)
1/ρ(Γ) the equality

∫

Γ

ϕ(t) (SΓψ) (t) dt = −
∫

Γ

ψ(t) (SΓϕ) (t) dt (10.4)

holds.

Proof. We observe that equality (10.4) is well known, for instance on, rational functions.
Let Q be the set of rational functions onΓ. For functionsψ ∈ Q according to (2.4) we have

‖SΓψ‖
L

q(·)
1/ρ

(Γ)
∼ sup

‖ϕ‖
L

p(·)
ρ (Γ)

≤1

∣∣∣∣∣∣

∫

Γ

ϕ(t)(SΓψ)(t) dt

∣∣∣∣∣∣
= sup

ϕ∈Q
‖ϕ‖

L
p(·)
ρ (Γ)

≤1

∣∣∣∣∣∣

∫

Γ

ϕ(t)(SΓψ)(t) dt

∣∣∣∣∣∣

= sup
ϕ∈Q

‖ϕ‖
L

p(·)
ρ (Γ)

≤1

∣∣∣∣∣∣

∫

Γ

ψ(t)(SΓϕ)(t) dt

∣∣∣∣∣∣
≤ c‖ψ‖

L
q(·)
1/ρ

(Γ)
‖SΓ‖L

p(·)
ρ

.

The obtained estimate‖SΓψ‖
L

q(·)
1/ρ

(Γ)
≤ c‖ψ‖

L
q(·)
1/ρ

(Γ)
is extended to allψ ∈ L

q(·)
1/ρ(Γ) by dense-

ness ofQ in weightedLp(·)(Γ)-spaces, see [24, Theorem 2.3]. Therefore,1
ρ
∈ W q(·)(Γ). The

validity of equality (10.4) on the whole rangeLp(·)
ρ × L

q(·)
1/ρ follows in the same way since

both the left-hand side and the right-hand side of (10.4) are bounded bilinear functionals in
L

p(·)
ρ × L

q(·)
1/ρ. 2

Lemma 10.2.If Φ ∈ K̃p(·)
ρ (Γ) andΨ ∈ K̃q(·)

1/ρ(Γ), thenΦΨ ∈ K̃1(Γ).
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Lemma 10.1 having been proved, the proof of this lemma is obtained in the same way as
in the case of constantp, see [17] or [20, p. 98–99].

Now we get back to problem (10.1). The following statement is valid.

Theorem 10.3.Letp ∈ P andΓ ∈ Rp(·)(Γ) and assume that condition(10.2) is fulfilled.
If Φ(z) is a solution of problem(10.1) in the classKp(·)

ρ (Γ) and

Y (z) = exp [−i (KΓµ) (z)] , (10.5)

then the function

Ψ(z) =
Φ(z)

Y (z)

is a solution of the problem

Ψ+(t) = G(t)eiµ(t)Ψ−(t) + g1(t) (10.6)

in the classKp(·)(Γ), whereg1(t) = g(t)
Y +(t)

.

Conversely, ifΨ(z) is a solution of problem(10.6) in the classKp(·)(Γ), then the function
Φ(z) = Ψ(z)Y (z) is a solution of problem(10.1) in the classKp(·)

ρ (Γ).

Proof. We follow the papers [21], [22] (see also [18, p. 119–120]). SinceΓ ∈ Rp(·) and
µ is bounded, by Theorem 4.1 there exists a numberδ > 0 such that1/Y ∈ Eδ(D+) and
(z − z0)

k (1/Y − 1) ∈ Eδ(D−) for some nonnegative integerk. Moreover, the functions

(
1

Y

)±
= exp

(
±iµ

2
+

i

2
SΓµ

)
= ρ exp

(
±iµ

2

)

belongs toLp(·)(Γ). Therefore,
(

1
Y

)± ∈ Lp(Γ). SinceΓ is a Smirnov curve (see Corollary
3.4), we can takeδ = p andk = 0. But then1/Y −1 ∈ E1(D±) and hence1/Y −1 ∈ K1(Γ).

In addition,
(

1
Y

)± ∈ L
q(·)
1/ρ(Γ) and consequently,1/Y ∈ Kq(·)

1/ρ(Γ). By virtue of Lemma 10.2,
from the equality

ψ = Φ · 1

Y

we conclude thatΨ ∈ K̃1(Γ). But Ψ(∞) = 0 so thatΨ ∈ K1(Γ). As far as

Ψ±(t) =
Φ±(t)

Y ±(t)
=

Φ±(t)

ρ(t)
e±i

µ(t)
2 ,

we haveΨ+ − Ψ− ∈ Lp(·)(Γ). Then from the equalityΨ = KΓ(Ψ+ − Ψ−) the inclusion
Ψ ∈ Kp(·)(Γ) follows.

The inverse statement can be analogously proved.
We have taken advantage of the fact that ifΨ ∈ Kp(·)(Γ), thenΨ+ − Ψ− ∈ Lp(·)(Γ) and

Ψ(z) = KΓ(Ψ+ − Ψ−)(z). Indeed, sinceΨ ∈ Kp(·)(Γ), we haveΨ(z) = (KΓψ)(z) with
ψ ∈ Lp(·)(Γ). This implies that

Ψ±(t) = ±1

2
ψ(t) +

1

2
(SΓψ)(t)
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and henceΨ+ −Ψ− = ψ. 2

Relying on the results of Sections 5, 7 and 8, we may use Theorem 10.3 to get a picture of
solvability of the problem of linear conjugation in the weighted classKp(·)

ρ (Γ) under certain
assumptions on the coefficientG.

Theorem 10.4.Letp ∈ P, Γ ∈ Rp(·) and let

ρ ∈ W p(·)(Γ) and has the form ρ = exp

(
i

2
SΓµ

)
(10.7)

whereµ is a bounded real measurable function. Suppose that the curveΓ and the function

Gµ(t) = G(t) exp(iµ(t))

satisfy the appropriate conditions of one of Theorems5.1, 7.1, 8.2 with G(t) replaced by
Gµ(t), and putκ = indGµ(t). Then for problem(10.1) in the weighted classKp(·)

ρ (Γ) all the
statements of Theorem5.1 are valid.

The following remarks gives us a good reason to consider the assumptionsρ ∈ W p(·)(Γ)
andρ = exp

(
i
2
SΓµ

)
of Theorem 10.4 as natural and rather general.

Remark 10.5. The latter condition in (10.7) is fulfilled automatically in the case when
p(t) = const andΓ is a Lyapunov curve: in this case all the weight functions of the class
W p(Γ) have the formρ = exp

(
i
2
SΓµ

)
with a real-valued bounded functionµ (see [40], [18,

p. 64]). As regards the former of conditions (10.7), this is a necessary condition for the
elementary BVP

Φ+(t) + Φ−(t) = g(t)

to have a solution inKp(·)
ρ (Γ) for anyg ∈ L

p(·)
ρ (Γ). From the boundary condition it follows

that SΓϕ = g. Together with this, by the conditionsp ∈ P and ϕ ∈ L
p(·)
ρ (Γ) we have

ϕ = ϕ1

ρ
with ϕ1 ∈ Lp(·)(Γ). Consequently, by the statementiv) of Theorem 3.3 we derive

thatKΓ

(
ϕ1

ρ

)
∈ E1(D+). Therefore,S2

Γ

(
ϕ1

ρ

)
= Sg (see for instance [20, p. 103]), that is,

Sg = ϕ1

ρ
so thatρSΓg ∈ Lp(·)(Γ) and thenSΓg ∈ L

p(·)
ρ (Γ) for anyg ∈ L

p(·)
ρ (Γ). Thus, the

equationSΓϕ = g being uniquely solvable inLp(·)
ρ (Γ) for anyg ∈ L

p(·)
ρ (Γ), the operatorSΓ

maps the spaceLp(·)
ρ (Γ) onto itself. Applying the statementii) of Theorem 3.3, we conclude

that the operatorSΓ is bounded inLp(·)
ρ (Γ), that is,ρ ∈ W p(·)(Γ).

Remark 10.6. It should be noted that it is impossible to derive Theorem 6.1 from Theo-
rem 10.4. By this reason it was separately presented.

11. On singular integral equations inL
p(·)
ρ (Γ)

We apply now the above results to the singular integral equation

a(t)ϕ(t) + b(t)(SΓϕ)(t) + V ϕ = f(t) (11.1)
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in the spaceLp(·)
ρ (Γ), whereV is any operator compact in the spaceL

p(·)
ρ (Γ).

We assume that the assumptions of Section 10 are fulfilled, that is,Γ is a rectifiable curve
bounding the domainsD± and conditions (10.2) and (10.3) are satisfied. The coefficients
a(t) andb(t) are assumed to be bounded measurable functions onΓ.

Theorem 11.1.LetΓ ∈ Rp(·), the weight functionρ satisfy the assumptions in(10.2) and
ess inf

t∈Γ
|a(t) + b(t)| > 0. Assume that for the function

Gµ(t) =
a(t)− b(t)

a(t) + b(t)
eiµ(t)

the conditions of Theorem8.2 with G replaced byGµ are fulfilled. Then for the equation
(11.1) the Noether theorems are valid and its index in the spaceL

p(·)
ρ (Γ) is equal toκ =

κ(Gµ), whereκ is interpreted in accordance with(8.2). In the caseV = 0 the solutions of
equation(11.1) in the spaceLp(·)

ρ (Γ) are given by the formulaϕ = Φ+ − Φ−, whereΦ(z) is
the solution of the following BVP

Φ+(t) = Gµ(t)Φ−(t) + g1(t), g1(t) =
f(t)

a(t) + b(t)
exp

{
i

2
µ(t)− i

2
(SΓµ)(t)

}
.

Proof. It suffices to give the proof for the caseV = 0. In this case equation (11.1) in the
spaceLp(·)

ρ (Γ) is equivalent to a boundary value problem of type (10.1) in the classKp(·)
ρ (Γ),

which is established in the usual way via the Cauchy integral

Φ(z) =
1

2πi

∫

Γ

ϕ(τ) dτ

τ − z
∈ Kp(·)

ρ (Γ) (11.2)

so that equation (11.1) may be rewritten in the form

Φ+(t) = G(t)Φ−(t) + g(t) (11.3)

with G(t) = a(t)−b(t)
a(t)+b(t)

andg(t) = f(t)
a(t)+b(t)

under the assumption that

ess inf
t∈Γ

|a(t) + b(t)| 6= 0.

Thus any solutionϕ ∈ L
p(·)
ρ (Γ) of equation (11.1) generates a solution of (11.3) inKp(·)

ρ (Γ)

of form (11.2). Conversely, ifΦ(z) is a solution of problem (11.3) in the classKp(·)
ρ (Γ), then

the functionϕ(t) = Φ+(t)− Φ−(t) is a solution of equation (11.1).
Let

Y (z) = exp {−i (KΓµ) (z)} .

By Theorem 10.3 the function

Ψ(z) =
Φ(z)

Y (z)
= Φ(z) exp {i (KΓµ) (z)}
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is a solution inKp(·)(Γ) of the BVP

Ψ+(t) = G(t) exp{iµ(t)}Ψ−(t) + g1(t) (11.4)

whereg1(t) = g(t)
Y +(t)

= f(t)
[a(t)+b(t)]Y +(t)

. Via Ψ(z) = (KΓψ)(z) this is equivalent inLp(·)(Γ) to
the equation

a1(t)ψ(t) + b1(t)(SΓψ)(t) = g1(t) (11.5)

where

a1(t) =
1

2

[
a(t)(1− eiµ(t)) + b(t)(1 + eiµ(t))

]
,

b1(t) =
1

2

[
a(t)(1 + eiµ(t)) + b(t)(1− eiµ(t))

]
.

Thus any solutionΨ ∈ Kp(·)(Γ) of problem (11.4) generates the solutionψ of equation (11.4)
via the equality

ψ = Ψ+ −Ψ− =
Φ+

Y +
− Φ−

Y − =
ρ

2

[(
ei µ

2 + e−i µ
2

)
ϕ +

(
ei µ

2 + e−i µ
2

)
SΓϕ

]

whereρ = exp
(

i
2
SΓµ

)
. Conversely, ifess inf

t∈Γ
|a1(t) + b1(t)| = 2 ess inf

t∈Γ
|a(t) + b(t)| > 0,

then for the solutionψ ∈ Lp(·)(Γ) of equation (11.5) the function

ϕ = Φ+ − Φ− = Ψ+Y + −Ψ−Y − =
1

2ρ

[(
ei µ

2 + e−i µ
2

)
ψ +

(
ei µ

2 − e−i µ
2

)
SΓψ

]

is a solution of equation (11.1) in the spaceL
p(·)
ρ (Γ). 2
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[46] M. Ružička. Electroreological Fluids: Modeling and Mathematical Theory. Springer,
Lecture Notes in Math., 2000. vol. 1748, 176 pages.

[47] I.B. Simonenko. The Riemann boundary value problem for n pairs of functions with
measurable coefficients and its application to the study of singular integrals inLp spaces
with weight (Russian).Izv. Akad. Nauk SSSR, ser. Mat., 28(2):277–306, 1964.

[48] I.B. Simonenko. Some general questions in the theory of the Riemann boundary value
problem (Russian).Izv. Akad. Nauk SSSR, ser. Mat., 32(5):1138–1146, 1968. Transl. in
Math. USSR Izvestija,2 (1968), no 5, 1091-1099.

[49] J. L. Walsh. Interpolation and approximation by rational functions in the complex do-
main. Third edition. American Mathematical Society Colloquium Publications, Vol.
XX. American Mathematical Society, Providence, R.I., 1960.

30



Vakhtang Kokilashvili and Vakhtang Paatashvili
Razmadze Mathematical Institute
M. Aleksidze St. 1
380093 Tbilisi
Georgia,

S.Samko
Faculdade de Ciências e Tecnologia
Universidade do Algarve
Faro 8000
Portugal

31


