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On a progress in the theory of Lebesgue spaces with variable
exponent: maximal and singular operators
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This paper represents a broadened version of the plenary lecture presented by the author at the confer-
ence Analytic Methods of Analysis and Differential Equations (AMADE-2003), September 4–9, 2003,
Minsk, Belarus. We give a survey of investigations on ‘the variable exponent business’, concentrating
mainly on recent advances in the operator theory and harmonic analysis in the generalized Lebesgue
and Sobolev spaces Lp(·) and Wm,p(·).
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1. Introduction

1.1 The non-standard growth background

Last decade, we witness a strong rise of interest to the study of various mathematical prob-
lems in the so-called spaces with non-standard growth. This expression mainly relates to
the generalized Lebesgue spaces Lp(·)(�), � ⊆ Rn, with variable order p(x) (the generalized
Lebesgue spaces with variable exponent), and to the corresponding generalized Sobolev spaces
Wm,p(·)(�). Such Sobolev spaces naturally arise when one deals with functionals of the form∫

�

|∇f (x)|p(x) dx.

Such a functional appears, for instance, in the study of differential equations of the type

div
(|∇u(x)|p(x)−2∇u

) = |u|σ(x)−1u(x) + f (x).

In this case, one deals with the Dirichlet integral of the form∫
�

(|∇f (x)|p(x) + |u(x)|σ(x)
)

dx

Such mathematical problems and spaces with variable exponent arise in applications to
mechanics of the continuum medium. In some problems of mechanics, there arise variational
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problems with Lagrangians more complicated than is usually assumed in variational calculus,
for example, of the form |ξ |α(x) when the character of non-linearity varies from point to point
(Lagrangians of the plasticity theory, Lagrangians of the mechanics of the so-called rheological
fluids and others).

Investigation of variational problems with variable exponent started from the paper by
Zhikov [1], related to the so-called Lavrentiev phenomenon; see for instance ref. [2] on this
phenomenon. Nowadays, this topic of variational problems and differential equations with
variable exponent is intensively developed worldwide by many researchers. We refer to the
papers by Acerbi and Mingione [3, 4], Alkhutov [5], Cabada and Pouso [6], Chiadò and Coscia
[7], Coscia and Mingione [8], Fan [9], Fan and Fan [10], Fan et al. [11], Fan and Zhang [12],
Fan and Zhao [13–15], Kovácǐk [16], Marcellini [17], Zhikov [18] and references therein.
Recently, there also appeared a group of researchers of variational problems with variable
exponent in Finland (the ‘Helsinki group’); Petteri Harjulehto, Peter Hasto, Mika Koskenoja
and others; we refer to their web page http://www.math.helsinki.fi/analysis/varsobgroup and
the paper by Harjulehto et al. [19].

We also refer to Antontsev [20, 21], where the problems of localization of solutions of
elliptic and parabolic equations, in the spirit of the book by Antontsev et al. [22], were treated
in the spaces with variable exponent.

We do not touch the non-standard growth in this interesting and large area of variational
problems and differential equations; the aim of this survey is to represent the main results in
the operator theory and harmonic analysis in the spaces Lp(·), as can be seen from the main
sections 2–7.

1.2 Feedback from applications

Investigations in this topic during recent years were strongly stimulated by applications in
various problems related to objects with non-standard local growth in which growth conditions
of variable order arise (in elasticity theory, fluid mechanics, differential equations). In 1995–
1999, there appeared a series of papers by Ružička on problems in the so-called rheological and
electrorheological fluids which lead to spaces with variable exponent. The results developed
in those papers were summarized in his book [23], see also refs. [24, 25] and also references
in [23, 25]. Many mathematical models in fluid mechanics, elasticity theory, in differential
equations and so on were shown to be naturally related to the problems with non-standard
local growth. It is difficult to overestimate the impact of the earlier publications on investigation
of the spaces Lp(·)(�) and Wm,p(x)(Rn) which proved to be an appropriate tool applicable in
this area.

1.3 The generalized Lebesgue spaces: theoretical background

However, the first interest to the generalized Lebesgue spaces Lp(·)(�) was purely theoretical,
being evoked just by mathematical curiosity. The first papers on investigation of such spaces
were performed without any idea of possible vast applications, which happened very soon
after the first theoretical papers.

The spaces Lp(·)([0, 1]) probably first appeared in the book by Nakano [26], as an example
illustrating the theory of modular spaces. The pioneer paper where the space Lp(·) was studied
as a special object and as a Banach space was that by Sharapudinov [27], although the spaces
Lp(·) and Wm,p(·) are particular cases of the generalized Orlicz and Orlicz–Sobolev spaces
introduced and investigated earlier by Hudzik [28]; see also ref. [29] However, that was
namely the specifics of the spaces Lp(·) and Wm,p(·) which attracted many researchers and
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allowed us to develop rather rich basic theory of these spaces, this interest also being roused
by applications revealed in various areas.

The basics of the spaces Lp(·) were developed partially in the paper by Sharapudinov [27]
(in the one-dimensional case, although most of the results from ref. [27] are automatically
rewritten for the multi-dimensional case), and to a big extent in the paper by Kovácǐk and
Rákosnǐk [30]; see also refs. [31, 32].

This paper represents a brief survey of results obtained recently for maximal and singular
operators and potential-type operators in the generalized Lebesgue spaces Lp(·) with vari-
able exponent. Such spaces and operators in these spaces are intensively studied nowadays.
One may see an evident rise of interest to these spaces and to the corresponding Sobolev-type
spaces Wm,p(·) during the last decade, especially the last years. The increase in studying both
the spaces Lp(·) and Wm,p(·) themselves and the operator theory in these spaces is observed.

The development of the operator theory in the spaces Lp(·) encountered essential difficulties
from the very beginning. For example, the convolution operators in general are not bounded
in these spaces, the Young’s theorem not being valid in the general case.

A convolution operator may be bounded in this space if, roughly speaking, its kernel has
singularity only at the origin; see ref. [33]. Singular operators are of this type. The maximal
operator close to singular ones was also a candidate for being a bounded operator in the spaces
Lp(·). However, the boundedness of the maximal and singular operators was an open problem
for a long time. Recently, the breakthrough result by Diening appeared on boundedness of
maximal operator [34]. After this paper, a certain progress followed for maximal and singular
operators both in non-weighted and weighted cases. We present a brief survey of results in
this direction.

After the paper was prepared for publication, many interesting and important papers
appeared on this rapidly developing topic. The paper reflects the status of research in the
area up to the beginning of 2004.

Notation: � is an open set in R
n; R

1+ = (0, ∞); χ�(x) is the characteristic function of a
set � in R

n; |�| is the Lebesgue measure of �; B(x0, r) is the ball centered at x0 and of
radius r , |Bn| = |B(0, 1)|; Sn−1 is the unit sphere in R

n, p(x): R
n → [1, ∞) is a measurable

function, p0 = infx∈Rn p(x), P = supx∈Rn p(x); everywhere inf and sup stand for ‘ess inf’
and ‘ess sup’.

2. Definitions

We refer to the papers by Kovácǐk and Rákosnǐk [30], Samko [31, 35] and Fan and Zhao [32]
for the proofs of the main results on the generalized Lebesgue spaces, but give the main
definitions for the reader’s convenience.

We also mention that in the papers of Edmunds and Nekvinda [36] and Nekvinda [37],
where the spaces �{pn} were studied which were discrete analogues of the spaces Lp(·).

By Lp(·), we denote the space of functions f (x) on � such that

Ip,�(f ) =
∫

�

|f (x)|p(x)dx < ∞,

where p(x) is a measurable function on � with values in [1, ∞). This is a linear space if
and only if supx∈� p(x) < ∞ [27]. The case supx∈� p(x) = ∞ may also be admitted, but to
keep the space linear, instead of the condition Ip,�(f ) < ∞, one should use the condition that
Ip,�(f/λ) < ∞, for some λ = λ(f ).
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Let �∞ = {x ∈ �: p(x) = ∞}. When |�∞| = 0, then this is a Banach space with respect
to the norm

‖f ‖Lp(·) = inf

{
λ > 0: Ip,�

(
f

λ

)
≤ 1

}
. (1)

When |�∞| > 0, then the space Lp(·)(�) is introduced as the space of functions with the finite
norm

‖f ‖Lp(·) = inf

{
λ > 0: Ip,�\�∞

(
f

λ

)
≤ 1

}
+ sup

x∈�∞
|f (x)|. (2)

In ref. [38, Proposition 1.3], it was observed that Lp(·)(�) is a Banach function space in the
well-known sense; see, for instance, ref. [39].

In this survey, we consider only bounded exponents p(x). Thus, p(x) is not allowed to tend
to infinity. Similarly, when dealing with the conjugate space and considering singular and
maximal operators, we have to exclude the tendency of p(x) to 1. Therefore, in the sequel,
we assume that

1 < p0 ≤ p(x) ≤ P < ∞, x ∈ �. (3)

In the case of a bounded set �, the function p(x) will be supposed to satisfy, besides
condition (3), the only assumption

|p(x) − p(y)| ≤ A

ln(1/|x − y|) , |x − y| ≤ 1

2
, x, y ∈ �. (4)

This condition always arises when one deals witth variable exponent; see in particular,
ref. [40], where it appeared in connection with Hölder spaces Hλ(x) of variable order.

In case � is unbounded, we shall also refer to the assumption [ref. 35, Definitions 3.2, 3.3]
that there exists p(∞) = lim|x|→∞ p(x) and

|p(x) − p(∞)| ≤ A∞
ln(e + |x|) , x ∈ � (5)

or to the condition [41, 42]

|p(x) − p(y)| ≤ C

ln[e + min(|x|, |y|)] , x, y ∈ �, (6)

which are equivalent.
The Sobolev space Wm,p(·)(�) with variable p is introduced as the space of functions f (x) ∈

Lp(·)(�) which have all the distributional derivatives Djf (x) ∈ Lp(·)(�), 0 ≤ |j | ≤ m, with
the norm

‖f ‖Wm,p(x) =
∑
|j |≤m

‖Djf ‖Lp(·) .

(Both the versions (1) and (2) are possible).
We shall also use the spaces with variable exponent on curves in the complex plane. Let 	

be a closed Jordan curve, and Lp(·)(	) the space of functions f (t) on 	 such that

Ip(f ) =
∫

	

|f (t)|p(t)|dt | < ∞, ‖f ‖Lp(·) = inf

{
λ > 0: Ip

(
f

λ

)
≤ 1

}
.

Similar to equations (3) and (4), it is assumed that

1 < p0 ≤ p(t) ≤ P < ∞, t ∈ 	, (7)



Lebesgue spaces with variable exponent 465

and

|p(t1) − p(t2)| ≤ A

ln(1/|t1 − t2|) , |t1 − t2| ≤ 1

2
, t1, t2 ∈ 	. (8)

Under condition (7), the space Lp(·) coincides with the space

{
f (t):

∣∣∣∣
∫

	

f (t)ϕ(t) dt

∣∣∣∣ < ∞ for all ϕ ∈ Lq(·)(�)

}
(9)

where (1/p(t)) + (1/q(t)) ≡ 1.
Condition (8) may be imposed either on the function p(t) or on the function p∗(s) = p[t (s)]:

∣∣p∗(s1) − p∗(s2)
∣∣ ≤ A

ln(1/|s1 − s2|) , |s1 − s2| ≤ 1

2
, s1, s2 ∈ [0, �]. (10)

Condition (8) always implies equation (10). Conditions (8) and (10) are equivalent, for example
on curves with the chord-arc condition |(t (s) − t (σ ))/(s − σ)| ≥ m > 0 (curves of bounded
rotation without cusps satisfy the chord-arc condition).

3. Denseness of C∞
0 -functions

The class C∞
0 (�) of infinitely differentiable functions with compact support in � is dense in

the spaces Lp(·)(�), which was established among the first basic properties of these spaces in
ref. [30], see Theorem 2.11; the case � = R

1 being considered in ref. [43].
We also observe an interesting result by Sharapudinov [44] on Haar basis in the spaces

Lp(·)([0, 1]). Let {χm} be the Haar system on [0, 1] and p(x) be a bounded function on [0, 1],
p(x) ≥ 1 which is piece-wise Dini-Lipschitz on [0, 1], that is, there exists an n such that

|f (x) − f (y)| ≤ C

lnα (1/|x − y|) (11)

for all x, y ∈ [(k − 1)/2n, k/2n], k = 1, 2, . . . , 2n.

THEOREM 3.1 (Sharapudinov) The Haar system {χm} is a basis in the space Lp(·)([0, 1]) with
p(x) satisfying the piece-wise condition (11) if and only if α ≥ 1.

Denseness of C∞-functions in Lp(·)(	)-spaces, 	 a curve in the complex plane, with an
arbitrary weight was recently proved in refs. [45, 46].

THEOREM 3.2 (Kokilashvili and Samko) Let 	 be a Jordan curve. The set C∞(	) (and even
the set of bounded rational functions on 	) is dense in Lp(·)(	, ρ), for any measurable bounded
exponent p(x) ≥ 1 and any weight ρ ≥ 0 such that

|{t ∈ 	: ρ(t) = 0}| = 0 and [ρ(t)]p(t) ∈ L1(	).

Denseness of C∞(�)-functions in the Sobolev spaces Wm,p(·)(�) proved to be a more
difficult problem. Such a denseness does not necessarily hold in the case of discontinuous
exponents p(x), according to the example of Zhikov: let � = {x = (x1, x2): |x| < 1}, p(x) =
α if x1x2 > 0 and p(x) = β if x1x2 < 0, then C∞(�) ∩ W 1,p(·)(�) is not dense in W 1,p(·)(�),
if 1 < α < 2 < β, which is known as Zhikov’s example; see ref. [32, p. 440, or 18, p. 107].
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Sufficient conditions for the denseness of C∞-functions in Wm,p(·)(�) were first given by
Edmunds and Rákosník [47] in terms of some monotonicity condition on the exponent p(x).
In their following result, V = Vξ,h stands for the following cone with vertex at the origin

V = Vξ,h =
⋃

0<t≤1

B(tξ, th), 0 < h < |ξ |.

THEOREM 3.3 (Edmunds and Rákosník) Let � be an open, non-empty set and p: � → [1, ∞)

a bounded measurable function. Let also p(x) satisfy the condition that for every x ∈ � there
exist numbers r = r(x) ∈ (0, 1], h = h(x) ∈ (0, ∞) and a vector ξ = ξ(x) ∈ R

n\{0} such
that

h < |ξ | ≤ 1, B(x, r) + V (x) ⊂ �

and

p(x) ≤ p(x + y) for almost all x ∈ �, y ∈ V (x) = Vξ(x),h(x).

Then the set C∞(�)
⋂

Wm,p(·)(�) is dense in Wm,p(·)(�).

In particular, in the one-dimensional case, Theorem 3.3 provides denseness of C∞-functions
on an open set � in R

1 for any bounded monotone function p(x) with values in [1, ∞).
The denseness of C∞

0 (Rn) in the Sobolev spaces Wm,p(·)(Rn) without monotonicity
assumption was proved in refs. [48, 49] under the usual logarithmic smoothness condition.

THEOREM 3.4 (Samko) Let p(x) satisfy the assumption 1 ≤ p(x) ≤ P < ∞ and condition
(4) in R

n. Then C∞
0 (Rn) is dense in Wm,p(·)(Rn).

Similar statements for the spaces Wm,p(·)(�) on domains in R
n were given in refs. [32, 50].

Their results run as follows.

THEOREM 3.5 (Fan and Zhao) Let � be an open bounded set in R
n and the exponent p(x)

satisfy the condition

1 ≤ p(x) ≤ P < ∞, x ∈ � (12)

and condition (4). Then C∞
0 (�)

⋂
Wm,p(x)(�) is dense in Wm,p(·)(�) and the closure of

C∞
0 (�) in the norm of Wm,p(·)(�) coincides with the space Wm,p(·)(�) ∩ W

m,1
0 .

THEOREM 3.6 (Burenkov and Samko) Let � be an open set in R
n and the exponent p(x)

satisfy condition (2) and let for each compact G ⊂ �, there exist a constant MG > 0 such
that

|p(x) − p(y)| ≤ MG

log (1/|x − y|) , x, y ∈ G, |x − y| ≤ 1

2
. (13)

Then C∞(�)
⋂

Wm,p(·)(�) is dense in Wm,p(·)(�).

Also, Diening [51, Theorem 3.7] proved the following statement.

THEOREM 3.7 (Diening) Let � be a bounded domain in R
n with Lipschitz boundary. If the

exponent p(x) satisfies condition (2) and is such that the maximal operator is bounded in the
space Lp(·)(�) [particularly, if (3) and (4) hold], then C∞(�) is dense in W 1,p(·)(�).

Proofs in refs. [48–50] are based on a result on the uniform boundedness of the dilation
convolution operators obtained in refs. [48, 49], which itself is of interest for the spaces Lp(·).
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Let � be a bounded domain, K(x) a measurable function with support in the ball BR = B(0, R)

of a radius R < ∞, and

Kεf = 1

εn

∫
�

K
(

x − y

ε

)
f (y) dy.

We define the larger domain �R = {x: dist(x, �) ≤ R} ⊇ � and suppose that the exponent
p(x) is defined in �R . Let

Q =
⎧⎨
⎩

sup
x∈�R

p(x)

p(x) − 1
, if |E1(p)| = 0

∞, if |E1(p)| > 0
, where E1(p) = {x ∈ �R: p(x) = 1}.

THEOREM 3.8 (Samko) Let K(x) ∈ LQ(BR) and let p(x), 1 ≤ p(x) ≤ P < ∞, x ∈ �R

satisfy condition (4) in �R . Then the operators Kε are uniformly bounded from Lp(·)(�)

into Lp(·)(�R):

‖Kεf ‖Lp(x)(�R) ≤ c‖f ‖Lp(·)(�)

where c does not depend on ε. If
∫
BR

K(y)dy = 1, then (9) is an identity approximation in

Lp(x)(�):

lim
ε→0

‖Kεf − f ‖Lp(x)(�R) = 0, f (x) ∈ Lp(x)(�).

A periodic analogue of Theorem 3.8 was earlier proved in the one-dimensional case in
ref. [52].

COROLLARY 3.1 Let

fε(x) = 1

εn|B(0, 1)|
∫

y∈�,|y−x|<ε

f (y) dy (14)

be the Steklov mean of the function f (y). Then

lim
ε→0

‖fε − f ‖Lp(x)(�) = 0 (15)

under the assumptions of Theorem 3.8 on p(x).

Remark 1 The statement (15) is an analogue of mean continuity property for Lp(x)-spaces,
but with respect to the averaged ‘shift’ operator (14). In the standard form, the mean
continuity property limh→0 ‖f (x + h) − f (x)‖p = 0, generally speaking, is not valid for
variable exponents p(x) and, moreover, there exist functions p(x) and f (x) ∈ Lp(x) such that
f (x + hk) /∈ Lp(x) for some hk → 0; see ref. [30, Example 2.9 and Theorem 2.10].

In this connection, we also note that in the paper by Fiorenza [53], it was shown that the
known estimation of ‖f (x + h) − f (x)‖p via |h| · ‖∇f ‖p for functions f ∈ W 1,p admits a
certain extension for variable exponents p(x) in the case of a bounded cube � in R

n; see
details in ref. [53, Theorem 2.1].

Remark 2 Compare Theorem 3.8 with a similar statement given in Theorem 5.7; the latter
is given under less restrictive assumptions on integrability of the kernel k(x), but on the
other hand Theorem 3.8 does not require that k(x) must have a decreasing integrable radial
dominant.
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In this survey, mainly devoted to the operator theory in the spaces Lp(·), we do not dwell
more on Sobolev spaces Wm,p(�), but observe that some basic properties of these spaces
were first obtained in the paper by Kovácǐk and Rákosnǐk [30]. Recently, there were obtained
some breakthrough results on Sobolev imbeddings with variable exponents. We do not go
into details with the exact formulations of the results on Sobolev imbeddings, but refer the
interested reader to the papers by Edmunds and Rákosnǐk [54, 55], Rákosnǐk [56], Diening [34,
57, 58], Fan et al. [59, 60].

4. Hardy–type operators in the spaces Lp(·)

Let now n = 1, � = (0, �) with 0 < � < ∞ and

Hβf (x) = xβ−1
∫ x

0

f (t)

tβ
dt, Hβ

∗ f (x) = xβ

∫ �

x

f (t)

tβ+1
dt (16)

be the weighted Hardy-type operators and

Hβf (x) = xβ

∫ �

0

f (t)

tβ(t + x)
dt. (17)

the weighted Hankel-type operator; obviously Hβf (x) ≤ Hβf (x) + H
β
∗ f (x) on non-

negative functions f (x). It was natural to expect that the boundedness of these operators
in the spaces Lp(·)(0, �) holds under the assumptions (3) and (4) if

− 1

p(0)
< β < 1 − 1

p(0)
. (18)

This is the case as was shown in refs. [61, 62] and even more, it suffices to assume that
conditions (3) and (4) holds in a neigbourhood of the point x = 0.

THEOREM 4.1 (Kokilashvili and Samko) Let conditions (3) and (4) be satisfied on a neigh-
bourhood [0, d] of the origin, d > 0. Then the operators Hβ, H

β
∗ and Hβ are bounded in the

space Lp(·)(0, �) under condition (18).

Theorem 4.1 was proved in refs. [61, 62] in a more general setting showing that the operators
Hβ, H

β
∗ and Hβ are bounded from Lp(·)(0, �) into Ls(·)(0, �) with an arbiitrary s(x) such that

p(0) = s(0), stated as follows.

THEOREM 4.2 (Kokilashvili and Samko) Let 1 ≤ p(x) ≤ P < ∞ for x ∈ [0, �].
I. Let conditions (3) and (4) be satisfied on a neighbourhood [0, d] of the origin, d > 0.

Under condition (18), the operators Hβ, H
β
∗ and Hβ are bounded from Lp(·)(0, �) into

Ls(·)(0, �) with any s(x) such that 1 ≤ s(x) ≤ S < ∞ for 0 ≤ x ≤ �,

s(0) = p(0) and |s(x) − p(x)| ≤ A

ln(1/x)
, 0 < x < δ, δ > 0. (19)

II. If p(0) ≤ p(x), 0 ≤ x ≤ d, for some d > 0, then the same statement on boundedness from
Lp(·)(�) into Ls(·)(�) is true if the requirement of the validity of conditions (3) and (4) on
[0, d] is replaced by the weaker assumption that

p(0) > 1 and |s(x) − p(0)| <
A

ln(1/x)
, 0 < x < min

(
�,

1

2

)
. (20)
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5. Maximal operators in the spaces Lp(·)

Let

Mf (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)∩�

|f (y)| dy (21)

be the maximal operator and

Mβf (x) = |x − x0|β sup
r>0

1

|B(x, r)|
∫

B(x,r)∩�

|f (y)|
|y − x0|β dy, (22)

its weighted version, x0 ∈ �.
For the operator M to be bounded in the space Lp(·), it was expected that the function p(x)

must be continuous and even more, satisfy condition (4).
First it was proved that condition (4) is in fact necessary. In ref. [63], the following statement

was proved.

THEOREM 5.1 (Pick and Ružička) Let � = (−1, 1) ⊂ R
1 and 1 < p0 < ∞. Let ϕ be a

positive increasing function on [0, 1] with ϕ(0) = 0 and

lim
x→0+ ϕ(x) ln

(
1

x

)
= ∞.

Assume that p(x) ≤ p0 for x ∈ (−1, 0] and p(x) = p0 + ϕ(x) for x ∈ [0, 1). Then the
maximal operator M is not bounded in the space Lp(·)(�).

The sufficiency of condition (4), provided by the next theorem, was proved by Diening
[34, 51].

THEOREM 5.2 (Diening) Let � be a bounded domain. Under conditions (3) and (4), the
maximal operator M is bounded in the space Lp(·)(�).

Diening also showed that this statement is valid in the case � = R
n if p(x) is constant

outside some ball; see refs. [34, 57, 58].
When � is an unbounded domain, for the exponents p(x) not necessarily constant at infinity,

the boundedness results for the maximal operator were independently obtained by Nekvinda
[64, 65] and Cruz-Uribe et al. [41, 42]. Their results run as follows.

THEOREM 5.3 (Cruz-Uribe, Fiorenza and Neugebauer) Let p(x) satisfy conditions (3), (4)
and (6). Then the maximal operator M is bounded in the space Lp(·)(�).

THEOREM 5.4 (Nekvinda) Let � = R
n and p(x) meet assumptions (3) and (4) and let there

exist a constant p∞ > 1 such that the function ϕ(x) = |p(x) − p∞| satisfies the condition
∫

Rn

ϕ(x)C1/ϕ(x) dx < ∞ for some C > 0. (23)

Then the maximal operator M is bounded in the space Lp(·)(Rn).

We note that assumption (23) for ϕ(x) = |p(x) − p∞| is valid in the case of any function
p(x) satisfying condition (6). Indeed, equation (6) implies equation (5) and it remains to
observe that the function ϕ0(x) = 1/ln (e + |x|) satisfies equation (23), with any C ∈ (0, 1/n)
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(and ϕ0 multiplied by a positive bounded function, again satisfies equation (23); see Lemma
2.10 from ref. [65]).

In refs. [41, 42], it was also shown that the condition infx∈ p(x) > 1 is necessary for the
maximal operator to be bounded, at least within the frameworks of upper semicontinuous
exponents p: � → [1, ∞); see ref. [42], Theorem 1.7. It was also proved in ref. [42] that
when p(x) stabilizes to a constant p∞ at infinity, then the logarithmic condition (6) is also
necessary in a sense, at the least in the one-dimensional case as can be seen from the following
theorem of the type of Theorem 5.1.

THEOREM 5.5 (Cruz-Uribe, Fiorenza and Neugebauer) Let � = R
1 and p(x) = p∞ + ϕ(x),

where 1 < p∞ < ∞ and ϕ(x) ≡ 0 for x ≤ 0 and ϕ(x) is decreasing when x ≥ 1 with
limx→∞ ϕ(x) = 0 and 0 ≤ ϕ(x) ≤ p∞ − 1. If limx→∞ ϕ(x) ln x = ∞, then the maximal
operator M is not bounded in the space Lp(·)(�).

The importance of the logarithmic condition sup|x|>2 |p(x) − p∞| ln x < ∞ at infinity
is also underlined by a counter-example of Edmunds and Nekvinda [36]. For the space
Lp(·)(R1+), they showed that there exists a bounded Lipschitz function p(x) on R

1+ (but
not satisfying the earlier condition at infinity) such that not only the maximal operator
(Mf )(x) = supr>0(1/r)

∫ x+r

max{0,x−r} |f (y)| dy, but even the average

Mrf (x) = 1

r

∫ x+r

x

f (y) dy with |Mrf (x)| ≤ (M|f |)(x)

is not bounded in the space Lp(·)(R1+) for any fixed r > 0.
Weak type estimate for the maximal operator in the case of variable p was given in the paper

by Cruz-Uribe et al. [41, 42]. Up to our knowledge, this is the only result on weak estimates in
Lp(·)-spaces. As can be seen from its formulation as follows, it does not require the exponent
p(x) to be even continuous.

THEOREM 5.6 (Cruz-Uribe, Fiorenza and Neugebauer) Given an open set �, suppose that
p(x): � → [1, ∞) can be extended to R

n in such a way that it satisfies the property

1

p(x)
≤ C

|B|
∫

B

dy

p(y)
for any ball B and for almost all x ∈ B.

Then

|{x ∈ �: Mf (x) > t}| ≤ C

∫
�

( |f (y)|
t

)p(y)

dy. (24)

A very important observation made by Diening [51, Corollary 3.6] was that the Stein
theorem on uniform boundedness of dilation convolution operators with radial integrable
dominant remains valid for the variable exponents. Namely, the following statement holds.

THEOREM 5.7 (Diening) Let p(x) satisfy condition (12) and k(x) an integrable function whose
least decreasing majorant is integrable, that is, A := ∫

Rn sup|y|≥|x| |k(y)| dx < ∞. Then

(i) | supε>0(1/εn)
∫

Rn k((x − y)/ε)f (y) dy| ≤ 2A(Mf )(x) for all f ∈ Lp(·)(Rn); if also the
maximal operator M is bounded in Lp(·)(Rn), then

(ii) ‖ supε>0(1/εn)
∫

Rn k((x − y)/ε)f (y) dy‖Lp(·)(Rn) ≤ C‖f ‖Lp(·)(Rn); if in addition∫
Rn k(y) dy = 1, then also

(iii) (1/εn)
∫

Rn k((x − y)/ε)f (y) dy → f in Lp(·)(Rn) and almost everywhere.
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For the weighted maximal operator Mβ , a criterion of boundedness in Lp(·)(�) in the case
of bounded domains was obtained in refs. [61, 62, 66]. To formulate this result, in the necessity
part we need the following restriction on the boundary

|�r(x0)| ∼ rn, where �r(x0) = {y ∈ �: r < |y − x0| < 2r}, (25)

in the case x0 ∈ ∂�.
The necessary and sufficient condition (26) in the following theorem on the exponent β of

the weight |x − x0|β fixed to the point x0 is naturally related to the local value of the exponent
p(x) at the point x0.

THEOREM 5.8 (Kokilashvili and Samko) Let � be a bounded domain and p(x) satisfy
conditions (3) and (4). The operator Mβ with x0 ∈ � is bounded in Lp(x)(�) if and only
if

− n

p(x0)
< β <

n

q(x0)
. (26)

If x0 ∈ ∂�, condition (26) is sufficient for the boundedness of Mβ . If x0 ∈ ∂� and assumption
(25) is satisfied, then condition (26) is also necessary for the boundedness of Mβ .

6. Singular operators in the spaces Lp(·)

6.1 Boundedness results

There is also an evident progress on boundedness of singular operators in the spaces Lp(·).
Diening and Ružička [24, 25] considered the Calderon–Zygmund-type operators. Let

Tf (x) = lim
ε→0

∫
|x−y|>ε

k(x, x − y)f (y) dy (27)

where the kernel k(x, y) satisfies the assumptions:

|k(x, y)| ≤ A|x − y|−n, (28)

|k(x, y) − k(z, y| ≤ A
|x − z|δ

|x − z|δ+n
, |k(y, x) − k(y, z| ≤ A

|x − z|δ
|x − z|δ+n

(29)

with some A > 0 and δ > 0. When the operator T extends to a bounded operator on L2(Rn), it
is called the Calderon–Zygmund-type operator. It is known that any Calderon–Zygmund-type
operator is bounded in any space Lp(Rn), 1 < p < ∞, p = const; see ref. [67].

Let also

T ∗f (x) = sup
ε>0

∫
|x−y|>ε

k(x, x − y)f (y) dy. (30)

Diening and Ružička [24, 25] proved the boundedness of the operators of T and T ∗ in the
spaces Lp(·)(Rn) under the assumption that also the following conditions are satisfied:

k(x, z) is homogeneous in z of degree − n, (31)

sup
x∈Rn

∫
Sn−1

|k(x, z)|r dS(z) < ∞ for some r > 1 and
∫

Sn−1

k(x, z) dS(z) = 0. (32)

We refer also to the preprint [68] where the results from refs. [24, 25], are extended to Calderon–
Zygmund singular operators related to the half-space R

n+1
+ .
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The result of Diening and Ružička [24, 25] combined with Theorems 5.3 and 5.4 may be
formulated as follows.

THEOREM 6.1 (Diening and Ružička) Let the kernel k(x, z) satisfy the assumptions (28), (29)
and (31), (32). Then the operators T and T ∗ are bounded in the space Lp(·)(Rn), if p(x)

satisfies assumptions (3) and (4) and one of the conditions (6) and (23).

COROLLARY 6.1 The singular integral operator

Sf (x) = 1

π

∫
R1

f (t)

t − x
dt, x ∈ R

1, (33)

is bounded in the space Lp(·)(R1), if p(x) satisfies assumptions (3) and (4) and one of the
conditions (5) and (23).

As is known, for application the weighted boundedness of singular operators is required.
In the case of bounded domains, the weighted estimates with power weights for the operators
T and T ∗ were proved in refs. [69, 70]. Let

ρ(x) =
m∏

k=1

|x − ak|βk , where ak ∈ �

and

Lp(·)(�, ρ) = {f : ρf ∈ Lp(·)(�)}.

THEOREM 6.2 (Kokilashvili and Samko) Let � be a bounded domain and p(x) satisfy
assumptions (3) and (4). The operators T and T ∗ are bounded in the space Lp(·)(�, ρ),

if

− n

p(ak)
< βk <

n

q(ak)
, k = 1, . . . , m. (34)

Because of applications to integral equations, similar results on curves are of special interest.
Let

Lp(·)(	, ρ) = {f : ‖f [t (s)]ρ(s)‖Lp(s) < ∞},
where

ρ(s) =
m∏

k=1

|t (s) − t (ck)|βk ≈
m∏

k=1

|s − ck|βk , ck ∈ [0, �], k = 1, 2, . . . , m. (35)

THEOREM 6.3 (Kokilashvili and Samko) Let 	 be a Lyapunov curve or a curve of bounded
rotation without cusps and let p(t) meet conditions (7) and (8). The singular operator

S	f (t) = 1

π

∫
	

f (τ) dτ

τ − t
(36)

is bounded in the space Lp(·)(	, ρ) with the weight function (35) if and only if

− 1

p(ck)
< βk <

1

q(ck)
, k = 1, 2, . . . , m. (37)
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COROLLARY 6.2 Let � = [a, b], ρ(x) = ∏m
k=1 |x − ak|βk , ak ∈ [a, b], k = 1, . . . , m, and

p(x) satisfy conditions (3) and (4) on [a, b]. Then the finite Hilbert transform is bounded
in the space Lp(·)([a, b], ρ), if −1/p(ak) < βk < 1/q(ak), k = 1, 2, . . . , m.

Another version of weighted estimates for the singular operator was given in refs. [71, 72]
for some modification of the space Lp(·). Let f ∗(t) = sup{s ≥ 0: m{x ∈ �: |f (x)| > s} > t}
be the usual non-increasing rearrangement of a function f , m denoting the Lebesgue measure;
f ∗(t) = 0 for t > |�|. Let also

f ∗∗(t) = 1

t

∫ t

0
f ∗(y) dy, f ∗(t) ≤ f ∗∗(t).

Assuming that the function p satisfies assumption (3) on [0, �], � = |�|, by �p(·)(�), we
denote the space of functions measurable on � for which

‖f ‖�p(·)(�) := ‖f ∗∗‖Lp(·)[0,�] < ∞, (38)

which was introduced in refs. [71, 72].
Let

Kf (x) = v.p.

∫
Rn

k(y)

|y|n f (x − y) dy, x ∈ �, (39)

be the Calderon–Zygmund operator with an odd kernel k homogeneous of degree 0 and
satisfying the Dini condition on the unit sphere Sn−1

∫ 2

0

ω(δ)

δ
dδ < ∞, where ω(δ) = sup

x,y∈Sn−1,|x−y|≤δ

|k(x) − k(y)|.

THEOREM 6.4 (Kokilashvili and Samko) Let 1 ≤ p(t) ≤ P < ∞ on [0, �], � = |�| and let
the conditions 1 < p0 ≤ p(t) < P < ∞ and

|p(t1) − p(t2)| ≤ A

ln(1/|t1 − t2|) , |t1 − t2| ≤ 1

2

be satisfied in a neighbourhood [0, d] of the origin, d > 0. Then the operator K is bounded
in �p(·)(�).

In refs. [71, 72], there was also obtained a weighted version of Theorem 6.4. Let �
p(·)
w (�)

be the weighted space of functions for which

‖f ‖
�

p(·)
w

= ‖wf ∗∗‖Lp(·) < ∞
In the case w(t) = tβ , −1/p(0) < β < 1/q(0), we have ‖f ‖

�
p(·)
w

≈ ‖wf ∗‖�p(·) .

THEOREM 6.5 (Kokilashvili and Samko) Let p(t) satisfy assumptions of Theorem 6.4 on
[0, �], � = |�| and let w(t) = tβ . The operator K is bounded in the space �

p(·)
w (�), if

− 1

p(0)
< β <

1

q(0)
.

Similar statements on boundedness of singular operators in the spaces �p(·)(	) and �
p(·)
w (	)

on Lyapunov curves 	 or curves with bounded rotation without cusps were also given in
refs. [71, 72]; see Theorems 4.1 and 4.3 in ref. [71].



474 S. Samko

6.2 An open problem

The validity of Theorem 6.3 on ‘bad’ curves and with general weights remains an open prob-
lem. Theorem 6.3 states that the logarithmic smoothness condition guarantees the boundedness
of the singular operator on Lyapunov curves or curves of bounded rotation without cusps. An
open question is whether the boundedness of the singular integral operator may be proved
only under the logarithmic smoothness condition on an arbitrary Carleson curve.

Or, can it be proved on Carleson curves if p(t) is even infinitely differentiable, but variable.
Or probably on the whole class of Carleson curves, the boundedness may be true only for
constant p? All these questions are open.

6.3 Compactness of some integral operators in the spaces Lp(·)

Let

Af (x) =
∫

�

c(x, y)

|x − y|n−α(x)
f (y) dy (40)

be an integral operator with a weak singularity (‘of variable order’). In refs. [61, 62], there
was obtained the following statement.

THEOREM 6.6 (Kokilashvili and Samko) Let � be a bounded open set in R
n and c(x, y),

a measurable bounded function on � × �. Under assumptions (3) and (4) on p(x) and the
condition infx∈� α(x) > 0, the operator (40) is compact in the space Lp(·)(�).

We refer also to the paper by Edmunds and Meskhi [73], where some compactness statements
were obtained for the operators of one-dimensional fractional integration operators on an
interval � = [0, 1].

We also observe that the property of the commutators

aS	 − S	a

where a stands for the operator of multiplication by a function a ∈ C(	), to be compact in
Lp(	), 1 < p < ∞, remains valid for the case of variable p under the only assumption that
the operator S	 is bounded in the space Lp(·)(	).

6.4 Fredholmness of singular integral equations in the spaces Lp(·)(�)

The theory of singular integral equations is a rather old and highly developed topic. We refer
to the well-known books by Gakhov [74] and Muskhelishvili [75] for the ‘classical’ period
and to the books by Gohberg and Krupnik [76, 77] for the later ‘operator theory’ period; many
aspects of the modern theory of singular integral operators may be found in Böttcher and
Karlovich [78, 79].

Let

Aϕ := A(t)ϕ(t) + B(t)(S	ϕ)(t), t ∈ 	 (41)

be the well-known singular integral operator on a closed curve 	. In the case where the
coefficients A and B are continuous on 	, the Fredholm properties and the index of the
operator N , do not depend on the choice of the space, the only requirement to the space, in
fact, is that the singular operator S	 must be bounded in the space under the consideration.
When the coefficients A and B are discontinuous, the theory is more interesting. We remind the
well-known result on Fredholmness of the operators (41) in the spaces Lp(	) with constant p
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in the case of piece-wise continuous coefficients, which is due to Gohberg and Krupnik [80];
see also refs. [76, 77]. First, we rewrite the operator A in the standard form

(Aϕ)(t) = a(t)(P+ϕ)(t) + b(t)(P−ϕ)(t), (42)

via projectors P± = (1/2)(I ± S	).
We remind that a function a(t) ∈ PC(	) with the discontinuity points t1, t2, . . . , tn ∈ 	 is

said to be p-nonsingular on 	, if inf t∈	 |a(t)| > 0 and at all the points of discontinuity of a(t)

the following condition is satisfied:

arg
a(tk − 0)

a(tk + 0)
�= 2π

p
(mod 2π), k = 1, 2, . . . , n. (43)

Under these conditions, the integer

indp a = 1

2π

∫
	

d arg a(t) −
n∑

k=1

1

2π
arg

a(tk − 0)

a(tk + 0)
, (44)

where the values of (1/2π) arg(a(tk − 0)/a(tk + 0)) are chosen in the interval

− 1

q
<

1

2π
arg

a(tk − 0)

a(tk + 0)
<

1

p
,

1

p
+ 1

q
= 1, (45)

is called the p-index of the function a.
The result on Fredholmness of the operator (42) with PC-coefficients in the spaces Lp(	)

is given by the following theorem.

THEOREM 6.7 (Gohberg and Krupnik) Let 	 be a closed Lyapunov curve and let p(t) ∈ P .
The operator A = aP+ + bP− with a, b ∈ PC(	) is Fredholm in the space Lp(·)(	) if and
only if inf t∈	 |a(t)| �= 0, inf t∈	 |b(t)| �= 0 and the function a(t)/b(t) is p-nonsingular. Under
these conditions IndLp(·) A = −indp(a/b).

Now, for the spaces Lp(·)(	), the question is whether it is possible to obtain a ‘localized’
version of the above theorem, that is to connect the jumps of the coefficients at the points tk
with the values of p(t) at the points tk . The answer is positive and the following corresponding
result gives necessary and sufficient conditions for the operator A to be Fredholm in the space
Lp(·)(	) together with a formula for the index under some natural assumptions on p(x). The
obtained criterion shows that Fredholmness of the operator A in the space Lp(t)(	) and its
index depend on values of the function p(t) at the discontinuity points of the coefficients a(t)

and b(t), but do not depend on values of p(t) at points of continuity.
In fact, the result on Fredholmness is a consequence of the fact that we have necessary and

sufficient conditions for the operator S	 to be bounded in the space Lp(t)(	) with the power
weight. They were given in Theorem 6.3.

We reformulate the above definitions for a variable exponent.
We say that a function a(t) ∈ PC(	) with discontinuity points t1, t2, . . . , tn is p(·)-

nonsingular, if inf t∈	 |a(t)| > 0 and at all the points of discontinuity of a(t) the following
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condition is satisfied:

arg
a(tk − 0)

a(tk + 0)
�= 2π

p(tk)
(mod 2π), k = 1, 2, . . . , n. (46)

Under these conditions, the integer

indp(·)a = 1

2π

∫
	

d arg a(t) −
n∑

k=1

1

2π
arg

a(tk − 0)

a(tk + 0)
, (47)

where the values of (1/2π) arg(a(tk − 0)/a(tk + 0)) are chosen in the interval

− 1

q(tk)
<

1

2π
arg

a(tk − 0)

a(tk + 0)
<

1

p(tk)
, (48)

where 1/p(t) + 1/q(t) ≡ 1 is called the p(·)-index of the function a.
The following extension of Theorem 6.7 to the case of variable p(t) was given in

refs. [45, 46].

THEOREM 6.8 (Kokilashvili and Samko) Let 	 be a closed Lyapunov curve or a curve of
bounded rotation without cusps and let p(t) ∈ P . The operator A = aP+ + bP− with a, b ∈
PC(	) is Fredholm in the space Lp(·)(	) if and only if inf t∈	 |a(t)| �= 0, inf t∈	 |b(t)| �= 0 and
the function a(t)/b(t) is p(·)-nonsingular. Under these conditions

IndLp(·)A = −indp(·)
a

b
. (49)

We note that Theorem 6.8 was obtained in refs. [45, 46] as a corollary to a similar statement
on Fredholmness of singular integral operators in abstract Banach function spaces. We mention
briefly this general approach later which is, in fact, an abstract Banach space reformulation of
the Gohberg–Krupnik scheme.

Let X = X(	) be any Banach space of functions on a closed simple Jordan rectifiable
curve 	 satisfying the following assumptions: (i) C(	) ⊂ X(	) ⊂ L1(	), (ii) ‖a f ‖X ≤
supt∈	 |a(t)| · ‖f ‖X for any a ∈ L∞(	), (iii) the operator S is bounded in X(	) and (iv)
C∞(	) is dense in X(	).

We introduce also the following two axioms with X(	, |t − t0|	) = {f : |t − t0|	f (t) ∈
X(	)} in the second axiom.

AXIOM 1 For the space X(	), there exist two functions α(t) and β(t), 0 < α(t) < 1, 0 <

β(t) < 1, such that the operator |t − t0|γ (t0)S|t − t0|−γ (t0)I, t0 ∈ 	 is bounded in the space
X(	) for all γ (t0) such that −α(t0) < γ (t0) < 1 − β(t0) and is unbounded in X(	) if γ (t0) /∈
(−α(t0), 1 − β(t0)).

We call the functions α(t) and β(t) index functions of the space X(	). For the spaces
X(	) = Lp(·)(	, ρ) = {f : |t − t0|μf (t) ∈ Lp(·)(	)} which are of the first interest for us,
we have α(t) = β(t) = 1/p(t) + μ, at the least on Lyapunov curves or curves of bounded
rotations without cusps, according to Theorem 6.3.

AXIOM 2 For any ν < 1 − β(t0), the imbedding X(	, |t − t0|ν) ⊂ L1(	) is valid and C∞(	)

is dense in X(	, |t − t0|ν), whatsoever t0 ∈ 	 is.

We note that the idea of singling out the bounds for the weight functions (used in Axioms 1
and 2) as the base of construction of Fredholm criterion is well known in the theory of singular
integral operators; see refs. [79, 81, 82].
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For a function a ∈ PC(	), we put γ (t) = 1/(2πi) ln a(t − 0)/a(t + 0) with �	(tk) :=
1/2π arg a(tk − 0)/a(tk + 0) and say that a ∈ PC(	) is X-nonsingular, where X = X(	),
if inf t∈	 |a(t)| > 0 and �γ (tk) /∈ [α(tk), β(tk)](mod 1) where α(t) and β(t) are the index
functions of the space X. The integer

indX a = 1

2π

∫
	

d arg a(t) −
n∑

k=1

�γ (tk) (50)

where �γ (tk) are chosen in the interval β(tk) − 1 < �γ (tk) < α(tk) will be referred to as
X-index of the function a.

THEOREM 6.9 Let X(	) be any Banach function space satisfying assumptions (i)–(iv) and
Axioms 1 and 2. The operator A = aP+ + bP− with a, b ∈ PC(	) is Fredholm in the space
X if (a) inf t∈	 |a(t)| �= 0, inf t∈	 |b(t)| �= 0 and (b) a(t)/b(t) is X-nonsingular. In this case,

IndXA = −indX

a

b
. (51)

Condition (a) is also necessary for the operator A to be Fredholm in X. If the index functions
α(t) and β(t) of the space X coincide at the points tk of discontinuity of the coefficients
a(t), b(t): α(tk) = β(tk), k = 1, 2, . . . , n, then condition (b) is necessary as well.

A further generalization of Fredholmness results for singular integral operators in Banach
function spaces, including the necessity of Fredholmness conditions for the weighted spaces
Lp(·)(	, ρ) on ‘bad’ curves may be found in ref. [83].

7. Potential operators: the Sobolev theorem and weighted estimates

7.1 On Sobolev theorem

The boundedness of the Riesz-type potential operator

Iα(·)f (x) =
∫

�

f (y)

|x − y|n−α(x)
dy (52)

from the space Lp(·)(�) into the space Lq(·)(�) with the limiting Sobolev exponent

1

q(x)
= 1

p(x)
− α(x)

n
(53)

was an open problem for a long time. It still remains open for unbounded domains in the
general case.

For many applications, it suffices to consider the case of constant α, but within the frame-
works of variable exponents, it is natural to deal with the variable α in relation (53) as well.
The order α(x) of the potential is not assumed to be continuous.

In ref. [33], in the case of bounded domains �, there was proved the following conditional
result.
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THEOREM 7.1 (Samko) Let � be a bounded open set in R
n and p(x) satisfy assumptions (3)

and (4) and let

inf
x∈�

α(x) > 0 and sup
x∈�

p(x)α(x) < n. (54)

If the maximal operator is bounded in the space Lp(·)(�), then the Sobolev theorem

‖Iα(·)f ‖Lq(·)(�) ≤ C‖f ‖Lp(·)(�)

is valid.

After Diening [34, 51] proved the boundedness of the maximal operator over bounded
domains (see Theorem 5.2), the validity of the Sobolev theorem for bounded domains became
an unconditional statement.

For the whole space R
n, the Sobolev theorem was proved by Diening [34, 57, 58,

Theorem 3.8], under the condition that the exponent p(x) is constant outside some ball of
large radius.

THEOREM 7.2 (Diening) Let � = R
n, α = const, 0 < α < n, and let p(x) satisfy conditions

(3) and (4) and be constant outside some large ball B(0, R). If supx∈Rn p(x) ≤ (n/α), then

‖Iα‖Lq(·)(Rn) ≤ C‖f ‖Lp(·)(Rn). (55)

Another version of the Sobolev theorem for the space R
n was proved in refs. [84, 85] for the

exponents p(x) not necessarily constant in a neigbourhood of infinity, but with some ‘extra’
power weight fixed to infinity and under the assumption that p(x) takes its minimal value at
infinity.

THEOREM 7.3 (Kokilashvili and Samko) Let � = R
n, 1 < p(∞) ≤ p(x) ≤ P < ∞ and

p(x) satisfy conditions (3)–(5) and let α(x) meet conditions (54) and also the condition
supx∈Rn p(∞)α(x) < n. Then the following weighted Sobolev-type estimate is valid for the
operator Iα(·):

‖(1 + |x|)−γ (x)I α(·)f ‖Lq(·)(Rn) ≤ c‖f ‖Lp(·)(Rn) (56)

where 1/q(x) = 1/p(x) − α(x)/n and γ (x) = A∞α(x)[1 − (α(x)/n)] with the constant A∞
from equation (5).

Note that γ (x) ≤ (n/4)A∞.

We observe that the proof of Theorem 7.3 is based on Theorem 5.3 and on a modification of
the estimates for ‖ |x − x0|β(x0)‖Lp(·)(Rn\B(x0,r)), as r → 0 and r → ∞, uniform in x0 obtained
in ref. [33].

7.2 Weighted estimates

Weighted estimates for the Riesz potential in spaces with variable exponent are also of great
interest. Let

I
α(x)
β f (x) = |x − x0|β

∫
�

f (y) dy

|y − x0|β |x − y|n−α(x)
, x0 ∈ �. (57)

In refs. [61, 62, 66], the following statement was obtained.
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THEOREM 7.4 Let � be an open bounded set, p(x) satisfy conditions (3) and (4) and
infx∈� α(x) > 0. Then the operator I

α(·)
β is bounded in Lp(·)(�) if

− n

p(x0)
< β <

n

q(x0)
. (58)

The Hardy-type inequality given in the next theorem was proved in ref. [86].

THEOREM 7.5 (Samko) Let � be a bounded open set in R
n, x0 ∈ � and p(x) satisfy conditions

(3) and (4). Suppose that α(x) satisfies the same logarithmic condition as p(x) in equation (4)
and infx∈� α(x) > 0 and α(x0) < n. Then the Hardy-type inequality is valid

∥∥∥∥|x − x0|β−α

∫
�

f (y) dy

|y − x0|β |x − y|n−α(x)

∥∥∥∥
Lp(·)(�)

≤ c‖f ‖Lp(·)(�) (59)

for all β in the interval

α − n

p(x0)
< β <

n

q(x0)
. (60)

In the one-dimensional case, for the Riemann–Liouville fractional integration operators

(I
α(·)
0+ f )(x) =

∫ x

0

f (t) dt

(x − t)1−α(x)
, (I

α(·)
− f )(x) =

∫ ∞

x

f (t) dt

(t − x)1−α(x)
, x ∈ R

1
+, (61)

the Hardy-type inequality of the type (59) with β = 0 was proved in ref. [74]. After some
reformulation, the results from ref. [73] may be given as follows.

THEOREM 7.6 (Edmunds and Meskhi) Let 0 < α(x) ≤ 1 on [0, 1] and p(x) satisfy assump-
tions (3) and (4) on � = [0, 1]. Then

‖x−α(x)|2α(x) − 1|(I α(·)
0+ f )(x)‖Lp(·)[0,1] ≤ C‖f ‖Lp(·)[0,1]. (62)

THEOREM 7.7 (Edmunds and Meskhi) Let α(x): R
1+ → (0, 1] be a non-decreasing function

on R
1+ and p(x) satisfy assumptions (3–5) on � = R

1+. Then

‖vI
α(·)
0+ wf ‖Lp(·)(R1+) ≤ C‖f ‖Lp(·)(R1+), (63)

where

v(x) = x−α(x)(1 + x)(2/p′(x))+1[2α(x) − 1], w(x) = (1 + x)(2p(x))−α(x)−1

In addition, if α(x) satisfies assumptions (4) and (5) on R
1+, then also

‖ρI
α(·)
− rf ‖Lp(·)(R1+) ≤ C‖f ‖Lp(·)(R1+),

where

ρ(x) = (1 + x)(2/p′(x))−α(x)−1, r(x) = x−α(x)(1 + x)(2/p(x))+1[2α(x) − 1].
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