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Abstract

There is given a generalization of the Marchaud formula for one-dimensional
fractional derivatives on an interval (a,b), —oo < a < b < 00, to the multi-
dimensional case of functions defined on a region in R™:

J@) = (),

() = o) |an(e)f(@) + [ 0

, x € Q, 0<a<l,

which is the Riesz fractional derivative of the zero continuation of f(z) from
Q2 to the whole space R™, ¢(«) being a certain constant. A special attention
is paid to the role of the coefficient aq(z), which in the multidimensional
case is estimated in terms of the power of the distance of the point z to
the boundary 9€2. In the case when €2 is a ball, this function is calculated
explicitly in terms of the Gauss hypergeometric function.

It is also shown that the operator D acts boundedly from the range of
the Riesz potential operator I§(L,(Q)) to L,(Q),1 <p < L.
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1. Introduction

The Marchaud formula

o 1 fla fle—t
Df(x)zf(l—a)(:c—(cz) 1_@ / t1+a )dt, x> a,

0
(1.1)

for fractional derivatives of order 0 < a < 1, is well known, see [5], Subsec-
tion 13.1, which is a “difference form” of the Riemann-Liouville fractional
derivative.

We introduce a multidimensional analogue of this formula in domains in
R™ adjusted for the Riesz fractional derivatives, see about Riesz fractional
derivatives = hypersingular integrals in [5], Section 26.

This generalized Marchaud formula for a domain 2 has the form

a/(2) = c(a) |a / fa W Cseo (19)

where 0 < o < 1 and

d
aq(x) = / W and cla) =
RM\Q

We prove a property of the function a(x) important for further ap-
plications, namely, that the function a(z) behaves, generally speaking as
[0(x)]~“, as x approaches the boundary 0f), where 0(x) = dist(x,0Q) is
the distance of a point x € € to the boundary. We also show that in the
case of the ball Q@ = {z € R" : |z| < 1} the function a(x) may be explicitly
calculated. Finally, we show that the operator D, has some features of the
operator inverse to the Riesz potential operator over (2.

2. Definition

As is known([5], Section 26), for functions defined on the whole Eu-
clidean space, the Riesz derivative D*f = F~1|¢|*F f, where F stands for
the Fourier transforms, in the case 0 < o < 1 has the form

o f(z o))
Df = cla / ’ ‘n—i—a dy
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Let now 2 be a domain in R” and f(z) a function defined in Q. We introduce
the fractional Riesz-type derivative D f(x) of f as a restriction onto €2 of the
Riesz derivative of the zero extension of f to the whole space R™. Namely,
let

enft) = { J TE R =T

Then, by definition

of(x): =roDEq f(x / /@ |n+a —Y) dy, zeQ, (2.1)

where rq stands for the operator of restriction onto 2. By splitting the
integration in (2.1) to [, + fR"\Q’ we easily arrive at (1.2).
In what follows, the convergence of the integral in (1.2) is interpreted
as
@ =10) o [ f@=1W)
|z — y[rte =0 |z —y|rte

yeQ
ly—z|>e

x € €. (2.2)

Obviously, this integral absolutely converges on functions f satisfying the
Holder condition of order A > « in Q. The integral, defining a(z) is always
convergent, see estimation in (3.3).

3. Boundary behavior

We recall that a domain {2 is said to have the cone property, if for every
x € ) there exists a finite cone C, centered at the point x, contained in
2 and congruent to a finite cone of fixed aperture centered at the origin (a
finite cone Cj is the intersection of open ball centered at the origin with
the set {\z; A > 0, |z — 20| < r}, where zp # 0 and r > 0 are fixed), see for
instance, [1], p. 300.

ProprosITION 3.1. Let €2 be an arbitrary domain in R™. Then for all
x e R
1 |SnL 2rz

) C1 = = .

[0 ()] a al'(3)

(3.1)

If the domain R™\Q has the cone property, then there exists a constant
co > 0 such that

IN

ag(z) <

B (3.2)
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Proof. Forz €, we have

dy dy / dy
7 < -7 = . 3.3
/ |z — y|nte — / |z — y|nte . |y |t (3:3)

R™\Q yER™ yER
le—y|=6(x) ly|>3(x)

Passing to polar coordinates, we arrive at the estimate in (3.1).

To prove the left-hand side estimate in (3.2), we choose the boundary
point xg € 9 (depending on x and not necessarily unique) at which |z —
xo| = 6(x). Then,

|z —y| <o —wo| + |zo - y]

dy
aql(x) > / .
@02 | o=yl + 5@
R\Q
Since R™\2 has the cone property, there exists a finite cone I'q(x, 0)

T

with vertex at x¢ and fixed aperture (= arctgw) > 0, such that T'q(z,0) C
R™\Q. Then

and

/ dy S dy

[lzo — y[ + o)+ — [lwo — y| + d(z)]"te
RMQ B(z0,0(z))NT'a(z0,0)
After translation to the origin and passing to polar coordinates, we

btai
obtain 5(2)

pn—ldp G
ag(x) > O/ o+ 0(z)]nre / do = [6(x)]’

Sn=1A0g(0,0)

where
i Ld ()
thTdt . . _ jgn—1
a=c@ [ Gy =y FlnnasnLi—1), C(Q) = [$77A0(0)
0
where F' = oI} is the Gauss hypergeometric function. [

4. The function aq(z) in the case of the ball
THEOREM 4.1. In case §2 is the ball B(0, R), the function aq(z) has
the form

Sn_1 a a+n n |z
ap(o,r) () = ‘QRQ‘F (2, SEREDL ’R‘2> , lz| < R. (4.1)
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It has also the following representation

Ar(|x])

ap(o,r)(x) = & - |z2)" (4.2)
with AR(0) = 2515"1| and Ar(R) = (2R)® ”TF(FC)) where
., 1
Ag(r) = T+ %ZT)QF (=9) 0/33_1(1 —5) 2 HR*—r®+sr?)2ds (4.3)

|Sm=1 N a an |z|?
( |£B|)2 272’27 R2_’x‘2

P 1o o f. The function ap( ry(z) depends on |z| only. Let us denote
a(r) := ap(o,r)(z),r = |z|, for brevity. It suffices to consider the case R = 1.
After passing to polar coordinates alnd using the Catalan formula

/fx o)do = |S"" 2]/f|:c|t )1 —t3)7, zeRY,

Sn— 1
we arrive at

a(r) = [~ 2‘/1—t2 " dt

(2—2st+1)n+Ta

(s2—2st+1) 2

o\ \8
&

Since (1 — 2st + s2)™* = z CR(t)sk, where C(t) are the Gegenbauer

polynomials, we obtain
1
2k

o) =282y g [a- o e @

kZOQk—i—ao

where we took into account that the Gegenbauer polynomials of odd order
are odd. The formula

/1 i VAT (55 (59), (5 + 1),

1132 ¢, (t)dt =
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holds, see 2.21.2.3 in [3]. Making use of this formula, after easy calculations
with the duplication formula for the Gamma-function taken into account,

we arrive at
a+n

*ISn— |Z )2 )k 2k

which is nothing else but (4.1) with R = 1.
To get (4.3) from (4.1), it suffices to make use of the transformation
formula for the Gauss hypergeometric function:

F(a,b;c;z):(l_z)—aF< b z1>

COROLLARY 4.2. In the case n = 2m + 1 is odd, ap(o,r)(z) is an ele-
mentary function for any a € (0,1):

m

dr2m

l1—«a

=dpo(1-1%)72

{a=rym =5 ()2 + (-1}
(4.5)

ap(o,1) (z) ‘ || =r

—1
a7 I(1-759)
+
. F n2a
In particular, when n = 3 one has

where dy, o =

pon(@) = g { (243 ) [0+l + (= fa ]
1ok - ),

+
]

P roof. When n is odd, we could write n = 2m + 1, then
a a+1 1
a>m”\( s g i)

2

Using the formula
d” st
o [(1 —z) + 1F(a, b; ¢ z)]

(@)n(c—b)n
(©)n

see for example, 7.2.1.13 from [4], and the fact that the hypergeometric

function is symmetric with respect to a and b, we get

(1= 2)* "' Fla+n,bic+nz),
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a+1 a1l 2>
Pt em g emrt) = () .
2 272 (*35), (55%),,
— a-1, at+l al ,
< (125" TQm[l—r 2 mF( ! 22)} (4.6)

Then by the formula

I 1 1
Foatgigs) =5 0+vA 4 0-vA ™, @1
see [4], formula 7.3.1.106, after simplifications we arrive at (4.5). ]

REMARK 4.3. When n = 2m is even, the function a(r) may not be
expressed in terms of elementary functions, being given by

Sutl o (m— 1) s
o ( 1) (%+1)m—1(1_%)m—1(1 )

a(r) =

(4.8)

d\"! 2vm—2 | 10 1+72 2r 4 1+7?
as) {e-r e () - Sn (ER) )

where P° a g = =P a1 and P! a_y are the Legendre polynomials and the

asso<31ated Legendre function of the 1st kind. In particular, for n = 2 one
has

2m _a_ 1+ 72 2r 1+ 72
a(r) = (1 = 12)-3 1[1:%1 <1_T2)_aplgl<1_r2>]. (4.9)

To obtain this, we use

F(a,b;a—b+2;2)

N ((I b+2) (b afl)/Q _ —b (b_a_l)/g ]."‘Z b—a 1+Z
—71) 1 (1—2) aP”, 1, \fP )|

see [4], formula 7.3.1.62, and (4.7) formula.

5. The operator D{ as “quasi”- inverse to the operator /g

DEFINITION 5.1. The function u(x) is called a multiplier in the space
X,if pf € X and ||uf||x < c|f|x, for all fe X.
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DEFINITION 5.2. Let € be an open set in R™. We say that () satisfies
the Strichartz condition if there exist a coordinate system in R™ and an
integer N > 0 such that almost every line parallel to the axes intersects ()
in at most N components.

The following statement shows that although the operator D is not
inverse to the operator I§ in the cases where 2 # R", it possesses some
property of the inverse operator.

THEOREM 5.3. Let f = Iy where p € L,(2),1 < p < é and § is a

bounded domain satisfying the Strichartz condition. Then

of € Lp(Q)  and DG fllL, @ < Clell, @), (5.1)
where C' > 0 does not depend on f.

P r o o f. By the definition in (2.1) we have
aloe(x) = roD%xal“Eqe(x), =€ Q. (5.2)
Then the statement of the theorem is derived from the following three facts:

1) hypersingular integral operator is the left inverse operator to the
Riesz potential operator in the case of the whole space R™:

D¥I%p = ¢, o € L,(R"), 1<p<n/a,
see [5], p. 517.

2) the characteristic function yg of the domain €2 satisfying the Strichartz
condition is a multiplier in the space I*(L;), L, = Ly(R™) (see [6] for the
case Bessel potentials and [2] for the case of Riesz potentials):

1
ID*xal%l L&) < CllellL,®y, 1<p< o (5.3)

3) the condition [|[D*f|| 1, rn) < oo is sufficient for a function f € L,(R")
to belong to I*(Ly) and f = I*D*f, see [5], Section 26. Observe that here
we have used the fact that the domain €2 is bounded: in case €2 is unbounded,
the function f = Eql§ep is not necessarily in L,(R™).

Indeed, by (5.2) and (5.3) we have

ID*ElgellL, ®mn) = [ID*Xal*EavllL, @) < ClléallL, @ = CllellL,@)-
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Therefore, by 3) there exists a function ¢ € L,(R") such that EqlGp(x) =
I*(x), z € R™ with ¢ = D*Eqlge. Observe that [|¢|1, &) < CllellL, @)
by (5.3). Then
IDQIG I, ) = lraD*Ealqellr, @) = lreD* 1|1, )-
Consequently, by 1),
IDGIGeN L, = ¥l < el
and (5.1) thus having been proved. [
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