

ON MULTIDIMENSIONAL ANALOGUE OF MARCHAUD
FORMULA FOR FRACTIONAL RIESZ-TYPE DERIVATIVES
IN DOMAINS IN \mathbb{R}^n

Humberto Rafeiro ¹ and Stefan Samko ²

Abstract

There is given a generalization of the Marchaud formula for one-dimensional fractional derivatives on an interval (a, b) , $-\infty < a < b \leq \infty$, to the multidimensional case of functions defined on a region in \mathbb{R}^n :

$$\mathbb{D}_\Omega^\alpha f(x) = c(\alpha) \left[a_\Omega(x) f(x) + \int_{\Omega} \frac{f(x) - f(y)}{|x - y|^{n+\alpha}} dy \right], \quad x \in \Omega, \quad 0 < \alpha < 1,$$

which is the Riesz fractional derivative of the zero continuation of $f(x)$ from Ω to the whole space \mathbb{R}^n , $c(\alpha)$ being a certain constant. A special attention is paid to the role of the coefficient $a_\Omega(x)$, which in the multidimensional case is estimated in terms of the power of the distance of the point x to the boundary $\partial\Omega$. In the case when Ω is a ball, this function is calculated explicitly in terms of the Gauss hypergeometric function.

It is also shown that the operator \mathbb{D}_Ω^α acts boundedly from the range of the Riesz potential operator $I_\Omega^\alpha(L_p(\Omega))$ to $L_p(\Omega)$, $1 < p < \frac{1}{\alpha}$.

2000 Mathematics Subject Classification: ??????????????????????

Key Words and Phrases: ??????????????????????????????

1. Introduction

The Marchaud formula

$$\mathbb{D}^\alpha f(x) = \frac{1}{\Gamma(1-\alpha)} \frac{f(x)}{(x-a)^\alpha} + \frac{\alpha}{\Gamma(1-\alpha)} \int_0^{x-a} \frac{f(x) - f(x-t)}{t^{1+\alpha}} dt, \quad x > a, \quad (1.1)$$

for fractional derivatives of order $0 < \alpha < 1$, is well known, see [5], Subsection 13.1, which is a “difference form” of the Riemann-Liouville fractional derivative.

We introduce a multidimensional analogue of this formula in domains in \mathbb{R}^n adjusted for the Riesz fractional derivatives, see about Riesz fractional derivatives \equiv hypersingular integrals in [5], Section 26.

This generalized Marchaud formula for a domain Ω has the form

$$\mathbb{D}_\Omega^\alpha f(x) = c(\alpha) \left[a_\Omega(x) f(x) + \int_{\Omega} \frac{f(x) - f(y)}{|x-y|^{n+\alpha}} dy \right], \quad x \in \Omega, \quad (1.2)$$

where $0 < \alpha < 1$ and

$$a_\Omega(x) = \int_{\mathbb{R}^n \setminus \Omega} \frac{dy}{|x-y|^{n+\alpha}} \quad \text{and} \quad c(\alpha) = \frac{2^\alpha \Gamma(1 + \frac{\alpha}{2}) \Gamma(\frac{n+\alpha}{2}) \sin \frac{\alpha\pi}{2}}{\pi^{1+\frac{n}{2}}}.$$

We prove a property of the function $a(x)$ important for further applications, namely, that the function $a(x)$ behaves, generally speaking as $[\delta(x)]^{-\alpha}$, as x approaches the boundary $\partial\Omega$, where $\delta(x) = \text{dist}(x, \partial\Omega)$ is the distance of a point $x \in \Omega$ to the boundary. We also show that in the case of the ball $\Omega = \{x \in \mathbb{R}^n : |x| < 1\}$ the function $a(x)$ may be explicitly calculated. Finally, we show that the operator \mathbb{D}_Ω^α has some features of the operator inverse to the Riesz potential operator over Ω .

2. Definition

As is known ([5], Section 26), for functions defined on the whole Euclidean space, the Riesz derivative $\mathbb{D}^\alpha f = F^{-1}|\xi|^\alpha Ff$, where F stands for the Fourier transforms, in the case $0 < \alpha < 1$ has the form

$$\mathbb{D}^\alpha f = c(\alpha) \int_{\mathbb{R}^n} \frac{f(x) - f(x-y)}{|y|^{n+\alpha}} dy.$$

Let now Ω be a domain in \mathbb{R}^n and $f(x)$ a function defined in Ω . We introduce the fractional Riesz-type derivative $\mathbb{D}_\Omega^\alpha f(x)$ of f as a restriction onto Ω of the Riesz derivative of the zero extension of f to the whole space \mathbb{R}^n . Namely, let

$$\mathcal{E}_\Omega f(x) = \begin{cases} f(x), & x \in \Omega \\ 0, & x \in \mathbb{R}^n \setminus \Omega \end{cases} =: \tilde{f}(x).$$

Then, by definition

$$\mathbb{D}_\Omega^\alpha f(x) := r_\Omega \mathbb{D}^\alpha \mathcal{E}_\Omega f(x) = c(\alpha) \int_{\mathbb{R}^n} \frac{f(x) - \tilde{f}(x-y)}{|y|^{n+\alpha}} dy, \quad x \in \Omega, \quad (2.1)$$

where r_Ω stands for the operator of restriction onto Ω . By splitting the integration in (2.1) to $\int_\Omega + \int_{\mathbb{R}^n \setminus \Omega}$, we easily arrive at (1.2).

In what follows, the convergence of the integral in (1.2) is interpreted as

$$\int_{\Omega} \frac{f(x) - f(y)}{|x-y|^{n+\alpha}} dy = \lim_{\varepsilon \rightarrow 0} \int_{\substack{y \in \Omega \\ |y-x| > \varepsilon}} \frac{f(x) - f(y)}{|x-y|^{n+\alpha}} dy, \quad x \in \Omega. \quad (2.2)$$

Obviously, this integral absolutely converges on functions f satisfying the Hölder condition of order $\lambda > \alpha$ in $\overline{\Omega}$. The integral, defining $a(x)$ is always convergent, see estimation in (3.3).

3. Boundary behavior

We recall that a domain Ω is said to have the cone property, if for every $x \in \overline{\Omega}$ there exists a finite cone C_x centered at the point x , contained in Ω and congruent to a finite cone of fixed aperture centered at the origin (a finite cone C_0 is the intersection of open ball centered at the origin with the set $\{\lambda x; \lambda > 0, |x - z_0| < r\}$, where $z_0 \neq 0$ and $r > 0$ are fixed), see for instance, [1], p. 300.

PROPOSITION 3.1. *Let Ω be an arbitrary domain in \mathbb{R}^n . Then for all $x \in \Omega$*

$$a_\Omega(x) \leq \frac{c_1}{[\delta(x)]^\alpha}, \quad c_1 = \frac{|S^{n-1}|}{\alpha} = \frac{2\pi^{\frac{n}{2}}}{\alpha \Gamma(\frac{n}{2})}. \quad (3.1)$$

If the domain $\mathbb{R}^n \setminus \overline{\Omega}$ has the cone property, then there exists a constant $c_2 > 0$ such that

$$\frac{c_2}{[\delta(x)]^\alpha} \leq a_\Omega(x) \leq \frac{c_1}{[\delta(x)]^\alpha}. \quad (3.2)$$

Proof. For $x \in \Omega$, we have

$$\int_{\mathbb{R}^n \setminus \Omega} \frac{dy}{|x-y|^{n+\alpha}} \leq \int_{\substack{y \in \mathbb{R}^n \\ |x-y| \geq \delta(x)}} \frac{dy}{|x-y|^{n+\alpha}} = \int_{\substack{y \in \mathbb{R}^n \\ |y| > \delta(x)}} \frac{dy}{|y|^{n+\alpha}}. \quad (3.3)$$

Passing to polar coordinates, we arrive at the estimate in (3.1).

To prove the left-hand side estimate in (3.2), we choose the boundary point $x_0 \in \partial\Omega$ (depending on x and not necessarily unique) at which $|x - x_0| = \delta(x)$. Then,

$$|x - y| \leq |x - x_0| + |x_0 - y|$$

and

$$a_\Omega(x) \geq \int_{\mathbb{R}^n \setminus \Omega} \frac{dy}{[|x_0 - y| + \delta(x)]^{n+\alpha}}.$$

Since $\mathbb{R}^n \setminus \overline{\Omega}$ has the cone property, there exists a finite cone $\Gamma_\Omega(x_0, \theta)$ with vertex at x_0 and fixed aperture $\theta (= \arctg \frac{r}{|z_0|}) > 0$, such that $\Gamma_\Omega(x_0, \theta) \subset \mathbb{R}^n \setminus \overline{\Omega}$. Then

$$\int_{\mathbb{R}^n \setminus \Omega} \frac{dy}{[|x_0 - y| + \delta(x)]^{n+\alpha}} \geq \int_{B(x_0, \delta(x)) \cap \Gamma_\Omega(x_0, \theta)} \frac{dy}{[|x_0 - y| + \delta(x)]^{n+\alpha}}.$$

After translation to the origin and passing to polar coordinates, we obtain

$$a_\Omega(x) \geq \int_0^{\delta(x)} \frac{\rho^{n-1} d\rho}{[\rho + \delta(x)]^{n+\alpha}} \int_{S^{n-1} \cap \Gamma_\Omega(0, \theta)} d\sigma = \frac{c_2}{[\delta(x)]^\alpha},$$

where

$$c_2 = C(\Omega) \int_0^1 \frac{t^{n-1} dt}{(t+1)^{n+\alpha}} = \frac{C(\Omega)}{n} F(n, n+\alpha; n+1; -1), \quad C(\Omega) = |S^{n-1} \cap \Gamma_\theta(0)|$$

where $F = {}_2F_1$ is the Gauss hypergeometric function. ■

4. The function $a_\Omega(x)$ in the case of the ball

THEOREM 4.1. *In case Ω is the ball $B(0, R)$, the function $a_\Omega(x)$ has the form*

$$a_{B(0, R)}(x) = \frac{|S_{n-1}|}{\alpha R^\alpha} F\left(\frac{\alpha}{2}, \frac{\alpha+n}{2}; \frac{n}{2}; \frac{|x|^2}{R^2}\right), \quad |x| < R. \quad (4.1)$$

It has also the following representation

$$a_{B(0,R)}(x) = \frac{\mathcal{A}_R(|x|)}{(R^2 - |x|^2)^\alpha} \quad (4.2)$$

with $\mathcal{A}_R(0) = \frac{1}{R^\alpha} |S^{n-1}|$ and $\mathcal{A}_R(R) = (2R)^\alpha \frac{\pi^{\frac{n-1}{2}} \Gamma(\frac{1+\alpha}{2})}{\alpha \Gamma(\frac{n+\alpha}{2})}$, where

$$\begin{aligned} \mathcal{A}_R(r) &= \frac{\pi^{\frac{n}{2}}}{\Gamma(1 + \frac{\alpha}{2}) \Gamma(\frac{n-\alpha}{2})} \int_0^1 s^{\frac{\alpha}{2}-1} (1-s)^{\frac{n-\alpha}{2}-1} (R^2 - r^2 + sr^2)^{\frac{\alpha}{2}} ds \quad (4.3) \\ &= \frac{|S^{n-1}|}{\alpha} (R^2 - |x|^2)^{\frac{\alpha}{2}} F\left(-\frac{\alpha}{2}, \frac{\alpha}{2}; \frac{n}{2}; -\frac{|x|^2}{R^2 - |x|^2}\right). \end{aligned}$$

P r o o f. The function $a_{B(0,R)}(x)$ depends on $|x|$ only. Let us denote $a(r) := a_{B(0,R)}(x)$, $r = |x|$, for brevity. It suffices to consider the case $R = 1$. After passing to polar coordinates and using the Catalan formula

$$\int_{S^{n-1}} f(x \cdot \sigma) d\sigma = |S^{n-2}| \int_{-1}^1 f(|x|t) (1-t^2)^{\frac{n-3}{2}} dt, \quad x \in \mathbb{R}^n,$$

we arrive at

$$\begin{aligned} a(r) &= \frac{|S_{n-2}|}{r^\alpha} \int_{-1}^1 (1-t^2)^{\frac{n-3}{2}} dt \int_{\frac{1}{r}}^\infty \frac{s^{n-1}}{(s^2 - 2st + 1)^{\frac{n+\alpha}{2}}} ds \\ &= \frac{|S_{n-2}|}{r^\alpha} \int_{-1}^1 (1-t^2)^{\frac{n-3}{2}} dt \int_0^r \frac{s^{\alpha-1}}{(s^2 - 2st + 1)^{\frac{n+\alpha}{2}}} ds. \end{aligned}$$

Since $(1 - 2st + s^2)^{-\lambda} = \sum_{k=0}^{\infty} C_k^\lambda(t) s^k$, where $C_k^\lambda(t)$ are the Gegenbauer polynomials, we obtain

$$a(r) = 2|S_{n-2}| \sum_{k=0}^{\infty} \frac{r^{2k}}{2k + \alpha} \int_0^1 (1-t^2)^{\frac{n-3}{2}} C_{2k}^{\frac{n+\alpha}{2}}(t) dt, \quad (4.4)$$

where we took into account that the Gegenbauer polynomials of odd order are odd. The formula

$$\int_0^1 (1-t^2)^{\frac{n-3}{2}} C_{2k}^{\frac{n+\alpha}{2}}(t) dt = \frac{\sqrt{\pi} \Gamma(\frac{n-1}{2})}{2k! \Gamma(\frac{n}{2})} \frac{(\frac{n+\alpha}{2})_k (\frac{\alpha}{2} + 1)_k}{(\frac{n}{2})_k}$$

holds, see 2.21.2.3 in [3]. Making use of this formula, after easy calculations with the duplication formula for the Gamma-function taken into account, we arrive at

$$a(r) = \frac{1}{\alpha} |S_{n-1}| \sum_{k=0}^{\infty} \frac{(\frac{\alpha}{2})_k (\frac{\alpha+n}{2})_k}{k! (\frac{n}{2})_k} r^{2k}$$

which is nothing else but (4.1) with $R = 1$.

To get (4.3) from (4.1), it suffices to make use of the transformation formula for the Gauss hypergeometric function:

$$F(a, b; c; z) = (1 - z)^{-a} F\left(a, c - b; c; \frac{z}{z - 1}\right).$$

COROLLARY 4.2. *In the case $n = 2m + 1$ is odd, $a_{B(0,R)}(x)$ is an elementary function for any $\alpha \in (0, 1)$:*

$$a_{B(0,1)}(x) \Big|_{|x|=r} = d_{n,\alpha} (1 - r^2)^{\frac{1-\alpha}{2}} \frac{d^m}{dr^{2m}} \left\{ (1 - r^2)^{m - \frac{\alpha+1}{2}} [(1 + r)^\alpha + (1 - r)^\alpha] \right\} \quad (4.5)$$

$$\text{where } d_{n,\alpha} = \frac{\alpha^{-1} \pi^{\frac{n-1}{2}} \Gamma(1 - \frac{n-\alpha}{2})}{\Gamma(\frac{n+\alpha}{2})}.$$

In particular, when $n = 3$ one has

$$a_{B(0,1)}(x) = \frac{2\pi}{\alpha^2 - 1} \left\{ \left(2 + \frac{1}{\alpha} \right) [(1 + |x|)^{-\alpha} + (1 - |x|)^{-\alpha}] + \frac{(1 - |x|)^{-\alpha} - (1 + |x|)^{-\alpha}}{|x|} \right\}.$$

P r o o f. When n is odd, we could write $n = 2m + 1$, then

$$a(x) = \frac{1}{\alpha} |S_{n-1}| F\left(\frac{\alpha}{2}, \frac{\alpha+1}{2} + m; \frac{1}{2} + m; r^2\right).$$

Using the formula

$$\begin{aligned} & \frac{d^n}{dz^n} [(1 - z)^{a+n-1} F(a, b; c; z)] \\ &= (-1)^n \frac{(a)_n (c - b)_n}{(c)_n} (1 - z)^{a-1} F(a + n, b; c + n; z), \end{aligned}$$

see for example, 7.2.1.13 from [4], and the fact that the hypergeometric function is symmetric with respect to a and b , we get

$$F\left(\frac{\alpha+1}{2}+m, \frac{\alpha}{2}; \frac{1}{2}+m; r^2\right) = (-1)^m \frac{\left(\frac{1}{2}\right)_m}{\left(\frac{\alpha+1}{2}\right)_m \left(\frac{1-\alpha}{2}\right)_m} \\ \times (1-r^2)^{\frac{1-\alpha}{2}} \frac{d^m}{dr^{2m}} \left[(1-r^2)^{\frac{\alpha-1}{2}+m} F\left(\frac{\alpha+1}{2}, \frac{\alpha}{2}; \frac{1}{2}; r^2\right) \right]. \quad (4.6)$$

Then by the formula

$$F\left(a, a + \frac{1}{2}; \frac{1}{2}; z\right) = \frac{1}{2} [(1 + \sqrt{z})^{-2a} + (1 - \sqrt{z})^{-2a}], \quad (4.7)$$

see [4], formula 7.3.1.106, after simplifications we arrive at (4.5). ■

REMARK 4.3. When $n = 2m$ is even, the function $a(r)$ may not be expressed in terms of elementary functions, being given by

$$a(r) = \frac{|S_{n-1}|}{\alpha} \cdot (-1)^{m-1} \frac{(m-1)!}{\left(\frac{\alpha}{2}+1\right)_{m-1} \left(1-\frac{\alpha}{2}\right)_{m-1}} (1-r^2)^{-\frac{\alpha}{2}} \\ \times \left(\frac{d}{dr^2}\right)^{m-1} \left\{ (1-r^2)^{m-2} \left[P_{-\frac{\alpha}{2}-1}^0 \left(\frac{1+r^2}{1-r^2}\right) - \frac{2r}{\alpha} P_{\frac{\alpha}{2}-1}^1 \left(\frac{1+r^2}{1-r^2}\right) \right] \right\}, \quad (4.8)$$

where $P_{-\frac{\alpha}{2}-1}^0 \equiv P_{-\frac{\alpha}{2}-1}$ and $P_{-\frac{\alpha}{2}-1}^1$ are the Legendre polynomials and the associated Legendre function of the 1st kind. In particular, for $n = 2$ one has

$$a(r) = \frac{2\pi}{\alpha} (1-r^2)^{-\frac{\alpha}{2}-1} \left[P_{-\frac{\alpha}{2}-1}^0 \left(\frac{1+r^2}{1-r^2}\right) - \frac{2r}{\alpha} P_{\frac{\alpha}{2}-1}^1 \left(\frac{1+r^2}{1-r^2}\right) \right]. \quad (4.9)$$

To obtain this, we use

$$F(a, b; a-b+2; z) \\ = \frac{\Gamma(a-b+2)}{b-1} z^{(b-a-1)/2} (1-z)^{-b} \left[a P_{-b}^{(b-a-1)/2} \left(\frac{1+z}{1-z}\right) - \sqrt{z} P_{-b}^{b-a} \left(\frac{1+z}{1-z}\right) \right],$$

see [4], formula 7.3.1.62, and (4.7) formula.

5. The operator \mathbb{D}_Ω^α as “quasi”- inverse to the operator I_Ω^α

DEFINITION 5.1. The function $\mu(x)$ is called a multiplier in the space X , if $\mu f \in X$ and $\|\mu f\|_X \leq c\|f\|_X$, for all $f \in X$.

DEFINITION 5.2. Let Ω be an open set in \mathbb{R}^n . We say that Ω satisfies the *Strichartz condition* if there exist a coordinate system in \mathbb{R}^n and an integer $N > 0$ such that almost every line parallel to the axes intersects Ω in at most N components.

The following statement shows that although the operator \mathbb{D}_Ω^α is not inverse to the operator I_Ω^α in the cases where $\Omega \neq \mathbb{R}^n$, it possesses some property of the inverse operator.

THEOREM 5.3. Let $f = I_\Omega^\alpha \varphi$ where $\varphi \in L_p(\Omega)$, $1 \leq p < \frac{1}{\alpha}$ and Ω is a bounded domain satisfying the Strichartz condition. Then

$$\mathbb{D}_\Omega^\alpha f \in L_p(\Omega) \quad \text{and} \quad \|\mathbb{D}_\Omega^\alpha f\|_{L_p(\Omega)} \leq C \|\varphi\|_{L_p(\Omega)}, \quad (5.1)$$

where $C > 0$ does not depend on f .

P r o o f. By the definition in (2.1) we have

$$\mathbb{D}_\Omega^\alpha I_\Omega^\alpha \varphi(x) = r_\Omega \mathbb{D}^\alpha \chi_\Omega I^\alpha \mathcal{E}_\Omega \varphi(x), \quad x \in \Omega. \quad (5.2)$$

Then the statement of the theorem is derived from the following three facts:

1) hypersingular integral operator is the left inverse operator to the Riesz potential operator in the case of the whole space \mathbb{R}^n :

$$\mathbb{D}^\alpha I^\alpha \varphi \equiv \varphi, \quad \varphi \in L_p(\mathbb{R}^n), \quad 1 \leq p < n/\alpha,$$

see [5], p. 517.

2) the characteristic function χ_Ω of the domain Ω satisfying the Strichartz condition is a multiplier in the space $I^\alpha(L_p)$, $L_p = L_p(\mathbb{R}^n)$ (see [6] for the case Bessel potentials and [2] for the case of Riesz potentials):

$$\|\mathbb{D}^\alpha \chi_\Omega I^\alpha \varphi\|_{L_p(\mathbb{R}^n)} \leq C \|\varphi\|_{L_p(\mathbb{R}^n)}, \quad 1 < p < \frac{1}{\alpha}. \quad (5.3)$$

3) the condition $\|\mathbb{D}^\alpha f\|_{L_p(\mathbb{R}^n)} < \infty$ is sufficient for a function $f \in L_p(\mathbb{R}^n)$ to belong to $I^\alpha(L_p)$ and $f = I^\alpha \mathbb{D}^\alpha f$, see [5], Section 26. Observe that here we have used the fact that the domain Ω is bounded: in case Ω is unbounded, the function $f = \mathcal{E}_\Omega I_\Omega^\alpha \varphi$ is not necessarily in $L_p(\mathbb{R}^n)$.

Indeed, by (5.2) and (5.3) we have

$$\|\mathbb{D}^\alpha \mathcal{E}_\Omega I_\Omega^\alpha \varphi\|_{L_p(\mathbb{R}^n)} = \|\mathbb{D}^\alpha \chi_\Omega I^\alpha \mathcal{E}_\Omega \varphi\|_{L_p(\mathbb{R}^n)} \leq C \|\mathcal{E}_\Omega \varphi\|_{L_p(\mathbb{R}^n)} = C \|\varphi\|_{L_p(\Omega)}.$$

Therefore, by 3) there exists a function $\psi \in L_p(\mathbb{R}^n)$ such that $\mathcal{E}_\Omega I_\Omega^\alpha \varphi(x) = I^\alpha \psi(x)$, $x \in \mathbb{R}^n$ with $\psi = \mathbb{D}^\alpha \mathcal{E}_\Omega I_\Omega^\alpha \varphi$. Observe that $\|\psi\|_{L_p(\mathbb{R}^n)} \leq C \|\varphi\|_{L_p(\Omega)}$ by (5.3). Then

$$\|\mathbb{D}_\Omega^\alpha I_\Omega^\alpha f\|_{L_p(\Omega)} = \|r_\Omega \mathbb{D}^\alpha \mathcal{E}_\Omega I_\Omega^\alpha \varphi\|_{L_p(\Omega)} = \|r_\Omega \mathbb{D}^\alpha I^\alpha \psi\|_{L_p(\Omega)}.$$

Consequently, by 1),

$$\|\mathbb{D}_\Omega^\alpha I_\Omega^\alpha \varphi\|_{L_p(\Omega)} = \|\psi\|_{L_p(\Omega)} \leq \|\varphi\|_{L_p(\Omega)}$$

and (5.1) thus having been proved. \blacksquare

References

- [1] A. Kufner, O. John, and S. Fučík, *Function Spaces*. Noordhoff International Publishing (1977).
- [2] V.A. Nogin and B.S. Rubin, Boundedness of the operator of multiplication by a characteristic function of the Strichartz domain in spaces of Riesz potentials. *Izv. Severo-Kavkaz. Nauchn. Tsentr. Vyssh. Shkoly Estestv. Nauk.* **141**, No 2 (1986), 62-66.
- [3] A.P. Prudnikov and Yu.A. Brychkov and O.I. Marichev, *Integrals and Series. Vol. 2: Special Functions*. Gordon & Breach Science Publishers, New York, 2nd Ed. (1988); Translated from the Russian Ed.
- [4] A.P. Prudnikov and Yu.A. Brychkov and O.I. Marichev, *Integrals and Series. Vol. 3: More Special Functions*. Gordon and Breach Science Publishers, New York (1990); Translated from the Russian Ed., by G. G. Gould.
- [5] S.G. Samko, A.A. Kilbas, and O.I. Marichev, *Fractional Integrals and Derivatives. Theory and Applications*. Gordon & Breach. Sci. Publ., London-New-York (1993); Russian Ed.: *Fractional Integrals and Derivatives and Some of Their Applications*. Nauka i Tekhnika, Minsk (1987).
- [6] R.S. Strichartz, Multipliers on fractional Sobolev spaces. *J. Math. Mech.*, **16** (1967), 10311060.

*Universidade do Algarve
Faculdade de Ciências e Tecnologia
Campus de Gambelas, Faro 8000 – PORTUGAL*

Received: May 11, 2005

e-mails: ¹ (H. Rafeiro) *a19423@ualg.pt*
² *ssamko@ualg.pt* , *http://w3.ualg.pt/~ssamko/*