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Abstract

There is given a generalization of the Marchaud formula for one-dimensional
fractional derivatives on an interval (a, b), −∞ < a < b ≤ ∞, to the multi-
dimensional case of functions defined on a region in Rn:

Dα
Ωf(x) = c(α)


aΩ(x)f(x) +

∫

Ω

f(x)− f(y)
|x− y|n+α

dy


 , x ∈ Ω, 0 < α < 1,

which is the Riesz fractional derivative of the zero continuation of f(x) from
Ω to the whole space Rn, c(α) being a certain constant. A special attention
is paid to the role of the coefficient aΩ(x), which in the multidimensional
case is estimated in terms of the power of the distance of the point x to
the boundary ∂Ω. In the case when Ω is a ball, this function is calculated
explicitly in terms of the Gauss hypergeometric function.

It is also shown that the operator Dα
Ω acts boundedly from the range of

the Riesz potential operator Iα
Ω(Lp(Ω)) to Lp(Ω), 1 < p < 1

α .

2000 Mathematics Subject Classification: ????????????????????
Key Words and Phrases: ??????????????????????????????



2 H. Rafeiro, S. Samko

1. Introduction

The Marchaud formula

Dαf(x) =
1

Γ(1− α)
f(x)

(x− a)α
+

α

Γ(1− α)

x−a∫

0

f(x)− f(x− t)
t1+α

dt, x > a,

(1.1)
for fractional derivatives of order 0 < α < 1, is well known, see [5], Subsec-
tion 13.1, which is a “difference form” of the Riemann-Liouville fractional
derivative.

We introduce a multidimensional analogue of this formula in domains in
Rn adjusted for the Riesz fractional derivatives, see about Riesz fractional
derivatives ≡ hypersingular integrals in [5], Section 26.

This generalized Marchaud formula for a domain Ω has the form

Dα
Ωf(x) = c(α)


aΩ(x)f(x) +

∫

Ω

f(x)− f(y)
|x− y|n+α

dy


 , x ∈ Ω, (1.2)

where 0 < α < 1 and

aΩ(x) =
∫

Rn\Ω

dy

|x− y|n+α
and c(α) =

2αΓ
(
1 + α

2

)
Γ

(
n+α

2

)
sin απ

2

π1+n
2

.

We prove a property of the function a(x) important for further ap-
plications, namely, that the function a(x) behaves, generally speaking as
[δ(x)]−α, as x approaches the boundary ∂Ω, where δ(x) = dist(x, ∂Ω) is
the distance of a point x ∈ Ω to the boundary. We also show that in the
case of the ball Ω = {x ∈ Rn : |x| < 1} the function a(x) may be explicitly
calculated. Finally, we show that the operator Dα

Ω has some features of the
operator inverse to the Riesz potential operator over Ω.

2. Definition

As is known([5], Section 26), for functions defined on the whole Eu-
clidean space, the Riesz derivative Dαf = F−1|ξ|αFf , where F stands for
the Fourier transforms, in the case 0 < α < 1 has the form

Dαf = c(α)
∫

Rn

f(x)− f(x− y)
|y|n+α

dy.
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Let now Ω be a domain in Rn and f(x) a function defined in Ω. We introduce
the fractional Riesz-type derivative Dα

Ωf(x) of f as a restriction onto Ω of the
Riesz derivative of the zero extension of f to the whole space Rn. Namely,
let

EΩf(x) =
{

f(x), x ∈ Ω
0, x ∈ Rn\Ω = : f̃(x).

Then, by definition

Dα
Ωf(x) : = rΩDαEΩf(x) = c(α)

∫

Rn

f(x)− f̃(x− y)
|y|n+α

dy, x ∈ Ω, (2.1)

where rΩ stands for the operator of restriction onto Ω. By splitting the
integration in (2.1) to

∫
Ω +

∫
Rn\Ω, we easily arrive at (1.2).

In what follows, the convergence of the integral in (1.2) is interpreted
as

∫

Ω

f(x)− f(y)
|x− y|n+α

dy = lim
ε→0

∫

y∈Ω
|y−x|>ε

f(x)− f(y)
|x− y|n+α

dy, x ∈ Ω. (2.2)

Obviously, this integral absolutely converges on functions f satisfying the
Hölder condition of order λ > α in Ω. The integral, defining a(x) is always
convergent, see estimation in (3.3).

3. Boundary behavior

We recall that a domain Ω is said to have the cone property, if for every
x ∈ Ω there exists a finite cone Cx centered at the point x, contained in
Ω and congruent to a finite cone of fixed aperture centered at the origin (a
finite cone C0 is the intersection of open ball centered at the origin with
the set {λx; λ > 0, |x− z0| < r}, where z0 6= 0 and r > 0 are fixed), see for
instance, [1], p. 300.

Proposition 3.1. Let Ω be an arbitrary domain in Rn. Then for all
x ∈ Ω

aΩ(x) ≤ c1

[δ(x)]α
, c1 =

|Sn−1|
α

=
2π

n
2

αΓ(n
2 )

. (3.1)

If the domain Rn\Ω has the cone property, then there exists a constant
c2 > 0 such that

c2

[δ(x)]α
≤ aΩ(x) ≤ c1

[δ(x)]α
. (3.2)
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P r o o f. For x ∈ Ω, we have
∫

Rn\Ω

dy

|x− y|n+α
≤

∫

y∈Rn

|x−y|≥δ(x)

dy

|x− y|n+α
=

∫

y∈Rn

|y|>δ(x)

dy

|y|n+α
. (3.3)

Passing to polar coordinates, we arrive at the estimate in (3.1).
To prove the left-hand side estimate in (3.2), we choose the boundary

point x0 ∈ ∂Ω (depending on x and not necessarily unique) at which |x −
x0| = δ(x). Then,

|x− y| ≤ |x− x0|+ |x0 − y|
and

aΩ(x) ≥
∫

Rn\Ω

dy

[|x0 − y|+ δ(x)]n+α
.

Since Rn\Ω has the cone property, there exists a finite cone ΓΩ(x0, θ)
with vertex at x0 and fixed aperture θ(= arctg r

|z0|) > 0, such that ΓΩ(x0, θ) ⊂
Rn\Ω. Then∫

Rn\Ω

dy

[|x0 − y|+ δ(x)]n+α
≥

∫

B(x0,δ(x))∩ΓΩ(x0,θ)

dy

[|x0 − y|+ δ(x)]n+α
.

After translation to the origin and passing to polar coordinates, we
obtain

aΩ(x) ≥
δ(x)∫

0

ρn−1dρ

[ρ + δ(x)]n+α

∫

Sn−1∩ΓΩ(0,θ)

dσ =
c2

[δ(x)]α
,

where

c2 = C(Ω)

1∫

0

tn−1dt

(t + 1)n+α
=

C(Ω)
n

F (n, n+α; n+1;−1), C(Ω) = |Sn−1∩Γθ(0)|

where F = 2F1 is the Gauss hypergeometric function.

4. The function aΩ(x) in the case of the ball

Theorem 4.1. In case Ω is the ball B(0, R), the function aΩ(x) has
the form

aB(0,R)(x) =
|Sn−1|
αRα

F

(
α

2
,
α + n

2
;
n

2
;
|x|2
R2

)
, |x| < R. (4.1)
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It has also the following representation

aB(0,R)(x) =
AR(|x|)

(R2 − |x|2)α
(4.2)

with AR(0) = 1
Rα |Sn−1| and AR(R) = (2R)α π

n−1
2 Γ( 1+α

2 )
αΓ(n+α

2 ) , where

AR(r) =
π

n
2

Γ
(
1 + α

2

)
Γ

(
n−α

2

)
1∫

0

s
α
2
−1(1− s)

n−α
2
−1(R2 − r2 + sr2)

α
2 ds (4.3)

=
|Sn−1|

α
(R2 − |x|2)α

2 F

(
−α

2
,
α

2
;
n

2
;− |x|2

R2 − |x|2
)

.

P r o o f. The function aB(0,R)(x) depends on |x| only. Let us denote
a(r) := aB(0,R)(x), r = |x|, for brevity. It suffices to consider the case R = 1.
After passing to polar coordinates and using the Catalan formula∫

Sn−1

f(x · σ) dσ = |Sn−2|
1∫

−1

f(|x|t)(1− t2)
n−3

2 , x ∈ Rn,

we arrive at

a(r) =
|Sn−2|

rα

1∫

−1

(1− t2)
n−3

2 dt

∞∫

1
r

sn−1

(s2 − 2st + 1)
n+α

2

ds

=
|Sn−2|

rα

1∫

−1

(1− t2)
n−3

2 dt

r∫

0

sα−1

(s2 − 2st + 1)
n+α

2

ds.

Since (1 − 2st + s2)−λ =
∞∑

k=0

Cλ
k (t)sk, where Cλ

k (t) are the Gegenbauer

polynomials, we obtain

a(r) = 2|Sn−2|
∞∑

k=0

r2k

2k + α

1∫

0

(1− t2)
n−3

2 C
n+α

2
2k (t)dt, (4.4)

where we took into account that the Gegenbauer polynomials of odd order
are odd. The formula

1∫

0

(1− t2)
n−3

2 C
n+α

2
2k (t) dt =

√
πΓ

(
n−1

2

)

2k!Γ
(

n
2

)
(

n+α
2

)
k

(
α
2 + 1

)
k(

n
2

)
k
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holds, see 2.21.2.3 in [3]. Making use of this formula, after easy calculations
with the duplication formula for the Gamma-function taken into account,
we arrive at

a(r) =
1
α
|Sn−1|

∞∑

k=0

(
α
2

)
k

(
α+n

2

)
k

k!
(

n
2

)
k

r2k

which is nothing else but (4.1) with R = 1.
To get (4.3) from (4.1), it suffices to make use of the transformation

formula for the Gauss hypergeometric function:

F (a, b; c; z) = (1− z)−aF

(
a, c− b; c;

z

z − 1

)
.

Corollary 4.2. In the case n = 2m + 1 is odd, aB(0,R)(x) is an ele-
mentary function for any α ∈ (0, 1):

aB(0,1)(x)
∣∣
|x|=r

= dn,α(1−r2)
1−α

2
dm

dr2m

{
(1− r2)m−α+1

2 [(1 + r)α + (1− r)α]
}

(4.5)

where dn,α =
α−1π

n−1
2 Γ(1−n−α

2 )
Γ(n+α

2 ) .

In particular, when n = 3 one has

aB(0,1)(x) =
2π

α2 − 1

{(
2 +

1
α

)[
(1 + |x|)−α + (1− |x|)−α

]

+
(1− |x|)−α − (1 + |x|)−α

|x|
}

.

P r o o f. When n is odd, we could write n = 2m + 1, then

a(x) =
1
α
|Sn−1|F

(
α

2
,
α + 1

2
+ m;

1
2

+ m; r2

)
.

Using the formula
dn

dzn

[
(1− z)a+n−1F (a, b; c; z)

]

= (−1)n (a)n(c− b)n

(c)n
(1− z)a−1F (a + n, b; c + n; z),

see for example, 7.2.1.13 from [4], and the fact that the hypergeometric
function is symmetric with respect to a and b, we get
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F

(
α + 1

2
+ m,

α

2
;
1
2

+ m; r2

)
= (−1)m

(
1
2

)
m(

α+1
2

)
m

(
1−α

2

)
m

× (1− r2)
1−α

2
dm

dr2m

[
(1− r2)

α−1
2

+mF

(
α + 1

2
,
α

2
;
1
2
; r2

)]
. (4.6)

Then by the formula

F

(
a, a +

1
2
;
1
2
; z

)
=

1
2

[
(1 +

√
z)−2a + (1−√z)−2a

]
, (4.7)

see [4], formula 7.3.1.106, after simplifications we arrive at (4.5).

Remark 4.3. When n = 2m is even, the function a(r) may not be
expressed in terms of elementary functions, being given by

a(r) =
|Sn−1|

α
· (−1)m−1 (m− 1)!

(α
2 + 1)m−1(1− α

2 )m−1
(1− r2)−

α
2

(4.8)

×
(

d

dr2

)m−1 {
(1− r2)m−2

[
P 0
−α

2
−1

(
1 + r2

1− r2

)
− 2r

α
P 1

α
2
−1

(
1 + r2

1− r2

)]}
,

where P 0
−α

2
−1 ≡ P−α

2
−1 and P 1

−α
2
−1 are the Legendre polynomials and the

associated Legendre function of the 1st kind. In particular, for n = 2 one
has

a(r) =
2π

α
(1− r2)−

α
2
−1

[
P 0
−α

2
−1

(
1 + r2

1− r2

)
− 2r

α
P 1
−α

2
−1

(
1 + r2

1− r2

)]
. (4.9)

To obtain this, we use
F (a, b; a− b + 2; z)

=
Γ(a−b+2)

b−1
z(b−a−1)/2(1−z)−b

[
aP

(b−a−1)/2
−b

(
1 + z

1− z

)
−√zP b−a

−b

(
1 + z

1− z

)]
,

see [4], formula 7.3.1.62, and (4.7) formula.

5. The operator Dα
Ω as “quasi”- inverse to the operator Iα

Ω

Definition 5.1. The function µ(x) is called a multiplier in the space
X, if µf ∈ X and ‖µf‖X ≤ c‖f‖X , for all f ∈ X.
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Definition 5.2. Let Ω be an open set in Rn. We say that Ω satisfies
the Strichartz condition if there exist a coordinate system in Rn and an
integer N > 0 such that almost every line parallel to the axes intersects Ω
in at most N components.

The following statement shows that although the operator Dα
Ω is not

inverse to the operator Iα
Ω in the cases where Ω 6= Rn, it possesses some

property of the inverse operator.

Theorem 5.3. Let f = Iα
Ωϕ where ϕ ∈ Lp(Ω), 1 ≤ p < 1

α and Ω is a
bounded domain satisfying the Strichartz condition. Then

Dα
Ωf ∈ Lp(Ω) and ‖Dα

Ωf‖Lp(Ω) ≤ C‖ϕ‖Lp(Ω), (5.1)

where C > 0 does not depend on f .

P r o o f. By the definition in (2.1) we have

Dα
ΩIα

Ωϕ(x) = rΩDαχΩIαEΩϕ(x), x ∈ Ω. (5.2)

Then the statement of the theorem is derived from the following three facts:

1) hypersingular integral operator is the left inverse operator to the
Riesz potential operator in the case of the whole space Rn:

DαIαϕ ≡ ϕ, ϕ ∈ Lp(Rn), 1 ≤ p < n/α,

see [5], p. 517.

2) the characteristic function χΩ of the domain Ω satisfying the Strichartz
condition is a multiplier in the space Iα(Lp), Lp = Lp(Rn) (see [6] for the
case Bessel potentials and [2] for the case of Riesz potentials):

‖DαχΩIαϕ‖Lp(Rn) ≤ C‖ϕ‖Lp(Rn), 1 < p <
1
α

. (5.3)

3) the condition ‖Dαf‖Lp(Rn) < ∞ is sufficient for a function f ∈ Lp(Rn)
to belong to Iα(Lp) and f = IαDαf , see [5], Section 26. Observe that here
we have used the fact that the domain Ω is bounded: in case Ω is unbounded,
the function f = EΩIα

Ωϕ is not necessarily in Lp(Rn).

Indeed, by (5.2) and (5.3) we have

‖DαEΩIα
Ωϕ‖Lp(Rn) = ‖DαχΩIαEΩϕ‖Lp(Rn) ≤ C‖EΩϕ‖Lp(Rn) = C‖ϕ‖Lp(Ω).
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Therefore, by 3) there exists a function ψ ∈ Lp(Rn) such that EΩIα
Ωϕ(x) =

Iαψ(x), x ∈ Rn with ψ = DαEΩIα
Ωϕ. Observe that ‖ψ‖Lp(Rn) ≤ C‖ϕ‖Lp(Ω)

by (5.3). Then

‖Dα
ΩIα

Ωf‖Lp(Ω) = ‖rΩDαEΩIα
Ωϕ‖Lp(Ω) = ‖rΩDαIαψ‖Lp(Ω).

Consequently, by 1),

‖Dα
ΩIα

Ωϕ‖Lp(Ω) = ‖ψ‖Lp(Ω) ≤ ‖ϕ‖Lp(Ω)

and (5.1) thus having been proved.
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