

V. KOKILASHVILI AND S. SAMKO

Sobolev Theorem for Potentials on Carleson Curves in Variable Lebesgue Spaces

(Reported on October 18, 2004)

Let $\Gamma = \{t \in \mathbb{C} : t = t(s), 0 \leq s \leq \ell\}$ be a simple rectifiable curve with arc-length measure ν . Let p be a measurable function on Γ such that $p : \Gamma \rightarrow (1, \infty)$.

Assume that p satisfies the conditions

$$1 < p_- := \operatorname{ess\,inf}_{t \in \Gamma} p(t) \leq \operatorname{ess\,sup}_{t \in \Gamma} p(t) =: p_+ < \infty, \quad (1)$$

$$|p(t) - p(\tau)| \leq \frac{A}{\ln \frac{1}{|t - \tau|}}, \quad t \in \Gamma, \quad \tau \in \Gamma, \quad |t - \tau| \leq \frac{1}{2}. \quad (2)$$

The generalized Lebesgue space with variable exponent is defined via the modular

$$\rho_p(f) := \int_{\Gamma} |f(t)|^{p(t)} d\nu$$

by the norm

$$\|f\|_{p(\cdot)} = \inf \lambda > 0 : \rho \left(\frac{f}{\lambda} \right) \leq 1.$$

By $L_w^{p(\cdot)}$ we denote the weighted Banach space of all measurable functions $f : \Gamma \rightarrow \mathbb{C}$ such that

$$\|f\|_{p(\cdot),w} := \|wf\|_{p(\cdot)} < \infty.$$

By definition, Γ is a Carleson curve (or a regular curve) if there exists a constant $c > 0$ not depending on t and r such that

$$\nu(\Gamma \cap B(t, r)) \leq cr$$

for all the balls $B(t, r)$, $t \in \Gamma$.

We consider – along with Carleson curves – the potential type operator

$$I^{\alpha(\cdot)} f(t) = \int_{\Gamma} \frac{f(\tau) d\nu(\tau)}{|t - \tau|^{1-\alpha(\tau)}}. \quad (3)$$

When the order α is a constant, the following result is known [1].

Theorem A. *Let $0 < \alpha < 1$, $1 < p < \frac{1}{\alpha}$, and let $\frac{1}{q} = \frac{1}{p} - \alpha$. Then the operator I^{α} is bounded from L^p to L^q if and only if Γ is a Carleson curve.*

On the other hand, in the Euclidean space R^n an analogue of the well-known Hardy–Littlewood–Stein–Weiss theorem in $L^{p(\cdot)}$ spaces looks as

Theorem B ([2]). *Let Ω be a bounded domain in R^n and $x_0 \in \overline{\Omega}$, let p satisfy the conditions (1) and (2), where instead of t we mean $x \in \Omega$.*

Assume that

$$\inf \alpha(x) > 0 \quad \text{and} \quad \sup_{x \in \Omega} \alpha(x)p(x) < n,$$

2000 *Mathematics Subject Classification.* 42B20, 47B38, 45P05.

Key words and phrases. weighted generalized Lebesgue spaces, variable exponent, singular operator, fractional integrals, Sobolev theorem.

and

$$|\alpha(x) - \alpha(y)| \leq \frac{A}{\ln \frac{1}{|x-y|}} \quad \text{for all } x, y \in \bar{\Omega} \quad \text{with } |x-y| < \frac{1}{2},$$

A does not depend on x and y .

Then the operator

$$I^{\alpha(\cdot)} f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy, \quad 0 < \alpha < n,$$

acts boundedly from $L_{|x-x_0|^\gamma}^p$ onto $L_{|x-x_0|^\mu}^1$ if

$$\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{\alpha(x)}{n},$$

$$\alpha(x_0)p(x_0) - n < \gamma < n[p(x_0) - 1]$$

and

$$\mu = \frac{q(x_0)}{p(x_0)} \gamma.$$

The following theorems are valid.

Theorem 1. Let

- i) Γ be a simple Carleson curve of finite length;
- ii) p satisfy the conditions (1)–(2);
- iii) w be a power weight $w(t) = |t - t_0|^{\beta(t)}$, where $t_0 \in \Gamma$ and $\beta(t)$ is a real valued function on Γ satisfying the condition (2);
- iv) the order $\alpha(t)$ satisfy the condition (2) and the assumptions

$$0 < \inf_{t \in \Gamma} \alpha(t) \leq \sup_{t \in \Gamma} \alpha(t) < 1 \quad \text{and} \quad \sup_{t \in \Gamma} \alpha(t)p(t) < 1. \quad (4)$$

Then the operator $I^{\alpha(\cdot)}$ is bounded from the space $L_w^{p(\cdot)}(\Gamma)$ into the space $L_w^{q(\cdot)}(\Gamma)$ with $\frac{1}{q(t)} = \frac{1}{p(t)} - \alpha(t)$ if

$$-\frac{1}{q(t_0)} < \beta(t_0) < \frac{1}{p'(t_0)}.$$

Theorem 2. Let Γ be a simple Carleson curve. Let p satisfy the conditions (1)–(2) and let there exist a ball $B(0, R)$ such that $p(t) = \text{const}$ for $t \in \Gamma \setminus (\Gamma \cap B(0, R))$. Then for a constant α the operator I^α is bounded from the space $L^{p(\cdot)}(\Gamma)$ into the space $L^{q(\cdot)}(\Gamma)$, where $\frac{1}{q(t)} = \frac{1}{p(t)} - \alpha(t)$.

REFERENCES

1. V. M. KOKILASHVILI, Fractional integrals on curves. (Russian) *Trudy Tbiliss. Mat. Inst. Razmadze* **95**(1990), 56–70.
4. S. SAMKO, Hardy–Littlewood–Stein–Weiss inequality in the Lebesgue spaces with variable exponent. *Fract. Calc. Appl. Anal.* **6**(2003), No. 4, 421–440.

Author's addresses:

V. Kokilashvili

A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, Aleksidze St., Tbilisi 0193
Georgia
E-mail: kokil@rmi.acnet.ge

S. Samko

University of Algarve
Portugal
E-mail: ssamko@ualg.pt