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Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ `} be a simple rectifiable curve with arc-length
measure ν. Let p be a measurable function on Γ such that p : Γ → (1,∞).

Assume that p satisfies the conditions

1 < p− := ess inf
t∈Γ

p(t) ≤ ess sup
t∈Γ

p(t) =: p+ < ∞, (1)

|p(t)− p(τ)| ≤ A

ln 1
|t−τ |

, t ∈ Γ, τ ∈ Γ, |t− τ | ≤ 1

2
. (2)

The generalized Lebesgue space with variable exponent is defined via the modular

ρp (f) :=

Z

Γ

|f(t)|p(t) dν

by the norm

‖f‖p(·) = inf

�
λ > 0 : ρ

�
f

λ

�
≤ 1

�
.

By L
p(·)
w we denote the weighted Banach space of all measurable functions f : Γ → C

such that
‖f‖p(·),w := ‖wf‖p(·) < ∞.

By definition, Γ is a Carleson curve (or a regular curve) if there exists a constant c > 0
not depending on t and r such that

ν(Γ ∩B(t, r)) ≤ cr

for all the balls B(t, r), t ∈ Γ.
We consider – along with Carleson curves – the potential type operator

Iα(·)f(t) =

Z

Γ

f(τ) dν(τ)

|t− τ |1−α(τ)
. (3)

When the order α is a constant, the following result is known [1].

Theorem A. Let 0 < α < 1, 1 < p < 1
α
, and let 1

q
= 1

p
− α. Then the operator Iα

is bounded from Lp to Lq if and only if Γ is a Carleson curve.

On the other hand, in the Euclidean space Rn an analogue of the well-known Hardy–
Littlewood–Stein–Weiss theorem in Lp(·) spaces looks as

Theorem B ([2]). Let Ω be a bounded domain in Rn and x0 ∈ Ω, let p satisfy the
conditions (1) and (2), where instead of t we mean x ∈ Ω.

Assume that
inf α(x) > 0 and sup

x∈Ω
α(x)p(x) < n,
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and

|α(x)− α(y)| ≤ A

ln 1
|x−y|

for all x, y ∈ Ω with |x− y| < 1

2
,

A does not depend on x and y.
Then the operator

Iα(·)f(x) =

Z

Rn

f(y)

|x− y|n−α
dy, 0 < α < n,

acts boundedly from Lp
|x−x0|γ onto L1

|x−x0|µ if

1

q(x)
=

1

p(x)
− α(x)

n
,

α(x0)p(x0)− n < γ < n[p(x0)− 1]

and

µ =
q(x0)

p(x0)
γ.

The following theorems are valid.

Theorem 1. Let
i) Γ be a simple Carleson curve of finite length;
ii) p satisfy the conditions (1)–(2);

iii) w be a power weight w(t) = |t − t0|β(t), where t0 ∈ Γ and β(t) is a real valued
function on Γ satisfying the condition (2);

iv) the order α(t) satisfy the condition (2) and the assumptions

0 < inf
t∈Γ

α(t) ≤ sup
t∈Γ

α(t) < 1 and sup
t∈Γ

α(t)p(t) < 1. (4)

Then the operator Iα(·) is bounded from the space L
p(·)
w (Γ) into the space L

q(·)
w (Γ) with

1
q(t)

= 1
p(t)

− α(t) if

− 1

q(t0)
< β(t0) <

1

p′(t0)
.

Theorem 2. Let Γ be a simple Carleson curve. Let p satisfy the conditions (1)–(2)
and let there exist a ball B(0, R) such that p(t) = const for t ∈ Γ\(Γ∩B(0, R)). Then for

a constant α the operator Iα is bounded from the space Lp(·)(Γ) into the space Lq(·)(Γ),

where 1
q(t)

= 1
p(t)

− α(t).
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