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1 Introduction

The investigation of the Lebesgue spaces Lp(‘)(Q) with variable exponent
was initiated in [16]. During the last two decades these spaces have been
intensively studied, see [3], [6], [8], [10]-[17] and references therein. The
interest on these spaces comes from their mathematical curiosity on the one
hand and their importance in some applications (see [10], [19], [20]) on the
other hand.

As the space LPU)(R™) is not invariant with respect to translations, convo-
lution operators do not behave well in these spaces. For example, the Young
theorem is in general not valid in these spaces, see for instance [13], Sec-
tion 2. Problems also arise for Mellin convolutions (n = 1), since L?0)(RY)
is not invariant with respect to dilations. However, the failure of the Young
theorem does not prevent some convolution operators from being bounded
operators. Roughly speaking, a convolution operator is bounded in LPO) if
its kernel has singularity at the origin only.

There are two examples, whose importance is difficult to overestimate.
One is the convolution with the singular kernel k(z) = 1 (n = 1), that
is, the well-known singular operator, and the other is the related maximal
operator, although the latter is not a convolution. For the second operator
over open bounded sets the problem of its boundedness was recently solved by
L. Diening [1]. But the problem of the boundedness of the singular operator
remains open as yet.

In this paper we prove weighted estimates for the maximal operator over
bounded open sets and for singular type operators with fixed singularity (of
Hardy and Hankel type). We give also weighted estimates for potential type
operators of variable order a(x) and show, in particular, that the Sobolev
theorem with the limiting exponent

1 1 a(x)

p(x)  plx) n

is valid for them. We also prove that the potential operator is compact in

LPO(Q).

The main results are formulated in Section 2 as Theorems A-E. Section

3 provides necessary preliminaries and Sections 46 contain the proofs of
Theorem A-E.



The paper is based on the authors’ preprint "Maximal and Fractional
Operators in Weighted LP®) Spaces”, Preprint 13/2002, Departamento de
Matematica, Istituto Superior Técnico, Lisboa.

Notation
() is a open bounded set in R";
1(€) = |Q] is the Lebesgue measure of €Q;
B(r)={y e R+ |y—a| <r};
| B, ()| = = |S"7!| is the volume of B, (z);
q(x):pfgl . 1<p(x)<oo, -H+4+-=1;

p(z) ' q(z)
po = inf p(x), P = supp(z);
Sy xeQ)

. P . — _bo .
qo = infg(z) = 577, @ = Sup a(r) = 57

¢ may denote different positive constants.

2 Statement of the Main Results

Let © be an open bounded set in R", n > 1, and p(z) a function on Q
satisfying the conditions

l<po<pr)<P<oo, €N (2.1)

and

— |x—y|§%, x,y € (2.2)
lz—y|

The condition (2.2) appears naturally in the theory of the spaces
LP0)(Q), see [12]-[15]. In [8] it was shown that this condition is in fact nec-
essary for boundedness of the maximal operator in LP®)(Q). Condition (2.2)
also appeared in [9] in case of Hélder spaces H®) with variable exponent
A(z).

Let

1 1f(y)]
MPf(z) = |z — x|’ su / — =y, 2.3
Jo) =l —ml s B v —zo? 23
B (z)NQ

where zo € Q. We write M = M? in the case where 3 = 0.
In the case where zy € 02 and when considering the necessity of bound-
edness conditions, we shall make use of a restriction of the type

|92, (w0)| ~ 7", (2.4)
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where Q,.(zo) ={y € Q: r < |y — x| < 2r}.

Theorem A . Let p(x) satisfy conditions (2.1), (2.2). The operator M”
with zo € Q is bounded in LP™)(Q) if and only if

—M<ﬂ<m. (2.5)

If zg € 09, condition (2.5) is sufficient for the boundedness of MP. If xy €
O and condition (2.4) is satisfied, then condition (2.5) is also necessary for
the boundedness of M” .

Let further

1@ f(z) = % dy, 0<a(r)<n. (2.6)
Q/!flf—y! =)

Theorem B . Under conditions (2.1), (2.2) and the conditions

inf a(z) >0 and sup a(x)p(z) < n, (2.7)
€ zeQ

the potential operator 1°V) is bounded from LPY)(Q) into L™)(Q) with

@)

D GG
p(z) n
Theorem C . Under conditions (2.1), (2.2) and the condition in{f2 a(x)>0,
TE
the operator I1*0) is compact in LP() ().
For the weighted potential operator
159 f(a) = |2 — f’/ /1) dy, z9€Q 2.8
B N e 25

the following theorem holds.
Theorem D . Under conditions (2.1), (2.2) and the condition inf a(z)> 0,

e
the operator [g(') is bounded in LPO)(Q) if

—M<ﬁ<m. (29)



Let now n =1, Q = (0,¢) with 0 < ¢ < oo and zy = 0. We consider the
weighted Hardy-type operators

T ¢

[ f(t f(t

HP f(x) = 2P~ %dt, HP f(x) = 27 tﬁ<—+3dt (2.10)
0 T

and the weighted Hankel-type operator

H’ f(x) :xﬂ/ﬂdt. (2.11)

Theorem E . Suppose 1 < p(x) < P < oo for z € [0,/].
I. Let conditions (2.1), (2.2) be satisfied on a neighbourhood [0,d] of the

origin, d > 0. If
1 “g< 1
p(0) q(0)°
then all the operators H?, H? and HP are bounded from LPV)(Q) into L*0) (1)
with any s(x) such that 1 < s(z) < S < oo for 0 <ax </,

$(0) =p(0) and |s(z) —p(z)| < lil, O<z<d, 6>0.  (213)
n_

(2.12)

IL. If p(0) < p(z), 0 < x < d, for some d > 0, then the same statement on
boundedness from LPO)(Q) into L*V)(Q) is true if the requirement of the va-
lidity of conditions (2.1), (2.2) on [0,d] is replaced by the weaker assumption
that

A 1
p0)>1 and |s(z) —p(0)] < —, 0 <z < min (z, -). (2.14)
11’1; 2

Corollary . Let 1 < p(x) < P < o0 on [—1,1]. The singular operator
with fixed singularity,
Sﬂf — W

™

f(t) dt
t—ax 8’

z € [-1,0],

o —

is bounded from LP®([0,1]) into LP@)([—1,0]) if
1) p(0) > 1;
2) p(x) satisfies condition (2.2) on [—0,0] for some § > 0;

1 1
3)—m<ﬁ<m.



3 Preliminaries

3.1 On the spaces LP()(Q)

The basics on the spaces LP*) may be found in [3], [6], [11]-[13]. Here we
recall only some important facts and definitions. -
Let € be an open set in R" and p(x) a function on §2 such that

1<p(x)<P<oo, €.

By LP1)(Q) we denote the space of measurable functions f(z) on 2 such that
_ / ()P dz < oo, (3.1)
Q

This is a Banach space with respect to the norm

£l = inf{)\ >0 Ip(§> < 1}.

The Holder inequality holds in the form

/ F)o(@)ldz < Kl Fl, - ol (32
with k = — —|— . The functional I,(f) and the norm || f||,.) are simultane-
ously greater than one and simultaneously less than 1:

11y < () < ARG i 1 f 1, <1 (3.3)
and
P .
1f ¢y < () < W fllpey A f 1l = 1. (3.4)

The imbedding
[P@) C '@ 1 <r(z) <plz) <P < oo
is valid if || < oco. In that case

[flleiy < mllfllpey m = a2+ (1= a1)[, (3.5)

where a; = ;Ielsfl (@) and a; = Slelg p(m)



We remark that in this paper we deal with LP()-spaces on open sets in
R™. We shall give some results on boundedness of singular operators with
fixed singularity on curves in the complex plane in another paper. Here we
only mention that the space LP()(I') on a rectifiable simple curve

F={teC: t=1t(s), 0<s</},

where s is the arc length, may be introduced in a similar way via the func-

tional
/ £ |dt] = / Flt(s)] [P0 4

Condition (2.2) may be imposed either on the function p(t):

1
Ip(t1) — p(t2)| < ti—taf <5, ti,ta €T (3.6)
In e 2
1—t2]
or on the function p,.(s) = p[t(s)]:
A 1
[pe(s1) = puls2)| S g [s1—s[ <5, s1,52€[0,4]. (3.7)
s1—s2]

Since [t(s1) — t(s2)] < |s1 — s2|, (3.6) always implies (3.7). Conversely, (3.7)
implies (3.6) if there exists a A > 0 such that

51— sa] < cft(s1) — t(s)[*.

Therefore, conditions (3.6) and (3.7) are equivalent on curves satisfying the
so called chord condition, for example.

Let )
Kif = [R("2Y)

en
Q

where K(z) has a compact support in Bg(0). In [14], [15] the uniform esti-
mate

HKefHLp(~)(QR) < CHfHLP(~)(Q)7 (3.8)

where Qp = {x : dist (z,Q) < R}, was proved under the assumption that
p(x) is defined in Qg and satisfies conditions (2.1), (2.2) on Q.

For the potential type operator 1% defined in (2.6), the following state-
ment was proved in [13] in the case of a bounded open set €.
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Theorem 3.1 . Under assumptions (2.1),
1°0) s bounded from LPY)(Q) into L™0(€2), - 5 = G
if p(z) is constant, and under the condition that the maximal operator M =
MO is bounded in LP")(Q) in the general case.

1

(2.2) and (2.7) the operator
= )—%, unconditionally

3.2 Auxiliary lemmas for averages

Let

M, f(z) = — /If(y)|dy (3.9)

denote the mean of the function f over the ball B,.(x). We also need the
weighted means

B.@)] ) ly—ol’

Br(x

MPf(x) = dy (3.10)

related to the weighted maximal operator (2.3). In (3.9), (3.10) we assume
that f(y) =0 for y & Q.

Lemma 3.2 . If 0 < (3 < n, the inequality

a:—a:o\ﬂ /
MP(1) = <c 3.11
. =P S 34

holds with ¢ > 0 not depending on x, r and xg.

This lemma is known, but we give its proof in the Appendix for the
completeness of the presentation.

Lemma 3.3 . Suppose that xy € O and condition (2.4) is satified. If
the function | — xo|" 1s in L'(Q), then necessarily v > —n.

Proof . Suppose that zy € 9Q and |z — x| € L'(2). We have

/\:L’ — x| dx > /\x — xo|" dx = € — z0]7|€2],
Q Q

where £ € €2,.. Since |§ — x|? ~ 17, by (2.4) we obtain

/ |z — x| dx > er?™™

which is only possible if v+ n > 0. O



4 The Weighted Maximal Operator in the
Space L')(Q)

In what follows,  is an open bounded set in R" and z, € (.

4.1 A pointwise estimate for the weighted means (3.10)
Theorem 4.1 Let p(x) satisfy conditions (2.1) and (2.2). If

n
0<8< ma (4.1)
then
8 ¢ AP(®) 1 p(y)
A < 14 gy (/ W (@)

for all f € LPO(Q) such that || f||) < 1, where ¢ = c(p, B) is a constant not
depending on x, r and xg.

Proof . From (4.1) and the continuity of p(z) we conclude that there
exists a d > 0 such that

Bq(x) <n forall |z —xy| <d. (4.2)
Without loss of generality we assume that d < 1. Let

pr(z) = min p(y)

ly—a|<r

and ﬁ =1- pr#(m) . From (4.1) it is easily seen that

. O (4.3)

N ESH

d
Ba-(x) <n if |z — x| < 5 and 0 <7 <
1° The case |[x —x¢| < $ and 0 <r < ¢ (the main case)

In this case, applying the Holder inequality with the exponents p,.(z) and
¢-(x) to the integral on the right-hand side of the equality

S VTR
r”p(l’) |y — Qjolﬁ
Br(x)

9

p(z)
p(z)

()

|?J—$o|ﬁ




and taking into account (4.3), we get

‘M< /() )”“)
"\ly — xol? -
p(z) p(z)
pr(z) qr ()
dy
pr . - <
_Tnp@) /If )l /|y_x0|ﬁqr(m) . (4.4)
Br(x) Br(x)

Making use of the estimate (3.11), we obtain

e (5=5)

Here

p(x)
pr(z)

p(z)

Bp(x
X X z
S ¢ ’ np(’fb‘) / |f |p7‘( )dy

7 pr(c)

[ rwr@as [ R [ swray

lgr($) l?T(x)
{v: Ifw) =1}
since p,(x) < p(y) for y € B,(x). Since p(z) is bounded, we see that
p(z)
pr(z)

p(x) |ZL’ —r |fﬁp(x)
0

7 pr(=)
BT( )

e (525)

Since r < ¢ < % and the second term in the brackets is also less than or
equal to % , we arrive at the estimate

N

C n
MPFPE <~ fpny / F)P® dy| <

r(z>
" By (x)

r(z)—p(z)
<o e L [ e
By (x)

From here (4.2) follows, since

n Pr@)—p(@)
rt T pr(e) <ec.
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Indeed,

P RS = e P@pr@lng
where
= [p(z) - pr(2)]1 1(<\() (5)!11
_— X)) — r xXr n— -~ n xXr) — T n-—
o P p " p p ;

with &. € B,.(z), and then by (2.2),

n
Dr

1 Ini
[p(a) = pi(e)] In | < nA—— <nA,
|z =& |

since |z — &, | <.

20 The case [x —xo| > 3, 0<r < 4.
This case is trivial, because

d
!y—$0|219€—$0’—\y—9€\25

Thus |y — xo|? > (%)’6. Since |z — zo|? < (diam Q)7 it follows that

MP f(x) < eM, f(x),
and one may proceed as above for the case # = 0 (the condition |z — z¢| < g
is not needed in this case).

3% The case r > %

This case is also easy. It suffices to show that the left-hand side of (1.4) is
bounded. We have

sy o cldiam Q)7 ) )
Mrf@) < =y / PR / v — ol

y—mo|< g ly—zo|>2

Here the first integral is estimated via the Holder inequality with the expo-

nents
/

pa = min p(y) and qa = Py
8 8 8

ly—zo|< g

11



as in (4.5), which is possible since aga < m. The estimate of the second
8
integral is trivial since |y — x| > &.

Corollary. Let 0 < 8 < ﬁ . If conditions (2.1), (2.2) are satisfied,
then
|MP f ()P < e (1+ M [|f()PPV] (2)) (4.5)

for all f € LPO(Q) such that || f|lp) <1 .

4.2 Boundedness of the weighted maximal operator

Proof of Theorem A.

We have to show that
HMBpr(.) <c

in some ball || f]|,) < R, which is equivalent to the inequality

L(MPf) < ¢ for £l < .

We observe that
|z — 20| P®) ~ |2 — o] Pl0) (4.6)

in case p(z) satisfies the condition (2.2).

I. Sufficiency part. From (4.7) we obtain

(=)

Following the idea in [1], p. 25, we represent this as

(=)

p(z)

L(MPf) < c/ |z — 1| PP@0) dz.
0

r(z)\ PO
L(MPf) < c/ <|:17 — | Pr(@0) ) dz, (4.7)
Q

where

In the sequel we distinguish between the cases § < 0 and 3 > 0.

12



1° The case — oty <P <0
Estimate (4.6) with 3 = 0 says that

| My ()™ < c(l + M[@DT(')](x)) (4.8)
for all ¢ € L"0(Q) with [|]l,() < 1. For ¢(z) = L% we have
Hw HT(') S a0|| er(.) ,ag = (diam Q)17
where we took into account that § < 0. From imbedding (3.5) we obtain
161, < a0 kllfll,c) < aokR.

Therefore we choose R = ﬁ Then [|¢[,) <1, so that (4.9) is applicable.

From (4.8) we now get
r(y) po
1+ M ‘—f (v) da.
|y — wol?
L(M°f) <

IP(M/Bf> S C/ <|x — I0|’8T(IO)
Q
r(y) Po
o 1Bp(x0) . (Br(zo) f(W)]
< C/ {|Q§' ZL'0| + (|ZE I'()| M (|y _ :L'0|,87“(x0) dx <
Q

<ce [ Qr(FOPY) @) da,

Q

By property (4.7), this yields

where
Bp(zo)

Po
As is known [7], the weighted maximal operator M” is bounded in LP° with
a constant pg if —pﬂo < v < pﬂé, which is satisfied since —p(’;o) < B <0.
Therefore,

v = Br(zo) =

L(MPF) < et e / )@ dy =
Q

=c+ec [ |f)P¥dy <
/

13



0 n
2 Thecase0§5<m.

We represent the functional I,(M? f) in the form

LOrH = [ (M 5@)r) i (4.9

Q

with r(z) = ’@ > 1, A > 1, where X\ will be chosen in the interval

1< A< Po-
In (4.10), we wish to use the pointwise weighted estimate (4.6):
M7 f ()" < e[t + M(f) (). (4.10)

This estimate is applicable according to Theorem 4.1 if || ||,y < ¢ and
n
[r(zo)]"
The condition || f||,) < c is satisfied since r(x) < p(z). Condition (4.12) is

fulfilled if X\ < % p(zo). Therefore, under the choice

0 <

(4.11)

n—p

1 < A < min (po,

p(%))

we may apply (4.11) to (4.10). This yields
LOCR) < e [ MO do <
0

<ete / (17 ()" ) da

Q

by the boundedness of the maximal operator M in L*(Q2), A > 1. Hence

L(MPf)y <c+ c/ |f(2)P@ dx < c.
Q

II. Necessity part. Suppose that M? is bounded in LP®)(Q). Then,
given a function f(x) such that

L(wf) < e, w(w) = |z — x0)°, (4.12)
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we have
I(wMf)<c (4.13)
(for all f satisfying condition (4.13)).
1) We choose f(z) = |z — zo|* with p > —p — eoy- Lhen

o

L(wf) <c / |7 — 20| PPy < ¢ / ]m\(m“)p(“)dx ,

|x—zo|<T |z|<r

where the integral converges, so that we are in the situation (4.13). However,

L(wMf)>c / |z — 20|70 dz |

QNBr(zo)

which diverges if Gp(z9) < —n; here we take into account Lemma 3.3 in the
case xg € J). Therefore, from (4.14) it follows that 5 > — oy

2) To show the necessfcy of the right-hand 81de bound in (2.5), suppose
that, on the contrary, g > > - ) Let first > sy . We choose

fla) = —

|z — xo|™
for which I,(wf) converges but M f just does not exist. Let now § =
We choose

Y

Q(Zo)'

flz) = ! <ln ! >W, |w—:1:0]§1.

|z — o|" |z — x| 9
p_(io), but M f does not exist
when v > —1. Thus, taking v € ( — 1, —p—(io)), we arrive at a contradiction.

Then I,(wf) exists under the choice v < —

4.3 Weighted supremal Poisson operator

Let £ fydt
Y L —
uf( 7y)__/ 9 o 2EL y>07
o) e+ )%
n+1
be the Poisson integral. Here ¢, = &”—Tl)
2

The theorem below provides a weighted estimate for the non-tangential
supremum of the Poisson integral us(z,y). We put

Fo(x) ={(&,y) : |{ — 2| <ay}  withfixed a>0.
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Theorem 4.2 Let f(x) have a compact support in a bounded domain S).
Under assumptions (2.1) and (2.2), for the weighted estimate

la =20l sup (&)l ooy < el [ — 20 (@) oy (414)

(&:y)€Ta(x)
with an interior point xo € Q to be valid, it is necessary and sufficient that

o) <P < oy

In the case xy € 0S), this condition is sufficient for any xo and necessary
if xo satisfies condition (2.4).

Proof. It suffices to refer to the fact that

sup  Jug(z,y)| ~ Mf(z)
(6)€Ta(2)

(see [2], p.45), and to make use of Theorem A. O

Remark. A non-weighted estimate of the weaker form
sup [[us (@, Y)[| o) ) < €l f | ooy
y>0

follows also from (3.8). In the one-dimensional case, an estimate of the type
(4.15) for 2m-periodic functions was obtained in [17].

5 Proof of Theorems B—D

5.1 Proof of Theorem B
This theorem is an immediate consequence of Theorem 3.1 and Theorem

A (the latter for the case = 0). O
5.2 Proof of Theorem D.
We have
dy
[a(x) ) = |z — Jé] / f(y)
Jé] f( ) | 0’ ‘x_y‘nfa(x)’y_xoyﬂ
|z —y[ >1
y e
fy)dy
+|z — z|° / =
oo o= gy — 2ol
|z —y[ <1
y e
= A1 f(z) + Az f (2). (5.1)

16



For the first term we have

Af(@)] < cla -z [ LW (5.2)

|y - 550|*6
Q

and the Holder inequality (3.2) yields

[f)ldy

_ — 0
oy — 2P = el fllyey My =20l < elle(ly = 2o ™NNfIL - (5.3)
Q

where 0 = % if I,(---)<1landf= qio otherwise. Obviously,
Iy =) < ¢ [ 1y = [ P10y = e < oc (5.4)
Q

by property (4.7) and the condition Bq(z¢) < n. Thus from (5.2)—(5.4) we
get

[Arf(@)] < el =@l [[f 1 (5.5)
For the term A, f(x) we have
P [ 1) |
[ Az f ()| < | — a0 ; iz — g @]y — 2]

T 2= (kD) < |z—y| <2k

where it is assumed that f(x) is continued as zero beyond {2 if necessary. For
those x for which a(x) < n, we obtain

o i g | |f(y)ldy
A < oMy — 3B okl—a(@)]  g—kn_L / 11 ldy
Az f ()] < 2% — 0| ’?_0: hn ly — aol® =
- ja—yl<2-

< 2o — xo)? i Qka(x)M<M>_

[y — 2ol

Therefore,
A f ()] < eMP f(a) (5.6)

with ¢ = 2" " 27k oy = inf a(x).
k=0 €N
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In the case a(z) > n, the pointwise estimate of Ag(x) is the same as that
for Aj(z). Consequently, for all z € © by means of (5.5) and (5.6) we obtain

159 f(2)] < eMP (@) + cla — ol f],- (5.7)
Therefore,

HIg(x)pr(.) < CHMﬁf“p(-) +cff |z — $0|ﬂ Hp(-) ) Hpr(.)-

It remains to apply Theorem A to the first term in (5.7) and to notice that
|z — x0|ﬁ|]p(,) is finite, the latter being obtained as in (5.4). O

5.3 Proof of Theorem C
From Theorem D we already know that the operator I*®) is bounded in
LPO)(Q). To show its compactness, we represent it as

[a(:r)f(x) _ / ’f(y)|dy + / |f<y>|dy

|ZE _ y|n—a(:t) |I _ y|n—a(:v) -
le—y|<e |x—y|>e

= Ko f(x) + T f(x) (5-8)

under the usual assumption that f(x) = 0 for y ¢ Q. As in the proof of
Theorem D, we have

S £ (y)|dy
|K.f(z)] < e =
,; / |z =yl

T 2=k e<|z—y|<2— ke

< ce®(Mf)(x) (5.9)

with ag = inf,eq a(x) > 0.

The compactness of the operator T, may be shown via direct approxima-
tion by finite-dimensional operators. Indeed, denote t.(z,y) = 1if [t—y| > ¢
and t. = 0 otherwise. As is known, functions of the form

Fal@,y) =Y a(2)bi(y),

where by (y) = x5, (y), Bx are non-intersecting sets on €2, and a,(z) € L2(Q),
form a dense set in the mixed norm space LT[L?](Q x Q) for all constant
exponents P and @), 1 < P < 00, 1 < () < co. Therefore for the function

18



t-(x,y) with any fixed € > 0, there exists a sequence of function &, (z, y) such
that

Tim || [Ir2(2.9) — k() gl = 0. (5.10)

Then the finite-dimensional operators

AJm:/mmwﬂwm

Q

which are compact in LP()(€Q), approximate the operator 7. in the operator
norm of LP()(Q) as n — oo. Indeed, taking into account imbedding (3.5), we
obtain

|(Te = An) f (@) < cl[ fllpey [1rn(,-) =t
< el fllpey [1hn(z,-) = te(

8

8

and then
(T2 = A) iy < cllfllpey TR, ) = te(@, )l gl -
Therefore, by the same imbedding (3.5),
1T: = Akl oy oy < K = tellgllp — 0

in view of (5.10). Consequently, the operators 7. are compact in LP¢)(Q).
It remains to observe that, by (5.8) and (5.9) and by the boundedness of
the maximal operator,

1T = Tel| 1oy 1oy = 1 oo oy < €% M| oty oty — 0,

so that 7% is a compact operator as well. O

6 Weighted Estimates for Operators with Fixed
Singularity
The following operators may be treated as operators with fixed singularity:

a) the Hardy type operators (2.10) on [0, [;
b) the Hankel operator (2.11) on [0, ];
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¢) singular operators on a curve I'; with the ”outer” variable on another
curve 'y, the latter having a unique common point with I';; commutators
of the singular operator with the operators of multiplication by piece-wise
continuous functions.

For such operators, in contrast to the maximal and potential operators,
the ”global” Dini-Lipschitz condition (2.2) may be replaced by a "local”
condition at the point of the fixed singularity.

In this paper we consider the cases a) and b) and deal with the weighted
version of the Hardy and Hankel operators. The case of singular operators
with fixed singularity on curves in the complex plane is postponed to another

paper.
Proof of Theorem E

The case of the Hardy operators
Part I. Suppose as usual that [|f||,, < 1. Let dy = min(d, ). We have

l do
[ s@P @ < [ |15 e +
0 0

| =z s(x)

1 (t)

— a0 4 1

+ dg/ tﬁ ) (6.1)
dg |0

where @ = (1 — 3)P. The second term may be estimated via the Holder
inequality:

[ f®) : ]
| [ L5 <R 1 < Pl = (62
0

under the Dini-Lipschitz condition for p(xz) on [0,d] and the assumption
Bq(0) < 1. For the first term in (6.1) we observe that the operator H?
is dominated by the weighted maximal operator M? since

4T

E]ﬂmﬂsifmmﬁ=é/M@W§ﬂﬁ@)
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But first we have to pass to the exponent p(z) in the first term. To this end,
we observe that

[HOf(2)P D77 <, 0<a<dy (£l <D (6.3)

where ¢ does not depend on x and f, if s(x) satisfies condition (2.13). Indeed,
by Holder inequality (3.2),

HO ()] < k|l 17 <
<c- kmﬁ_lﬂt_ﬁﬂq(o) = e’ (6.4)
Hence
|Hﬁf(x)|8(x)*P(fL”) S CS—l:L,(B—l)[s(ac)—p(x)] : (65)

which is obviously bounded if # > 1. For 0 < z < min(dp, ) from (6.4) we
have
|Hﬁf<x)|8(fr)fp(x) < S71(=B)[s(x)—p(2)]In < < o0

by (2.13). Therefore, in view of (6.3),

do do
/ \H f(2)|*“dz < ¢ / |HP f ()" da. (6.6)
0 0

It remains to apply Theorem A on [0, dy]. Then

d
1 @) < e
0

by (6.1), (6.2) and (6.6).

The operator H? = (H~?)* may be regarded as the operator adjoint to
H~ treated in L1V)([0,1]). However, we admit the possibility for ¢(z) to be
unbounded beyond a neighborhood of the point x = 0, and hence we should
first proceed as in (6.1):

l l

do
p < 1@ e [ [lrola)" i<
0

do T

do
< / HE (@)@ B f ()P do + (6.7)
0
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assuming that [| ||, < 1. Similarly to (6.5),

|HP f(2) @7 < ¢ 0<a<d
which is shown as in (6.4), (6.5), since

l
: g [ 1),
B2 f(@)] < @ /t

Then from (6.7),
do

(B f) < c / (H f ()" + c. (6.8)

It remains to use the duality argument for H? = (H7)*,

Part II. We need only to estimate anew the first term in (6.1). In the
case p(0) < p(z), 0 < z < d, we can avoid the passage to the maximal
operator by observing that, similarly to (6.3),

(HOf(2) D7 < e (|1 fl,, < 1)

under the second condition in (2.13). Then the first term in (6.1) is domi-

nated by
d d
c/|H5f(a:)\p(0)dx < c/]f(m)]p(o)
0 0

by virtue of the boundedness of the weighted Hardy operator H” in LP(©)
with p(0) > 1 and — o <P < (0) Therefore,

d d
/ @) < e [ 1)@z
0 0

by imbedding (3.5).
For the operator H? we may again proceed as in (6.7), (6.8) and use the
boundedness of H? in LP(©). O

The case of the Hankel operator
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Let for simplicity f(z) be non-negative. We have

x l
Hﬂf(x)ﬁxﬁ_l/%%—xﬁ {;—fzdt,
0 T

that is,
HC f(x) < HO f(x) + HI f(x). (6.9)

Consequently, the boundedness of H? follows immediately from that of the
operators H” and HP.

Proof of the Corollary to Theorem E

We have
0 L
[isoros= [ [ GY S
1 s

Thus, it suffices to make use of Theorem E for the Hankel operator H”,
choosing s(z) = p(—=) in that theorem. The condition

p(—x)
dzx.

5(2) = p(e)| = Ip(~2) ~ ()| < o 0< el <0
||
of Theorem A is obviously satisfied. a
Appendix
Proof of inequality (3.11)
Let J J
J(z) = / W / Ay (6.10)
|y — x| lyl™
ly—=|<r ly—(z—z0)|<r

Without loss of generality we may assume that zo = 0. The change of

variables y = |z|¢ gives

L I R CL N (6.11)

€l Jule”
=< fu—erl< 2y
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where e; = (1,0,...,0) and in the last equation we made the rotation change
of variables

§=wp(u), [&] = lul,

where w,(u) is the rotation of R™ such that w,(e;) = fay- From (6.11) we
have

o r dy
hw) =l (). a0 = / >0 (6.12)
ly—e1|<t

To estimate g(t), we distinguish between the three cases 0 < t < 3, ¢ > 2
and % <t <2.

In the case 0 < ¢ < 1 wehave [y| = [y—e1+e| > 1—|y—e| >1—1 > 3,
so that

gt) < 2° / dy = 2°|B,(e1)| = 2%|B,()|. (6.13)

lg—e1|<t

If t > 2, we obtain
d d d
o= [ S [ o Seer [ o
| |y ly + el
ly—e1|<2 2<|y—er|<t 2<y|<t

Here |y +e1| > |yl = 1> |y| — “2’—‘ = % Therefore

1
d
o<z [ Lo [ -
y «
2<|y|<t 0
=c+t" " < cot" (6.14)

Finally, if 3 < ¢ <2, we have g(t) < g(r) = ¢3. Thus, by (6.13), (6.14)

t) < t 0<t<l,
gt) <c
thme t > 1.

Now we obtain from (6.12) that

e <z,
J.(z) <c

e, r>x <cr'lx)T
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Hence (3.11) follows. O
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