
Maximal and Fractional Operators in
Weighted Lp(x) Spaces

by

Vakhtang Kokilashvili and Stefan Samko

Published in Revista
Matematica Iberoamericana,
2004, vol. 20, No 2, 493-515.

Abstract
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1 Introduction

The investigation of the Lebesgue spaces Lp(·)(Ω) with variable exponent
was initiated in [16]. During the last two decades these spaces have been
intensively studied, see [3], [6], [8], [10]–[17] and references therein. The
interest on these spaces comes from their mathematical curiosity on the one
hand and their importance in some applications (see [10], [19], [20]) on the
other hand.

As the space Lp(·)(Rn) is not invariant with respect to translations, convo-
lution operators do not behave well in these spaces. For example, the Young
theorem is in general not valid in these spaces, see for instance [13], Sec-
tion 2. Problems also arise for Mellin convolutions (n = 1), since Lp(·)(R1

+)
is not invariant with respect to dilations. However, the failure of the Young
theorem does not prevent some convolution operators from being bounded
operators. Roughly speaking, a convolution operator is bounded in Lp(·), if
its kernel has singularity at the origin only.

There are two examples, whose importance is difficult to overestimate.
One is the convolution with the singular kernel k(x) = 1

x
(n = 1), that

is, the well-known singular operator, and the other is the related maximal
operator, although the latter is not a convolution. For the second operator
over open bounded sets the problem of its boundedness was recently solved by
L. Diening [1]. But the problem of the boundedness of the singular operator
remains open as yet.

In this paper we prove weighted estimates for the maximal operator over
bounded open sets and for singular type operators with fixed singularity (of
Hardy and Hankel type). We give also weighted estimates for potential type
operators of variable order α(x) and show, in particular, that the Sobolev
theorem with the limiting exponent

1

µ(x)
=

1

p(x)
− α(x)

n

is valid for them. We also prove that the potential operator is compact in
Lp(·)(Ω).

The main results are formulated in Section 2 as Theorems A–E. Section
3 provides necessary preliminaries and Sections 4–6 contain the proofs of
Theorem A–E.
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The paper is based on the authors’ preprint ”Maximal and Fractional
Operators in Weighted Lp(x) Spaces”, Preprint 13/2002, Departamento de
Matemática, Istituto Superior Técnico, Lisboa.

Notation
Ω is a open bounded set in Rn;
µ(Ω) = |Ω| is the Lebesgue measure of Ω;
Br(x) = {y ∈ Rn : |y − x| < r};
|Br(x)| = rn

n
|Sn−1| is the volume of Br(x);

q(x) = p(x)
p(x)−1

, 1 < p(x) < ∞, 1
p(x)

+ 1
q(x)

≡ 1 ;

p0 = inf
x∈Ω

p(x), P = sup
x∈Ω

p(x);

q0 = inf
x∈Ω

q(x) = P
P−1

, Q = sup
x∈Ω

q(x) = p0

p0−1
;

c may denote different positive constants.

2 Statement of the Main Results

Let Ω be an open bounded set in Rn, n ≥ 1, and p(x) a function on Ω
satisfying the conditions

1 < p0 ≤ p(x) ≤ P < ∞, x ∈ Ω (2.1)

and

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω. (2.2)

The condition (2.2) appears naturally in the theory of the spaces
Lp(·)(Ω), see [12]–[15]. In [8] it was shown that this condition is in fact nec-
essary for boundedness of the maximal operator in Lp(·)(Ω). Condition (2.2)
also appeared in [9] in case of Hölder spaces Hλ(x) with variable exponent
λ(x).

Let

Mβf(x) = |x− x0|β sup
r>0

1

|Br(x)|
∫

Br(x)∩Ω

|f(y)|
|y − x0|β dy, (2.3)

where x0 ∈ Ω. We write M = M0 in the case where β = 0.
In the case where x0 ∈ ∂Ω and when considering the necessity of bound-

edness conditions, we shall make use of a restriction of the type

|Ωr(x0)| ∼ rn, (2.4)
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where Ωr(x0) = {y ∈ Ω : r < |y − x0| < 2r}.
Theorem A . Let p(x) satisfy conditions (2.1), (2.2). The operator Mβ

with x0 ∈ Ω is bounded in Lp(x)(Ω) if and only if

− n

p(x0)
< β <

n

q(x0)
. (2.5)

If x0 ∈ ∂Ω, condition (2.5) is sufficient for the boundedness of Mβ. If x0 ∈
∂Ω and condition (2.4) is satisfied, then condition (2.5) is also necessary for
the boundedness of Mβ .

Let further

Iα(x)f(x) =

∫

Ω

f(y)

|x− y|n−α(x)
dy, 0 < α(x) < n. (2.6)

Theorem B . Under conditions (2.1), (2.2) and the conditions

inf
x∈Ω

α(x) > 0 and sup
x∈Ω

α(x)p(x) < n, (2.7)

the potential operator Iα(·) is bounded from Lp(·)(Ω) into Lr(·)(Ω) with 1
r(x)

=
1

p(x)
− α(x)

n
.

Theorem C . Under conditions (2.1), (2.2) and the condition inf
x∈Ω

α(x)> 0,

the operator Iα(·) is compact in Lp(·)(Ω).

For the weighted potential operator

I
α(x)
β f(x) = |x− x0|β

∫

Ω

f(y)

|y − x0|β|x− y|n−α(x)
dy, x0 ∈ Ω (2.8)

the following theorem holds.

Theorem D . Under conditions (2.1), (2.2) and the condition inf
x∈Ω

α(x)> 0,

the operator I
α(·)
β is bounded in Lp(·)(Ω) if

− n

p(x0)
< β <

n

q(x0)
. (2.9)
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Let now n = 1, Ω = (0, `) with 0 < ` < ∞ and x0 = 0. We consider the
weighted Hardy-type operators

Hβf(x) = xβ−1

x∫

0

f(t)

tβ
dt, Hβ

∗ f(x) = xβ

`∫

x

f(t)

tβ+1
dt (2.10)

and the weighted Hankel-type operator

Hβf(x) = xβ

`∫

0

f(t)

tβ(t + x)
dt. (2.11)

Theorem E . Suppose 1 ≤ p(x) ≤ P < ∞ for x ∈ [0, `].
I. Let conditions (2.1), (2.2) be satisfied on a neighbourhood [0, d] of the

origin, d > 0. If

− 1

p(0)
< β <

1

q(0)
, (2.12)

then all the operators Hβ, Hβ
∗ and Hβ are bounded from Lp(·)(Ω) into Ls(·)(Ω)

with any s(x) such that 1 ≤ s(x) ≤ S < ∞ for 0 ≤ x ≤ `,

s(0) = p(0) and |s(x)− p(x)| ≤ A

ln 1
x

, 0 < x < δ, δ > 0 . (2.13)

II. If p(0) ≤ p(x), 0 ≤ x ≤ d, for some d > 0, then the same statement on
boundedness from Lp(·)(Ω) into Ls(·)(Ω) is true if the requirement of the va-
lidity of conditions (2.1), (2.2) on [0, d] is replaced by the weaker assumption
that

p(0) > 1 and |s(x)− p(0)| < A

ln 1
x

, 0 < x < min
(
`,

1

2

)
. (2.14)

Corollary . Let 1 ≤ p(x) ≤ P < ∞ on [−1, 1]. The singular operator
with fixed singularity,

Sβf =
|x|β
π

1∫

0

f(t)

t− x

dt

tβ
, x ∈ [−1, 0] ,

is bounded from Lp(x)([0, 1]) into Lp(x)([−1, 0]) if
1) p(0) > 1;
2) p(x) satisfies condition (2.2) on [−δ, δ] for some δ > 0;
3) − 1

p(0)
< β < 1

q(0)
.

5



3 Preliminaries

3.1 On the spaces Lp(·)(Ω)

The basics on the spaces Lp(·) may be found in [3], [6], [11]–[13]. Here we
recall only some important facts and definitions.

Let Ω be an open set in Rn and p(x) a function on Ω such that

1 ≤ p(x) ≤ P < ∞, x ∈ Ω.

By Lp(·)(Ω) we denote the space of measurable functions f(x) on Ω such that

Ip(f) :=

∫

Ω

|f(x)|p(x) dx < ∞. (3.1)

This is a Banach space with respect to the norm

‖f‖p(·) = inf
{

λ > 0 : Ip

(f

λ

)
≤ 1

}
.

The Hölder inequality holds in the form
∫

Ω

|f(x)g(x)| dx ≤ k‖f‖p(·) · ‖g‖q(·) (3.2)

with k = 1
p0

+ 1
q0

. The functional Ip(f) and the norm ‖f‖p(·) are simultane-
ously greater than one and simultaneously less than 1:

‖f‖P
p(·) ≤ Ip(f) ≤ ‖f‖p0

p(·) if ‖f‖p(·) ≤ 1 (3.3)

and
‖f‖p0

p(·) ≤ Ip(f) ≤ ‖f‖P
p(·) if ‖f‖p(·) ≥ 1. (3.4)

The imbedding

Lp(x) ⊆ Lr(x), 1 ≤ r(x) ≤ p(x) ≤ P < ∞
is valid if |Ω| < ∞. In that case

‖f‖r(·) ≤ m‖f‖p(·), m = a2 + (1− a1)|Ω|, (3.5)

where a1 = inf
x∈Ω

r(x)
p(x)

and a1 = sup
x∈Ω

r(x)
p(x)

.
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We remark that in this paper we deal with Lp(·)-spaces on open sets in
Rn. We shall give some results on boundedness of singular operators with
fixed singularity on curves in the complex plane in another paper. Here we
only mention that the space Lp(·)(Γ) on a rectifiable simple curve

Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ `},
where s is the arc length, may be introduced in a similar way via the func-
tional

Ip(f) =

∫

Γ

|f(t)|p(t) |dt| =
`∫

0

|f [t(s)] |p[t(s)] ds.

Condition (2.2) may be imposed either on the function p(t):

|p(t1)− p(t2)| ≤ A

ln 1
|t1−t2|

, |t1 − t2| ≤ 1

2
, t1, t2 ∈ Γ (3.6)

or on the function p∗(s) = p[t(s)]:

|p∗(s1)− p∗(s2)| ≤ A

ln 1
|s1−s2|

, |s1 − s2| ≤ 1

2
, s1, s2 ∈ [0, `]. (3.7)

Since |t(s1)− t(s2)| ≤ |s1 − s2|, (3.6) always implies (3.7). Conversely, (3.7)
implies (3.6) if there exists a λ > 0 such that

|s1 − s2| ≤ c|t(s1)− t(s2)|λ.
Therefore, conditions (3.6) and (3.7) are equivalent on curves satisfying the
so called chord condition, for example.

Let

Kεf =
1

εn

∫

Ω

K
(x− y

ε

)
f(y) dy,

where K(x) has a compact support in BR(0). In [14], [15] the uniform esti-
mate

‖Kεf‖Lp(·)(ΩR) ≤ c‖f‖Lp(·)(Ω), (3.8)

where ΩR = {x : dist (x, Ω) ≤ R}, was proved under the assumption that
p(x) is defined in ΩR and satisfies conditions (2.1), (2.2) on ΩR.

For the potential type operator Iα(x) defined in (2.6), the following state-
ment was proved in [13] in the case of a bounded open set Ω.
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Theorem 3.1 . Under assumptions (2.1), (2.2) and (2.7) the operator

Iα(·) is bounded from Lp(·)(Ω) into Lr(·)(Ω), 1
r(x)

= 1
p(x)

− α(x)
n

, unconditionally

if p(x) is constant, and under the condition that the maximal operator M =
M0 is bounded in Lp(·)(Ω) in the general case.

3.2 Auxiliary lemmas for averages

Let

Mrf(x) =
1

Br(x)|
∫

Br(x)

|f(y)| dy (3.9)

denote the mean of the function f over the ball Br(x). We also need the
weighted means

Mβ
r f(x) =

|x− x0|β
|Br(x)|

∫

Br(x)

|f(y)|
|y − x0|β dy (3.10)

related to the weighted maximal operator (2.3). In (3.9), (3.10) we assume
that f(y) = 0 for y 6∈ Ω.

Lemma 3.2 . If 0 ≤ β < n, the inequality

Mβ
r (1) =

|x− x0|β
|Br(x)|

∫

Br(x)

dy

|y − x0|β ≤ c (3.11)

holds with c > 0 not depending on x, r and x0.

This lemma is known, but we give its proof in the Appendix for the
completeness of the presentation.

Lemma 3.3 . Suppose that x0 ∈ ∂Ω and condition (2.4) is satified. If
the function |x− x0|γ is in L1(Ω), then necessarily γ > −n.

Proof . Suppose that x0 ∈ ∂Ω and |x− x0|γ ∈ L1(Ω). We have∫

Ω

|x− x0|γ dx ≥
∫

Ωr

|x− x0|γ dx = |ξ − x0|γ|Ωr|,

where ξ ∈ Ωr. Since |ξ − x0|γ ∼ rγ, by (2.4) we obtain∫

Ωr

|x− x0|γ dx ≥ crγ+n

which is only possible if γ + n > 0. 2
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4 The Weighted Maximal Operator in the

Space Lp(·)(Ω)

In what follows, Ω is an open bounded set in Rn and x0 ∈ Ω.

4.1 A pointwise estimate for the weighted means (3.10)

Theorem 4.1 Let p(x) satisfy conditions (2.1) and (2.2). If

0 ≤ β <
n

q(x0)
, (4.1)

then

[Mβ
r f(x)]p(x) ≤ c


1 +

1

|Br(x)|
∫

Br(x)

|f(y)|p(y) dy


 (4.1)

for all f ∈ L(p(·)(Ω) such that ‖f‖p(·) ≤ 1, where c = c(p, β) is a constant not
depending on x, r and x0.

Proof . From (4.1) and the continuity of p(x) we conclude that there
exists a d > 0 such that

βq(x) < n for all |x− x0| ≤ d. (4.2)

Without loss of generality we assume that d ≤ 1. Let

pr(x) = min
|y−x|≤r

p(y)

and 1
qr(x)

= 1− 1
pr(x)

. From (4.1) it is easily seen that

βqr(x) < n if |x− x0| ≤ d

2
and 0 < r ≤ d

4
. 2 (4.3)

10 The case |x− x0| ≤ d
2 and 0 < r ≤ d

4 (the main case)

In this case, applying the Hölder inequality with the exponents pr(x) and
qr(x) to the integral on the right-hand side of the equality

∣∣∣∣Mr

( f(y)

|y − x0|β
)∣∣∣∣

p(x)

=
c

rnp(x)




∫

Br(x)

|f(y)|
|y − x0|β dy




p(x)
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and taking into account (4.3), we get
∣∣∣∣Mr

(
f(y)

|y − x0|β
)∣∣∣∣

p(x)

≤

≤ c

rnp(x)




∫

Br(x)

|f(y)|pr(x) dy




p(x)
pr(x)

·




∫

Br(x)

dy

|y − x0|βqr(x)




p(x)
qr(x)

. (4.4)

Making use of the estimate (3.11), we obtain

∣∣∣∣Mr

(
f(y)

|y − x0|β
)∣∣∣∣

p(x)

≤ c
|x− x0|−βp(x)

r
np(x)
pr(x)




∫

Br(x)

|f(y)|pr(x) dy




p(x)
pr(x)

.

Here ∫

Br(x)

|f(y)|pr(x) dy ≤
∫

Br(x)

dy +

∫

Br(x)
{y : |f(y)| ≥ 1}

|f(y)|p(y) dy,

since pr(x) ≤ p(y) for y ∈ Br(x). Since p(x) is bounded, we see that

∣∣∣∣Mr

(
f(y))

|y − x0|β
)∣∣∣∣

p(x)

≤ c1
|x− x0|−βp(x)

r
np(x)
pr(x)


rn +

1

2

∫

Br(x)

|f(y)|p(y) dy




p(x)
pr(x)

.

Since r ≤ d
2
≤ 1

2
and the second term in the brackets is also less than or

equal to 1
2
, we arrive at the estimate

|Mβ
r f |p(x) ≤ c

r
np(x)
pr(x)


rn +

∫

Br(x)

|f(y)|p(y) dy


 ≤

≤ c rn
pr(x)−p(x)

pr(x)


1 +

1

rn

∫

Br(x)

|f(y)|p(y) dy


 .

From here (4.2) follows, since

rn
pr(x)−p(x)

pr(x) ≤ c.
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Indeed,

rn
pr(x)−p(x)

pr(x) = e
n
pr

[p(x)−pr(x)] ln 1
r ,

where ∣∣∣ n

pr

[p(x)− pr(x)] ln
1

r

∣∣∣ ≤ n|p(x)− p(ξr)| ln 1

r

with ξr ∈ Br(x), and then by (2.2),

∣∣∣ n

pr

[p(x)− pr(x)] ln
1

r

∣∣∣ ≤ nA
ln 1

r

ln 1
|x−ξr|

≤ nA,

since |x− ξr| ≤ r.

20 The case |x− x0| ≥ d
2 , 0 < r ≤ d

4 .

This case is trivial, because

|y − x0| ≥ |x− x0| − |y − x| ≥ d

2
− d

4
=

d

4
.

Thus |y − x0|β ≥ (d
4
)β. Since |x− x0|β ≤ ( diam Ω)β, it follows that

Mβ
r f(x) ≤ cMrf(x),

and one may proceed as above for the case β = 0 (the condition |x−x0| ≤ d
2

is not needed in this case).

30 The case r ≥ d
4

This case is also easy. It suffices to show that the left-hand side of (1.4) is
bounded. We have

Mβ
r f(x) ≤ c( diam Ω)β

(d
4
)n




∫

|y−x0|≤ d
8

|f(y)|
|y − x0|β dy +

∫

|y−x0|≥ d
8

|f(y)|
|y − x0|β dy


 .

Here the first integral is estimated via the Hölder inequality with the expo-
nents

p d
8

= min
|y−x0|≤ d

8

p(y) and q d
8

= p′d
8
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as in (4.5), which is possible since αq d
8

< n. The estimate of the second

integral is trivial since |y − x0| ≥ d
8
.

Corollary. Let 0 ≤ β < n
q(x0)

. If conditions (2.1), (2.2) are satisfied,
then

|Mβf(x)|p(x) ≤ c
(
1 + M

[|f(·)|p(·)] (x)
)

(4.5)

for all f ∈ Lp(·)(Ω) such that ‖f‖p(·) ≤ 1 .

4.2 Boundedness of the weighted maximal operator

Proof of Theorem A.

We have to show that
‖Mβf‖p(·) ≤ c

in some ball ‖f‖p(·) ≤ R, which is equivalent to the inequality

Ip(M
βf) ≤ c for ‖f‖p(·) ≤ R.

We observe that
|x− x0|βp(x) ∼ |x− x0|βp(x0) (4.6)

in case p(x) satisfies the condition (2.2).

I. Sufficiency part. From (4.7) we obtain

Ip(M
βf) ≤ c

∫

Ω

|x− x0|βp(x0)

∣∣∣∣M
(

f(y)

|y − x0|β
)

(x)

∣∣∣∣
p(x)

dx.

Following the idea in [1], p. 25, we represent this as

Ip(M
βf) ≤ c

∫

Ω

(
|x− x0|βr(x0)

∣∣∣∣M
(

f(y)

|y − x0|β
)

(x)

∣∣∣∣
r(x)

)p0

dx, (4.7)

where

r(x) =
p(x)

p0

.

In the sequel we distinguish between the cases β ≤ 0 and β ≥ 0.
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10 The case − n
p(x0)

< β ≤ 0

Estimate (4.6) with β = 0 says that

|Mψ(x)|r(x) ≤ c
(
1 + M [ψr(·)](x)

)
(4.8)

for all ψ ∈ Lr(·)(Ω) with ‖ψ‖r(·) ≤ 1. For ψ(x) = f(x)
|x−x0|β we have

∥∥ψ
∥∥

r(·) ≤ a0

∥∥ f
∥∥

r(·) , a0 = (diam Ω)|β|,

where we took into account that β ≤ 0. From imbedding (3.5) we obtain

‖ψ‖r(·) ≤ a0 · k‖f‖p(·) ≤ a0kR.

Therefore we choose R = 1
a0k

. Then ‖ψ‖r(·) ≤ 1, so that (4.9) is applicable.
From (4.8) we now get

Ip(M
βf) ≤ c

∫

Ω

(
|x− x0|βr(x0)

[
1 + M

(∣∣∣∣
f(y)

|y − x0|β
∣∣∣∣
r(y)

)])p0

dx.

By property (4.7), this yields

Ip(M
βf) ≤

≤ c

∫

Ω

{
|x− x0|βp(x0) +

(
|x− x0|βr(x0)M

(
f(y)|r(y)

|y − x0|βr(x0)

))p0}
dx ≤

≤ c + c

∫

Ω

(
Mγ

(|f(·)|r(·)) (x)
)p0

dx,

where

γ = βr(x0) =
βp(x0)

p0

.

As is known [7], the weighted maximal operator Mγ is bounded in Lp0 with
a constant p0 if − n

p0
< γ < n

p′0
, which is satisfied since − n

p(x0)
< β ≤ 0.

Therefore,

Ip(M
βf) ≤ c + c

∫

Ω

|f(y)|r(y)·p0 dy =

= c + c

∫

Ω

|f(y)|p(y) dy < ∞
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20 The case 0 ≤ β < n
q(x0)

.

We represent the functional Ip(M
βf) in the form

Ip(M
βf) =

∫

Ω

(
|Mβf(x)|r(x)

)λ

dx (4.9)

with r(x) = p(x)
λ

> 1, λ > 1, where λ will be chosen in the interval

1 < λ < p0.

In (4.10), we wish to use the pointwise weighted estimate (4.6):

|Mβf(x)|r(x) ≤ c[1 + M(f r(·))(x)]. (4.10)

This estimate is applicable according to Theorem 4.1 if ‖f‖r(·) ≤ c and

β <
n

[r(x0)]′
. (4.11)

The condition ‖f‖r(·) ≤ c is satisfied since r(x) ≤ p(x). Condition (4.12) is

fulfilled if λ < n−β
n

p(x0). Therefore, under the choice

1 < λ < min
(
p0,

n− β

n
p(x0)

)

we may apply (4.11) to (4.10). This yields

Ip(M
βf) ≤ c + c

∫

Ω

|M(|f |r(·))(x)|λ dx ≤

≤ c + c

∫

Ω

(|f(x)|r(x))λ dx

by the boundedness of the maximal operator M in Lλ(Ω), λ > 1. Hence

Ip(M
βf) ≤ c + c

∫

Ω

|f(x)|p(x) dx ≤ c.

II. Necessity part. Suppose that Mβ is bounded in Lp(x)(Ω). Then,
given a function f(x) such that

Ip(wf) ≤ c1, w(x) = |x− x0|β, (4.12)
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we have
Ip(wMf) ≤ c (4.13)

(for all f satisfying condition (4.13)).
1) We choose f(x) = |x− x0|µ with µ > −β − n

p(x0)
. Then

Ip(wf) ≤ c

∫

|x−x0|<r

|x− x0|(β+µ)p(x)dx ≤ c

∫

|x|<r

|x|(β+µ)p(x0)dx ,

where the integral converges, so that we are in the situation (4.13). However,

Ip(w Mf) ≥ c

∫

Ω∩Br(x0)

|x− x0|βp(x0)dx ,

which diverges if βp(x0) < −n; here we take into account Lemma 3.3 in the
case x0 ∈ ∂Ω. Therefore, from (4.14) it follows that β > − n

p(x0)
.

2) To show the necessity of the right-hand side bound in (2.5), suppose
that, on the contrary, β ≥ n

q(x0)
. Let first β > n

q(x0)
. We choose

f(x) =
1

|x− x0|n ,

for which Ip(wf) converges but Mf just does not exist. Let now β = n
q(x0)

.
We choose

f(x) =
1

|x− x0|n
(

ln
1

|x− x0|
)γ

, |x− x0| ≤ 1

2
.

Then Ip(wf) exists under the choice γ < − 1
p(x0)

, but Mf does not exist

when γ > −1. Thus, taking γ ∈ (− 1,− 1
p(x0)

), we arrive at a contradiction.

4.3 Weighted supremal Poisson operator

Let

uf (x, y) =
y

cn

∫

Rn

f(x− t)dt

(|t|2 + y2)
n+1

n

, y > 0,

be the Poisson integral. Here cn = π
n+1

2

Γ(n+1
2

)
.

The theorem below provides a weighted estimate for the non-tangential
supremum of the Poisson integral uf (x, y). We put

Γa(x) = {(ξ, y) : |ξ − x| < ay} with fixed a > 0.
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Theorem 4.2 Let f(x) have a compact support in a bounded domain Ω.
Under assumptions (2.1) and (2.2), for the weighted estimate

‖ |x− x0|β sup
(ξ,y)∈Γa(x)

|uf (ξ, y)| ‖Lp(·)(Ω) ≤ c‖ |x− x0|βf(x) ‖Lp(·)(Ω) (4.14)

with an interior point x0 ∈ Ω to be valid, it is necessary and sufficient that
− n

p(x0)
< β < n

q(x0)
.

In the case x0 ∈ ∂Ω, this condition is sufficient for any x0 and necessary
if x0 satisfies condition (2.4).

Proof. It suffices to refer to the fact that

sup
(ξ,y)∈Γa(x)

|uf (x, y)| ∼ Mf(x)

(see [2], p.45), and to make use of Theorem A. 2

Remark. A non-weighted estimate of the weaker form

sup
y>0

‖uf (x, y)‖Lp(·)(Ω) ≤ c‖f‖Lp(·)(Ω)

follows also from (3.8). In the one-dimensional case, an estimate of the type
(4.15) for 2π-periodic functions was obtained in [17].

5 Proof of Theorems B–D

5.1 Proof of Theorem B
This theorem is an immediate consequence of Theorem 3.1 and Theorem

A (the latter for the case β = 0). 2

5.2 Proof of Theorem D.
We have

I
α(x)
β f(x) = |x− x0|β

∫

|x− y| > 1
y ∈ Ω

f(y)dy

|x− y|n−α(x)|y − x0|β +

+|x− x0|β
∫

|x− y| < 1
y ∈ Ω

f(y)dy

|x− y|n−α(x)|y − x0|β =

= A1f(x) + A2f(x). (5.1)
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For the first term we have

|A1f(x)| ≤ c|x− x0|β
∫

Ω

|f(y)dy

|y − x0|β (5.2)

and the Hölder inequality (3.2) yields

∫

Ω

|f(y)|dy

|y − x0|β ≤ c‖f‖p(·) ‖ |y − x0|−β‖q(·) ≤ c{Iq(|y − x0|−β)}θ‖f‖, (5.3)

where θ = 1
Q

if Iq(· · ·) ≤ 1 and θ = 1
q0

otherwise. Obviously,

Iq(|y − x0|−β) ≤ c

∫

Ω

|y − x0|−βq(x0)dy = c < ∞ (5.4)

by property (4.7) and the condition βq(x0) < n. Thus from (5.2)–(5.4) we
get

|A1f(x)| ≤ c|x− x0|β ‖f‖p(·). (5.5)

For the term A2f(x) we have

|A2f(x)| ≤ |x− x0|β
∞∑

k=0

∫

2−(k+1)<|x−y|<2−k

|f(y)|dy

|x− y|n−α(x)|y − x0|β ,

where it is assumed that f(x) is continued as zero beyond Ω if necessary. For
those x for which α(x) ≤ n, we obtain

|A2f(x)| ≤ 2n|x− x0|β
∞∑

k=0

2k[n−α(x)] · 2−kn 1

2kn

∫

|x−y|<2−k

|f(y)|dy

|y − x0|β ≤

≤ 2n|x− x0|β
∞∑

k=0

2−kα(x)M
( f(y)

|y − x0|β
)
.

Therefore,
|A2f(x)| ≤ cMβf(x) (5.6)

with c = 2n
∞∑

k=0

2−kα0 , α0 = inf
x∈Ω

α(x).
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In the case α(x) ≥ n, the pointwise estimate of A0(x) is the same as that
for A1(x). Consequently, for all x ∈ Ω by means of (5.5) and (5.6) we obtain

|Iα(x)
β f(x)| ≤ cMβf(x) + c|x− x0|β‖f‖p(·). (5.7)

Therefore,

‖Iα(x)
β f‖p(·) ≤ c‖Mβf‖p(·) + c‖ |x− x0|β ‖p(·) · ‖f‖p(·).

It remains to apply Theorem A to the first term in (5.7) and to notice that
‖ |x− x0|β‖p(·) is finite, the latter being obtained as in (5.4). 2

5.3 Proof of Theorem C
From Theorem D we already know that the operator Iα(x) is bounded in

Lp(·)(Ω). To show its compactness, we represent it as

Iα(x)f(x) =

∫

|x−y|<ε

|f(y)|dy

|x− y|n−α(x)
+

∫

|x−y|>ε

|f(y)|dy

|x− y|n−α(x)
=

= Kεf(x) + Tεf(x) (5.8)

under the usual assumption that f(x) ≡ 0 for y 6∈ Ω. As in the proof of
Theorem D, we have

|Kεf(x)| ≤
∞∑

k=0

∫

2−(k+1)ε<|x−y|<2−kε

|f(y)|dy

|x− y|n−α(x)
≤

≤ cεα0(Mf)(x) (5.9)

with α0 = infx∈Ω α(x) > 0.
The compactness of the operator Tε may be shown via direct approxima-

tion by finite-dimensional operators. Indeed, denote tε(x, y) ≡ 1 if |x−y| ≥ ε
and tε = 0 otherwise. As is known, functions of the form

fn(x, y) =
n∑

k=1

ak(x)bk(y),

where bk(y) = χBk
(y), Bk are non-intersecting sets on Ω, and an(x) ∈ LQ(Ω),

form a dense set in the mixed norm space LP [LQ](Ω × Ω) for all constant
exponents P and Q, 1 ≤ P < ∞, 1 ≤ Q < ∞. Therefore for the function
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tε(x, y) with any fixed ε > 0, there exists a sequence of function kn(x, y) such
that

lim
n→∞

‖ ‖tε(x, y)− kn(x, y)‖Q‖P = 0. (5.10)

Then the finite-dimensional operators

Anf(x) =

∫

Ω

kn(x, y) f(y) dy,

which are compact in Lp(·)(Ω), approximate the operator Tε in the operator
norm of Lp(·)(Ω) as n →∞. Indeed, taking into account imbedding (3.5), we
obtain

|(Tε − An)f(x)| ≤ c‖f‖p(·) ‖kn(x, ·)− tε(x, ·)‖q(·) ≤
≤ c‖f‖p(·) ‖kn(x, ·)− tε(x, ·)‖Q

and then

‖(Tε − Ak)f‖p(·) ≤ c‖f‖p(·) ‖ ‖kn(x, ·)− tε(x, ·)‖Q‖p(·).

Therefore, by the same imbedding (3.5),

‖Tε − Ak‖Lp(·)→Lp(·) ≤ ‖‖kn − tε‖Q‖P → 0

in view of (5.10). Consequently, the operators Tε are compact in Lp(·)(Ω).
It remains to observe that, by (5.8) and (5.9) and by the boundedness of

the maximal operator,

‖Iα(·) − Tε‖Lp(·)→Lp(·) = ‖Kε‖Lp(·)→Lp(·) ≤ εα0‖M‖Lp(·)→Lp(·) → 0 ,

so that Iα(x) is a compact operator as well. 2

6 Weighted Estimates for Operators with Fixed

Singularity

The following operators may be treated as operators with fixed singularity:
a) the Hardy type operators (2.10) on [0, l];
b) the Hankel operator (2.11) on [0, l];
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c) singular operators on a curve Γ1 with the ”outer” variable on another
curve Γ2, the latter having a unique common point with Γ1; commutators
of the singular operator with the operators of multiplication by piece-wise
continuous functions.

For such operators, in contrast to the maximal and potential operators,
the ”global” Dini–Lipschitz condition (2.2) may be replaced by a ”local”
condition at the point of the fixed singularity.

In this paper we consider the cases a) and b) and deal with the weighted
version of the Hardy and Hankel operators. The case of singular operators
with fixed singularity on curves in the complex plane is postponed to another
paper.

Proof of Theorem E

The case of the Hardy operators

Part I. Suppose as usual that ‖f‖p(·) ≤ 1. Let d0 = min(d, δ). We have

l∫

0

|Hβf(x)|s(x)dx ≤
d0∫

0

|Hβf(x)|s(x)dx +

+
1

da
0

l∫

d0

∣∣∣∣∣∣

x∫

0

f(t)

tβ
dt

∣∣∣∣∣∣

s(x)

dx, (6.1)

where a = (1 − β)P . The second term may be estimated via the Hölder
inequality:

∣∣∣
x∫

0

f(t)

tβ
dt

∣∣∣ ≤ k‖f‖p(·) ‖t−β‖q(·) ≤ k‖t−β‖q(·) = c (6.2)

under the Dini-Lipschitz condition for p(x) on [0, d] and the assumption
βq(0) < 1. For the first term in (6.1) we observe that the operator Hβ

is dominated by the weighted maximal operator Mβ since

∣∣∣1
x

x∫

0

f(t)dt
∣∣∣ ≤ 1

x

2x∫

0

|f(t)|dt =
1

x

x+x∫

x−x

|f(t)|dt ≤ 2Mf(x).
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But first we have to pass to the exponent p(x) in the first term. To this end,
we observe that

|Hβf(x)|s(x)−p(x) ≤ c, 0 < x ≤ d0 (‖f‖p(·) ≤ 1), (6.3)

where c does not depend on x and f , if s(x) satisfies condition (2.13). Indeed,
by Hölder inequality (3.2),

|Hβf(x)| ≤ kxβ−1‖f‖p(·) ‖t−β‖q(·) ≤
≤ c · kxβ−1‖t−β‖q(0) = cxβ−1. (6.4)

Hence
|Hβf(x)|s(x)−p(x) ≤ cS−1x(β−1)[s(x)−p(x)] , (6.5)

which is obviously bounded if x ≥ 1
2
. For 0 < x ≤ min(d0,

1
2
) from (6.4) we

have
|Hβf(x)|s(x)−p(x) ≤ cS−1e(1−β)[s(x)−p(x)] ln 1

x ≤ c1 < ∞
by (2.13). Therefore, in view of (6.3),

d0∫

0

|Hβf(x)|s(x)dx ≤ c

d0∫

0

|Hβf(x)|p(x)dx. (6.6)

It remains to apply Theorem A on [0, d0]. Then

d∫

0

|Hβf(x)|s(x)dx ≤ c

by (6.1), (6.2) and (6.6).
The operator Hβ

∗ = (H−β)∗ may be regarded as the operator adjoint to
H−β treated in Lq(·)([0, l]). However, we admit the possibility for q(x) to be
unbounded beyond a neighborhood of the point x = 0, and hence we should
first proceed as in (6.1):

Is(H
β
∗ f) ≤

d0∫

0

|Hβ
∗ f(x)|s(x)dx + c

l∫

d0

( l∫

x

|f(t)|dt
)p(x)

dx ≤

≤
d0∫

0

|Hβ
∗ f(x)|s(x)−p(x) · |Hβ

∗ f(x)|p(x) dx + c (6.7)
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assuming that ‖f‖p(·) ≤ 1. Similarly to (6.5),

|Hβ
∗ f(x)|s(x)−p(x) ≤ c, 0 < x ≤ d0

which is shown as in (6.4), (6.5), since

|Hβ
∗ f(x)| ≤ xβ−1

l∫

0

f(t)

tβ
dt etc.

Then from (6.7),

Is(H
β
∗ f) ≤ c

d0∫

0

(Hβ
∗ f(x))p(x) + c. (6.8)

It remains to use the duality argument for Hβ
∗ = (H−β)x.

Part II. We need only to estimate anew the first term in (6.1). In the
case p(0) ≤ p(x), 0 ≤ x ≤ d, we can avoid the passage to the maximal
operator by observing that, similarly to (6.3),

|Hβf(x)|s(x)−p(0) ≤ c (‖f‖p(·) ≤ 1)

under the second condition in (2.13). Then the first term in (6.1) is domi-
nated by

c

d∫

0

|Hβf(x)|p(0)dx ≤ c

d∫

0

|f(x)|p(0)dx

by virtue of the boundedness of the weighted Hardy operator Hβ in Lp(0)

with p(0) > 1 and − 1
p(0)

< β < 1
q(0)

. Therefore,

d∫

0

|Hβf(x)|p(0)dx ≤ c

d∫

0

|f(x)|p(x)dx

by imbedding (3.5).
For the operator Hβ

∗ we may again proceed as in (6.7), (6.8) and use the
boundedness of Hβ

∗ in Lp(0). 2

The case of the Hankel operator
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Let for simplicity f(x) be non-negative. We have

Hβf(x) ≤ xβ−1

x∫

0

f(t)

tβ
+ xβ

l∫

x

f(t)

tβ+1
dt,

that is,
Hβf(x) ≤ Hβf(x) + Hβ

∗ f(x). (6.9)

Consequently, the boundedness of Hβ follows immediately from that of the
operators Hβ and Hβ

∗ .

Proof of the Corollary to Theorem E
We have

0∫

−1

|Sβf(x)|p(x)dx =

1∫

0

∣∣∣
1∫

0

(x

t

)β f(t)

t + x

∣∣∣
p(−x)

dx.

Thus, it suffices to make use of Theorem E for the Hankel operator Hβ,
choosing s(x) = p(−x) in that theorem. The condition

|s(x)− p(x)| = |p(−x)− p(x)| ≤ A

ln 1
|x|

, 0 < |x| ≤ δ

of Theorem A is obviously satisfied. 2

Appendix

Proof of inequality (3.11)
Let

Jr(x) =

∫

|y−x|<r

dy

|y − x0|α =

∫

|y−(x−x0)|<r

dy

|y|α . (6.10)

Without loss of generality we may assume that x0 = 0. The change of
variables y = |x|ξ gives

Jr(x) = |x|n−α

∫

|ξ− x
|x| |< r

|x|

dξ

|ξ|α = |x|n−α

∫

|u−e1|< r
|x|

du

|u|α , (6.11)
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where e1 = (1, 0, . . . , 0) and in the last equation we made the rotation change
of variables

ξ = ωx(u), |ξ| = |u|,
where ωx(u) is the rotation of Rn such that ωx(e1) = x

|x| . From (6.11) we
have

Jr(x) = |x|n−αg
( r

|x|
)
, g(t) =

∫

|y−e1|<t

dy

|y|α , t > 0. (6.12)

To estimate g(t), we distinguish between the three cases 0 < t ≤ 1
2
, t ≥ 2

and 1
2
≤ t ≤ 2.

In the case 0 < t ≤ 1
2

we have |y| = |y−e1 +e1| ≥ 1−|y−e1| ≥ 1− t ≥ 1
2
,

so that

g(t) ≤ 2α

∫

|g−e1|<t

dy = 2α|Br(e1)| = 2α|Br(x)|. (6.13)

If t ≥ 2, we obtain

g(t) =

∫

|y−e1|<2

dy

|y|α +

∫

2<|y−e1|<t

dy

|y|α = c +

∫

2<|y|<t

dy

|y + e1|α .

Here |y + e1| ≥ |y| − 1 ≥ |y| − |y|
2

= |y|
2

. Therefore

g(t) ≤ c + 2α

∫

2<|y|<t

dy

|y|α = c + 2α|sn−1|
1∫

0

ρn−1−αdρ =

= c + c1t
n−α ≤ c2t

n−α. (6.14)

Finally, if 1
2
≤ t ≤ 2, we have g(t) ≤ g(r) = c3. Thus, by (6.13), (6.14)

g(t) ≤ c

{
tn, 0 < t < 1,

tn−α, t ≥ 1.

Now we obtain from (6.12) that

Jr(x) ≤ c

{
rn|x|−α, r ≤ |x|,
rn−α, r ≥ x ≤ crn|x|−α.
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Hence (3.11) follows. 2
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