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Abstract

The Hardy type inequality
∥∥∥∥∥∥
|x− x0|β−α

∫

Ω

f(y) dy

|y − x0|β |x− y|n−α

∥∥∥∥∥∥
Lp(·)(Ω)

≤ C ‖f‖Lp(·)(Ω) , 0 < α < n, x0 ∈ Ω

is proved for the spaces Lp(·)(Ω) with variable exponent p(x) in the case of bounded domains
Ω in Rn, − n

p(x0)
< β < n

q(x0)
.

Key words: Hardy inequality, Lebesgue spaces with variable exponents, maximal func-
tion

AMS Classification 2000: 46E35

1 Introduction

For the Riesz potential

Iαf(x) =
1

γn(α)

∫

Rn

f(y) dy

|x− y|n−α
(1.1)

the following weighted p → q-estimate is known




∫

Rn

|Iαf(x)|q |x|µ dx




1
q

≤ C




∫

Rn

|f(x)|p |x|γ dx




1
p

,
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where 0 < α < n, 1 < p < ∞, 1 < q < ∞, 1
p
− α

n
≤ 1

q
≤ 1

p
, and

µ + n

q
=

γ + n

p
− α, αp− n < γ < n(p− 1), (1.2)

which is due to H.G.Hardy and J.E.Littlewood [9] in the one-dimensional case and to
E.M.Stein and G.Weiss [22] in the case n ≥ 1.

We establish such type of inequality in the limiting case 1
q

= 1
p
− α

n
for the generalized

Lebesgue spaces Lp(·)(Ω) with variable exponent p(x) over bounded domains in Rn, see
Theorem A in Section 3. We refer to the papers [8], [16], [20], [21] on the spaces Lp(·)

and to the papers [2], [3], [4], [5], [6], [7], [10], [12], [13], [14], [17] on the recent progress
in the study of the operator theory and harmonic analysis in Lp(·), the theory of these
spaces and the corresponding Sobolev spaces Wm,p(·) with variable exponent being rapidly
developing last decade, influenced by applications, see [18] and references therein.

N o t a t i o n:
Sn−1 is the unit sphere in Rn,
|Sn−1| is its measure;
e1 = (1, 0, 0, ..., 0);
inf and sup will everywhere stand for esssup and essinf ;
p0 = inf

x∈Ω
p(x), P = sup

x∈Ω
p(x), p(x) = p(x)

p(x)−1
;

by c or C we denote various positive absolute constants not depending on the parameters
involved.

2 Preliminaries.

When considering the operator Iα in the spaces Lp(·)(Ω), we admit that its order α may
be also variable, so we deal with the operator

Iα(·)f(x) =

∫

Ω

f(y) dy

|x− y|n−α(x)
, x ∈ Ω. (2.1)

We refer to [8], [16], [20], [21] for details on the spaces Lp(·)(Ω), but give the basic
definitions. Let Ω be a bounded domain in Rn and p : Ω → [1,∞) a measurable function
on Ω. By Lp(·)(Ω) we denote the set of all measurable functions f on Ω such that

∫

Ω

|f(x)|p(x) dx < ∞.

Under the condition 1 ≤ p(x) ≤ P < ∞ on Ω, this is a Banach space with respect to the
norm

‖f‖Lp(·)(Ω) = inf



λ > 0 :

∫

Ω

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx ≤ 1



 . (2.2)
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The notation Lp(·)(Ω, ρ) will stand for the corresponding weighted space

Lp(·)(Ω, ρ) =
{

f : [ρ(x)]
1

p(x) ∈ Lp(·)(Ω)
}

,

‖f‖Lp(·)(Ω,ρ) = inf



λ > 0 :

∫

Ω

ρ(x)

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx ≤ 1



 , (2.3)

where ρ(x) ≥ 0 a.e. and |{x ∈ Ω : ρ(x) = 0}| = 0.

Definition 2.1. By P(Ω) we denote the set of functions p : Ω → (1,∞) satisfying the
conditions

1 < p0 ≤ p(x) ≤ P < ∞ on Ω, (2.4)

|p(x)− p(y)| ≤ A

ln 1
|x−y|

for all x, y ∈ Ω with |x− y| ≤ 1

2
, (2.5)

where A > 0 does not depend on x and y.
Observe that condition (2.5) may be also written in the form

|p(x)− p(y)| ≤ NA

ln N
|x−y|

x, y ∈ Ω, (2.6)

where N = 2 diam Ω.
By p(x) we denote the conjugate exponent,

1

p(x)
+

1

p(x)
= 1.

For the conjugate space
[
Lp(·)(Ω, ρ)

]∗
we have

[
Lp(·)(Ω, ρ)

]∗
= Lp(·)

(
Ω, [ρ(x)]

1
1−p(x)

)
(2.7)

which is an immediate consequence of the fact that
[
Lp(·)(Ω)

]∗
= Lp(·) (Ω) under (2.4),

see [16], [21].
From the Hölder inequality for the Lp(·)-spaces

∣∣∣∣
∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ k‖u‖Lp(·)(Ω)‖v‖Lp(·)(Ω),
1

p(x)
+

1

p(x)
≡ 1,

it follows that
∣∣∣∣
∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ k‖u‖
Lp(·)

(
Ω,[ρ(x)]

1
1−p(x)

)‖v‖Lp(·)(Ω,ρ). (2.8)

Let

M δf(x) = |x− x0|δ sup
r>0

1

|B(x, r)|
∫

B(x,r)∩Ω

|f(y)|
|y − x0|δ dy (2.9)
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be the weighted maximal function, x0 ∈ Ω. The following statement was proved in [10],
[11], see also [15].

Theorem 2.2. Let Ω be a bounded domain and p ∈ P. The operator M δ with x0 ∈ Ω
is bounded in Lp(x)(Ω) if and only if

− n

p(x0)
< δ <

n

p(x0)
. (2.10)

If x0 ∈ ∂Ω, condition (2.10) is sufficient for the boundedness of M δ. If x0 ∈ ∂Ω and
|{y ∈ Ω : r < |y − x0| < 2r}| ∼ rn, then condition (2.10) is also necessary for the
boundedness of M δ.

3 The main statement.

We assume that the exponent α(x) in (2.1) satisfies the assumptions

inf
x∈Ω

α(x) > 0 and sup
x∈Ω

α(x)p(x) < n (3.1)

and the logarithmic condition (2.5), that is,

|α(x)− α(y)| ≤ A1

ln 1
|x−y|

, x, y ∈ Ω |x− y| ≤ 1

2
. (3.2)

Theorem A. Let Ω be a bounded domain in Rn and x0 ∈ Ω, let p ∈ P(Ω) and α
satisfy conditions (3.1). Then the following estimate is valid for operator (2.1)

∥∥Iα(·)f
∥∥

Lq(·)(Ω,|x−x0|µ)
≤ C ‖f‖Lp(·)(Ω,|x−x0|γ) (3.3)

where
1

q(x)
≡ 1

p(x)
− α(x)

n
, (3.4)

α(x0)p(x0)− n < γ < n[p(x0)− 1] (3.5)

and

µ =
q(x0)

p(x0)
γ. (3.6)

The proof of Theorem A will be based on the following crucial points:
1) the boundedness of the weighted maximal operator in the spaces Lp(·)(Ω) proved in

[10], [15];
2) Hedberg’s approach to prove the non-weighted Sobolev theorem with constant p

and α based on the domination of the Riesz potential by the maximal function;
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3) a development of the technique of estimation of Lp(·)-norms of power functions of
distance truncated to exterior of a ball, given in [19] in the non-weighted case, for the
weighted case.

The above mentioned development constitutes the essential body of the paper, see the
next section. Theorem A itself is proved in Section 5.

Remark. When 0 ≤ γ < n[p(x0)− 1], condition (3.2) may be weakened: it suffices to
assume its validity only at the point to which the weight is fixed, that is, |α(x)−α(x0)| ≤

A1

ln 1
|x−x0|

, |x − x0| ≤ 1
2
. Indeed, condition (3.2) is used in the proof of Theorem A only in

(5.8) (where there was chosen x0 = 0). As for negative values of γ, condition (3.2) was
used in its generality when passing to the conjugate operator in Subsection 5.2.

4 Estimation of weighted Lp(·)-norms of power func-

tions of distance truncated to exterior of a ball

4.1 Setting of the problem.

Let χr(x) =

{
1, if |x| > r
0, if |x| < r

be the characteristic function of the ball centered at the

origin of radius r and let

gβ(x, y, r) = |c− y|β(x)χr(x− y) (4.1)

where β(x) in future will be chosen as β(x) = α(x)− n.
We are interested in estimation of the weighted norms

nβ,ν,p(x, r) = ‖gβ(x, y, r)‖Lp(·)(Ω,|y|ν(y)) (4.2)

(taken with respect to y) as r → 0, where we suppose that 0 ∈ Ω and ν(y) is some variable
exponent. In future, we will need this norm with p(·) replaced by p(·) and ν(y) chosen as
ν(y) = γ

1−p(y)
.

The next subsections are aimed to derive the required estimate of nβ,ν,p(x, r) as r → 0.

4.2 An auxiliary estimate.

Lemma 4.1. Let e1 = (1, 0, ..., 0). For the integral

Ja,b(t) =

∫

|y|<t

dy

|y|a|y − e1|b , 0 < t < ∞, (4.3)

where a < n, b < n, a + b < n, the following estimate is valid

Ja,b(t) ≤ C
6|a|+|b|

(n− a)(n− b)(n− a− b)

tn−a

(1 + t)b
, 0 < t < ∞, (4.4)
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where C > 0 is an absolute constant not depending on t, a and b (depending only on n).

Proof. We separate the cases 0 < t < 1/2, 1/2 < t < 2 and 2 < t < ∞.

The case 0 < t < 1/2. We have |y− e1| ≤ t + 1 < 2 and |y− e1| ≥ 1− |y| ≥ 1− t ≥ 1
2
.

Therefore, 1
|y−e1|b ≤ 2|b| and then Ja,b(t) ≤ 2|b|

∫
|y|<t

dy
|y|a which gives the estimate

Ja,b(t) ≤ C
2|b|

n− a
tn−a, 0 < t < 1/2 (4.5)

(with C = |Sn−1|).
The case 1/2 < t < 2. We have

Ja,b(t) =

∫

|y|<1/2

dy

|y|a|y − e1|b +

∫

1/2<|y|<t

dy

|y|a|y − e1|b = I1 + I2.

Making use of (4.5) with t = 1/2, we see that

I1 ≤ C
2|b|

n− a
. (4.6)

In the integral I2 we have 1
|y|a ≤ 2|a| so that

I2 ≤ 2|a|
∫

1/2<|y|<|t

dy

|y − e1|b = 2|a|
∫

1/2<|y−e1|<|t

dy

|y|b .

Observe that |y−e1| ≤ t implies that |y| ≤ t+1 ≤ 3 so that {y : |y−e1| ≤ t} ⊂ {y : |y| ≤ 3}
and then

I2 ≤ C
2|a|3|b|

n− b
. (4.7)

From (4.6)-(4.7) we have

Ja,b(t) ≤ C

(
2|b|

n− a
+

2|a|3|b|

n− b

)
,

1

2
≤ t ≤ 2. (4.8)

The case 2 < t < ∞. We have

Ja,b(t) =

∫

|y|<2

dy

|y|a|y − e1|b +

∫

2<|y|<t

dy

|y|a|y − e1|b = I3 + I4.

By (4.8) with t = 2 we have

I3 ≤ C

(
2|b|

n− a
+

2|a|3|b|

n− b

)
. (4.9)
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To estimate I4, we observe that |y|
2
≤ |y − e1| ≤ 2|y|, so that

I4 ≤ 2|b|
∫

2<|y|<|t

dy

|y||a|+|b| ≤ 2|b|
∫

|y|<|t

dy

|y||a|+|b| = |Sn−1| 2|b|

n− a− b
tn−a−b. (4.10)

Then from (4.9)-(4.10)

Ja,b(t) ≤ C

(
2|b|

n− a
+

2|a|3|b|

n− b
+

2|b|

n− a− b
tn−a−b

)
, t ≥ 2. (4.11)

Unifying estimates (4.5), (4.8) and (4.11), we get (4.4). 2

Corollary. Let 0 < r < ∞, 0 ∈ Ω, γ > −n and a function h(x) defined on Ω satisfy
the conditions

sup
x∈Ω

|h(x)| := H < ∞, (4.12)

sup
x∈Ω

[h(x) + n] := −d0 < 0, (4.13)

and
sup
x∈Ω

[h(x) + n + γ] := −d1 < 0. (4.14)

Then ∫

|y−x|>r

|y − x|h(x)|y|γ dy ≤ Crh(x)+n(r + |x|)γ, x ∈ Ω, (4.15)

where C > 0 does not depend on x and r.

Proof. We transform the integral A(x, r) :=
∫

|y−x|>r

|y−x|h(x)|y|γ dy by the dilatation

change of variables y = |x|z:

A(x, r) = |x|h(x)+n+γ

∫

|z− x
|x| |> t

|x|

∣∣∣∣z −
x

|x|

∣∣∣∣
h(x)

|z|γ dz.

The translation z − x
|x| → z and rotation arguments yield

A(x, r) = |x|h(x)+n+γ

∫

|z|> t
|x|

|z − e1|γ |z|h(x) dz

where e1 = (1, 0, ..., 0). Finally, after the inversion change of variables

z =
u

|u|2 with |z| = 1

|u| , |z − e1| = |u− e1|
|u| and dz =

du

|u|2n
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we get

A(x, r) = |x|h(x)+n+γ

∫

|u|< |x|
r

|u− e1|−γ du

|u|h(x)+2n+γ
. (4.16)

We arrived at the integral Ja,b(t) estimated in (4.4). Making use of (4.4) with

t =
|x|
r

, a = h(x) + 2n + γ, b = −γ,

we arrive at (4.15) after easy evaluations with conditions (4.12)-(4.14) taken into account.
2

4.3 Estimation of nβ,ν,p(x, r).

Theorem 4.2. Let Ω be a bounded domain, 0 ∈ Ω, let p ∈ P(Ω), ν ∈ L∞(Ω) and
β ∈ L∞(Ω) and let also ν(x) satisfy the logarithmic condition at the origin

|ν(y)− ν(0)| ≤ A2

ln 1
|y|

, y ∈ Ω, |y| ≤ 1

2
(4.17)

and let ν(0) > −n. If
sup
x∈Ω

[β(x)p(x) + n] := −d0 < 0, (4.18)

sup
x∈Ω

[β(x)p(x) + ν(x) + n] := −d1 < 0, (4.19)

and
sup
x∈Ω

[β(x)p(x) + ν(0) + n] := −d2 < 0, (4.20)

then
nβ,ν,p(x, r) ≤ Crβ(x)+ n

p(x) (r + |x|) ν(x)
p(x) . (4.21)

for all x ∈ Ω, 0 < r < diam Ω, where C > 0 does not depend on x and r.

Proof. For the norm nβ,ν,p = nβ,ν,p(x, r) as defined in (4.2) we have

∫

y∈Ω
|y−x|>r

( |y − x|β(x)

nβ,ν,p

)p(y)

|y|ν(y) dy = 1 (4.22)

by definition (2.3).

1st step: values nβ,ν,p(x, r) ≥ 1 are only of interest. First we observe that the right-
hand side of (4.21) is bounded from below:

inf
x∈Ω

0<r<diam Ω

rβ(x)+ n
p(x) (r + |x|) ν(x)

p(x) := c1 > 0. (4.23)
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To verify (4.23), suppose first that ν(x) ≥ 0. Then by (4.19)

rβ(x)+ n
p(x) (r + |x|) ν(x)

p(x) ≥ rβ(x)+ n
p(x)

+
ν(x)
p(x) = r−

|β(x)p(x)+ν(x)+n|
p(x) ≥ D− |β(x)p(x)+ν(x)+n|

p(x)

where D = diam Ω. The right hand side here is bounded from below since |β(x)p(x)+ν(x)+n|
p(x)

∈
L∞(Ω). When ν(x) ≤ 0, we observe that

rβ(x)+ n
p(x) (r + |x|) ν(x)

p(x) ≥ rβ(x)+ n
p(x) D

ν(x)
p(x) = r−|β(x)+ n

p(x) |D ν(x)
p(x)

where (4.18) was taken into account. The right hand side here is also bounded from below.
From (4.23) we conclude that to prove (4.21), we may suppose that

nβ,ν,p(x, r) ≥ 1.

2nd step: small values of r are only of interest. We assume that r is small enough,
0 < r < ε0. To show that this assumption is possible, we have to check that the right-hand
side of (4.21) is bounded from below and nβ,ν,p(x, r) is bounded from above when r ≥ ε0.
The former is obvious, to verify the latter, we observe that from (4.22) it follows that

1 ≥
∫

y∈Ω
|y−x|>ε0

|y − x|β(x)p(y)

nβ,ν,p

|y|ν(y) dy

whence

nβ,ν,p(x, r) ≤
∫

y∈Ω
|y−x|>ε0

|y − x|β(x)p(x) |y|ν(0)u(x, y)v(y) dy

where u(x, y) = |y − x|β(x)[p(y)−p(x)] and v(y) = |y|ν(y)−ν(0)). By direct estimation of
ln u(x, y) and ln v(y) we obtain that

e−NAB ≤ u(x, y) ≤ eNAB, x, y ∈ Ω (4.24)

where N and A are the constants from (3.2) and B = sup
x∈Ω

|β(x)|, and

e−c ≤ |y|ν(y)−ν(0)) ≤ ec, x, y ∈ Ω (4.25)

with some constant c > 0 (one may take c = max{2A2, N sup
x∈Ω

|ν(x)|}, where A2 is the

constant from (4.17)).
Therefore,

nβ,ν,p(x, r) ≤ ec+NAB

∫

y∈Ω
|y−x|>ε0

|y − x|β(x)p(x) |y|ν(0) dy ≤ ec+NABε−BP
0

∫

Ω

dy

|y|ν(0)
= const
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which proves the boundedness of nβ,ν,p(x, r) from above.
The value of ε0 will be chosen later.

3rd step: a rough estimate. First, we derive a weaker estimate

nβ,ν,p(x, r) ≤ Crβ(x) (4.26)

which will be used later do obtain the final estimate (4.21). To this end, we note that
always λp(y) ≤ λinf p(y) + λsup p(y), so that from (4.22) and (4.25) we have

1 ≤
∫

y∈Ω
|y−x|>r

[( |y − x|β(x)

nβ,ν,p

)p0

+

( |y − x|β(x)

nβ,ν,p

)P
]
|y|ν(0) dy.

Since |y − x| > r and β(x) < 0, we obtain

1 ≤
[(

rβ(x)

nβ,ν,p

)p0

+

(
rβ(x)

nβ,ν,p

)P
] ∫

y∈Ω

|y|ν(0) dy.

Hence
(

rβ(x)

nβ,ν,p

)p0

+
(

rβ(x)

nβ,ν,p

)P

≥ c which yields rβ(x)

nβ,ν,p
≥ C and we arrive at the estimate in

(4.26).

4rd step. We split integration in (4.22) as follows

1 =




∫

Ω1(x,ε0)

+

∫

Ω2(x,ε0)

+

∫

Ω3(x,ε0)




( |y − x|β(x)

nβ,ν,p

)p(y)

|y|ν(y) dy : = I1 + I2 + I3 (4.27)

where

Ω1(x, ε0) =

{
y ∈ Ω : r < |y − x| < ε0,

|y − x|β(x)

nβ,ν,p

> 1

}
,

Ω2(x, ε0) =

{
y ∈ Ω : r < |y − x| < ε0,

|y − x|β(x)

nβ,ν,p

< 1

}
,

Ω3(x, ε0) = {y ∈ Ω : |y − x| > ε0} .

5th step: Estimation of I1. We have

I1 =

∫

Ω1(x,ε0)

( |y − x|β(x)

nβ,ν,p

)p(x)

|y|ν(y) ur(x, y) dy (4.28)

where

ur(x, y) =

( |y − x|β(x)

nβ,ν,p

)p(y)−p(x)

.
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The estimate
e−NA ≤ ur(x, y) ≤ eNA. (4.29)

is valid. In its proof below we follow a similar estimation in [19], p. 266. We have

|ln ur(x, y)| ≤ A

∣∣∣∣∣∣
ln

(
|y−x|β(x)

nβ,ν,p

)

ln N
|x−y|

∣∣∣∣∣∣
.

Since |y−x|β(x)

nβ,ν,p
≥ 1, we obtain

|ln ur(x, y)| ≤ A
|β(x)|ln 1

|y−x| − ln nβ,ν,p

ln N
|x−y|

≤ A
|β(x)|ln 1

|y−x|
ln N

|x−y|
≤ AB

where B = sup
x∈Ω

|β(x)| (without loss of generality we may assume that N ≥ 1). Hence

(4.29) follows.
By (4.29) and (4.25) we obtain from (4.30)

I1 ≤ C

n
p(x)
β,ν,p

∫

Ω1(x,ε0)

|y − x|β(x)p(x) |y|ν(0) dy ≤ C

n
p(x)
β,ν,p

∫

|y−x|>r

|y − x|β(x)p(x) |y|ν(0) dy. (4.30)

Now we make use of the estimate obtained in (4.15) which gives

I1 ≤ C

n
p(x)
β,ν,p

rβ(x)p(x)+n(r + |x|)ν(0). (4.31)

The validity of conditions (4.12)-(4.14) under which the estimate (4.15) was obtained,
follows from assumptions of our theorem.

6th step: Estimation of I2 and the choice of ε0. In the integral I2 we have

I2 ≤ C

∫

Ω2(x,ε0)

( |y − x|β(x)

nβ,ν,p

)pε0(x)

|y|ν(0) dy (4.32)

where
pε0(x) = min

|y−x0|<ε0

p(y)

and (4.25) was taken into account. Then

I2 ≤ C

n
pε0 (x)

β,ν,p

∫

Ω2(x,ε0)

|y − x|β(x)pε0 (x) |y|ν(0) dy

and consequently

I2 ≤ C

n
pε0 (x)

β,ν,p

∫

|y−x|>r

|y − x|β(x)pε0 (x) |y|ν(0) dy. (4.33)

11



We wish to apply estimate (4.15), but to this end we have to guarantee the validity of
conditions (4.12)-(4.14). This may be achieved by a choice of ε0 sufficiently small so that

β(x)pε0(x) + n ≤ −δ1 < 0 and β(x)pε0(x) + n + ν(0) ≤ −δ2 < 0

which is easily derived from conditions (4.18)-(4.20) and continuity of p(x) (compare with
Lemma 1.7 from [19]). Conditions (4.12)-(4.14) being satisfied, we make use of (4.15) and
get

I2 ≤ C

n
pε0(x)

β,ν,p

rβ(x)pε0 (x)+n(r + |x|)ν(0) (4.34)

where C does not depend on x and r.

7th step: Estimation of I3. We have

I3 ≤ C

np0

β,ν,p

I4, I4 = I4(x) =

∫

y∈Ω
|y−x|>ε0

|y − x0|β(x)p(y)|y|ν(y) dy.

The integral I4(x) is a bounded function of x. Indeed, by (4.24)-(4.25) we obtain

I4(x) ≤ C

∫

y∈Ω
|y−x|>ε0

|y − x0|β(x)p(x)|y|ν(0) dy ≤ C

∫

|y−x|>ε0

|y − x0|β(x)p(x)|y|ν(0) dy

which is bounded by (4.15). Therefore,

I3 ≤ C

np0

β,ν,p

. (4.35)

8th step. Gathering estimates (4.31), (4.34) and (4.35), we have from (4.27)

1 ≤ C0

(
rβ(x)p(x)+n

n
p(x)
β,ν,p

(r + |x|)ν(0) +
rβ(x)pε0(x)+n

n
pε0 (x)

β,ν,p

(r + |x|)ν(0) +
1

np0

β,ν,p

)
(4.36)

with a certain constant C0 not depending on x and r. We may assume that

nβ,ν,p(x, r) ≥
(

1

2C0

) 1
p0

:= C1 (4.37)

because for those x and r where nβ,ν,p(x, r) ≤ C1 there is nothing to prove, the right-hand
side of (4.21) being bounded from below according to (4.23). In the situation (4.37) we
derive from (4.36) the inequality

1 ≤ C0

(
rβ(x)p(x)+n

n
p(x)
β,ν,p

+
rβ(x)pε0 (x)+n

n
pε0 (x)

β,ν,p

)
(r + |x|)ν(0). (4.38)
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Since nβ,ν,p(x, r) ≥ 1 we observe that
(

1
nβ,ν,p

)pε0 (x)

≤
(

1
nβ,ν,p

)p(x)

and
(

rβ(x)

nβ,ν,p

)pε0 (x)

≤
C

(
rβ(x)

nβ,ν,p

)p(x)

by (4.26). Hence,

rβ(x)pε0 (x)+n

n
pε0 (x)

β,ν,p

≤ rβ(x)p(x)+n

n
p(x)
β,ν,p

.

Therefore, from (4.38) we derive the estimate

rβ(x)p(x)+n

n
p(x)
β,ν,p

(r + |x|)ν(0) ≥ C

which yields (4.21), because

e−c ≤ (r + |x|) ν(x)−ν(0)
p(x) ≤ eC

with some C > 0, the latter inequality being easily obtained by estimating ln (r +

|x|) ν(x)−ν(0)
p(x) with (4.17) taken into account. 2

5 Proof of Theorem A

5.1 The case γ ≥ 0.

We base ourselves on the well known Hedberg’s approach to reduce the boundedness of
the Riesz potential to that of the maximal operator which requires an information about
the behaviour of the norms ‖ |y − x|β(x)‖Lp(·)(Ω\B(x0,r)) as r → 0, which was obtained in
the preceding section.

We have

Iα(·)f(x) =

∫

x∈Ω
|x−y|<r

f(y) dy

|x− y|n−α(x)
+

∫

x∈Ω
|x−y|<r

f(y) dy

|x− y|n−α(x)
:= Ar(x) + Br(x). (5.1)

We make use of the inequality

|Ar(x)| ≤ 2nrα(x)

2α(x) − 1
Mf(x) (5.2)

which is known in the case of α(x) = const (see for instance, [1], p. 54) and remains valid
in case it is variable.

By (5.2) and the first condition in (3.1) we have

|Ar(x)| ≤ crα(x)Mf(x) (5.3)

with some absolute constant c > 0 not depending on x and r.
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We assume for simplicity that x0 = 0. Let f(x) ≥ 0 and ‖f‖Lp(·)(Ω,|x|γ) ≤ 1 . Applying
the Hölder inequality (2.8) in the integral Br(x), we obtain

|Br(x)| ≤ k nβ,ν,p(x, r)‖f‖Lp(·)(Ω,|x|γ) ≤ nβ,ν,p(x, r) (5.4)

where
β(x) = α(x)− n and ν(x) =

γ

1− p(x)
.

We make use of our estimate (4.21) and obtain

|Br(x)| ≤ C r−
n

q(x) (r + |x|)− γ
p(x) , (5.5)

the assumptions of Theorem 4.2 being satisfied by (3.1) and the fact that γ ≥ 0. From
(5.5) we obtain

|Br(x)| ≤ C |x|− γ
p(x) r−

n
q(x) , (5.6)

since γ ≥ 0.
Therefore, taking into account (5.3) and (5.6) in (5.1), we arrive at

Iα(·)f(x) ≤ C
[
rα(x)Mf(x) + |x|− γ

p(x) r−
n

q(x)

]
. (5.7)

It remains to choose the value of r which minimizes the right-hand side. A direct calcu-
lation provides

r =

[
n

q(x)α(x)

] p(x)
n

|x|− γ
n [Mf(x)]−

p(x)
n .

Substituting this into (5.7), after easy evaluations we get

Iα(·)f(x) ≤ C|x|− γα(x)
n [Mf(x)]

p(x)
q(x) .

Hence, ∫

Ω

|x|µ
∣∣Iα(·)f(x)

∣∣q(x)
dx ≤ C

∫

Ω

|x|µ− γ
n

α(x)q(x)|Mf(x)|p(x) dx.

Since α(x) and p(x) satisfy the logarithmic Dini conditions (and, consequently, q(x) as
well), we see that

C1|x|γ ≤ |x|µ− γ
n

α(x)q(x) ≤ C2|x|γ (5.8)

under the choice µ = q(0)
p(0)

γ according to (3.6). Therefore,

∫

Ω

|x|µ
∣∣Iα(·)f(x)

∣∣q(x)
dx ≤ C

∫

Ω

|x|γ|Mf(x)|p(x) dx

or ∫

Ω

|x|µ
∣∣Iα(·)f(x)

∣∣q(x)
dx ≤ C

∫

Ω

[
|x| γ

p(x) ·M
(

f0(x)

|x| γ
p(x)

)]p(x)

dx
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where
f0(x) = |x| γ

p(x) f(x) ∈ Lp(·)(Ω), ‖f0‖Lp(·) ≤ 1.

We again refer to the logarithmic condition for p(x) which provides the equivalence

|x| γ
p(x) ∼ |x| γ

p(0) (5.9)

and gives

∫

Ω

|x|µ
∣∣Iα(·)f(x)

∣∣q(x)
dx ≤ C

∫

Ω

[
|x| γ

p(0) ·M
(

f0(x)

|x| γ
p(0)

)]p(x)

dx =

∫

Ω

|M δf0(x)|p(x)dx

(5.10)
where δ = γ

p(0)
and M δ is the weighted maximal operator (2.9).

It remains to make use of Theorem 2.2. Condition (2.10) of that theorem with δ = γ
p(0)

means that −n < γ < n[p(0) − 1] which is satisfied by (3.5). By Theorem 2.2 we have∥∥M δf0

∥∥
Lp(·) ≤ C‖f0‖Lp(·) ≤ C. Then

∫
Ω

|M δf0(x)|p(x)dx ≤ C and by (5.10) we obtain that

∫

Ω

|x|µ
∣∣Iα(·)f(x)

∣∣q(x)
dx ≤ C for all f ∈ Lp(·)(Ω, |x|γ) with ‖f‖Lp(·)(Ω,|x|γ) ≤ 1

which is equivalent to (3.3).

5.2 The case of negative γ.

This case is reduced to the previous case by the duality arguments. First we observe that
the operator conjugate to Iα(·) has the form

(
Iα(·))∗ g(x) = Iα(·)g(x) : =

∫

Ω

g(y) dy

|x− y|n−α(y)
∼

∫

Ω

g(y) dy

|x− y|n−α(x)
= Iα(·)g(x) (5.11)

where the equivalence

C1|x− y|n−α(x) ≤ |x− y|n−α(y) ≤ C2|x− y|n−α(x)

follows from the logarithmic condition for α(x).
We pass to the duality statement in Theorem A considering that γ ≥ 0 there. By

(5.11) we obtain from (3.3) that

∥∥Iα(·)g
∥∥
(Lp(·)(Ω,|x|γ)∗ ≤ C‖g‖(Lq(·)(Ω,|x|µ)∗ .

In view of (2.7) this takes the form

∥∥Iα(·)g
∥∥

Lp(·)
(

Ω,|x|
γ

1−p(0)

) ≤ C‖g‖
Lq(·)

(
Ω,|x|

µ
1−q(0)

) (5.12)
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where the passage of the type (5.9) has been used. Now there is a sense to redenote

µ

1− q(0)
= γ1,

γ

1− p(0)
= µ1, q(x) = p1(x)

where γ1 is already negative.
For the exponent p1(x) we have

p1(x) =
np(x)

n[p(x)− 1] + α(x)
and n− α(x)p1(x) = n

[n− α(x)][p(x)− 1]

n[p(x)− 1] + α(x)
≥ c > 0.

Its Sobolev exponent is

q1(x) =
np1(x)

n− p1(x)α(x)
= p(x)

and it is easy to see that the new weight exponents γ1 and µ1 are related to each other
by the necessary relation of type (3.6), that is

µ1 =
q1(0)

p1(0)
γ1.

In the new notation, estimate (5.12) has the form

∥∥Iα(·)g
∥∥

Lq1(·)(Ω,|x|µ1 )
≤ C‖g‖Lp1(·)(Ω,|x|γ1 ). (5.13)

Note also that

0 ≤ γ < n[p(0)− 1] ⇐⇒ α(0)p1(0)− n < γ1 ≤ 0

so that the estimate in (5.13) is nothing else but our Theorem A for the negative subin-
terval of possible values of γ.
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