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Abstract
The Hardy type inequality
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is proved for the spaces LP()(Q) with variable exponent p(z) in the case of bounded domains
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1 Introduction

For the Riesz potential

1° () / - |n - (1)

the following weighted p — g-estimate is known
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where 0 <a<n, 1<p<oo, 1<g<oo %—%g%g}% and
+n +n
a = —a, ap—n<y<n(p—1), (1.2)
q p

which is due to H.G.Hardy and J.E.Littlewood [9] in the one-dimensional case and to
E.M.Stein and G.Weiss [22] in the case n > 1.
We establish such type of inequality in the limiting case é = % — 2 for the generalized

Lebesgue spaces LP1)(Q) with variable exponent p(z) over bounded domains in R”, see
Theorem A in Section 3. We refer to the papers [8], [16], [20], [21] on the spaces LP()
and to the papers [2], [3], [4], [5], [6], [7], [10], [12], [13], [14], [17] on the recent progress
in the study of the operator theory and harmonic analysis in LP(), the theory of these
spaces and the corresponding Sobolev spaces WP() with variable exponent being rapidly
developing last decade, influenced by applications, see [18] and references therein.

Notation:
S,—_1 is the unit sphere in R",
|Sp—1| is its measure;
€1 = (1, O, O, ceey 0)7
inf and sup will everywhere stand for esssup and essinf;
po = inf p(x), P =supp(x), px) = 2
z€eQ 2€Q

p(x)—1
by ¢ or C' we denote various positive absolute constants not depending on the parameters
involved.

2 Preliminaries.

When considering the operator I® in the spaces LP()(€2), we admit that its order o may
be also variable, so we deal with the operator

04(
I /|$_ o) x € (. (2.1)

We refer to [8], [16], [20], [21] for details on the spaces LP()(Q), but give the basic
definitions. Let € be a bounded domain in R™ and p : Q@ — [1, 00) a measurable function
on Q. By LPU)(Q) we denote the set of all measurable functions f on €2 such that

/|f(a:)|p($) dx < oo.
Q

Under the condition 1 < p(z) < P < oo on €2, this is a Banach space with respect to the
norm

' ) [P@
[ £l o)) = inf § A >0 /‘M <1,. (2.2)
Q



The notation LP(')(Q, p) will stand for the corresponding weighted space

1

DO, = { £ (@) € 2O}

£l o), = Inf ¢ A >0 /p(m) (T> der <1, (2.3)

Q
where p(z) > 0 a.e. and [{x € Q: p(z) =0} =0.

Definition 2.1. By P(Q2) we denote the set of functions p : Q — (1, 00) satisfying the
conditions
l1<po<plz)<P<ox on Q, (2.4)

_ 1
forall z,y€Q with |z —y| < 2 (2.5)

Ip(z) — p(y)| < 1

lz—yl
where A > 0 does not depend on x and y.
Observe that condition (2.5) may be also written in the form

where N = 2 diam §Q.

By p(x) we denote the conjugate exponent,
1 1
i =1

p(xr)  p(x)

For the conjugate space [LP0)(Q, p)]* we have
(L70(Q, )] = 17O (Q [p(x)]ﬁm) (2.7)

which is an immediate consequence of the fact that [Lp(')(Q)yk = [P0 (Q) under (2.4),
see [16], [21].
From the Holder inequality for the LP()-spaces

1 1
w(x)v(x) dx| < Ellull; vl 15000, — 4+ —=1,
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be the weighted maximal function, o € Q. The following statement was proved in [10],
[11], see also [15].

Theorem 2.2. Let §) be a bounded domain and p € P. The operator M® with zy € Q
is bounded in LP®(Q) if and only if

(2.10)

—p(xo) <6< 5w0)

If xg € 09, condition (2.10) is sufficient for the boundedness of M°. If xo € 0Q and
Hy € Q: r < |y— x| < 2r} ~ ", then condition (2.10) is also necessary for the
boundedness of M°.

3 The main statement.
We assume that the exponent a(z) in (2.1) satisfies the assumptions

inf a(z) >0 and sup a(z)p(x) <n (3.1)
zef zeQ

and the logarithmic condition (2.5), that is,

. (3.2)

N —

z,y €Q |z —y| <

Theorem A. Let Q be a bounded domain in R™ and zy € Q, let p € P(Q) and a
satisfy conditions (3.1). Then the following estimate is valid for operator (2.1)

17 £ s oo —sopy < € N llzor gz (3.3)
where . . )
= e 3.4
@ p@  n 34
a(zo)p(zo) —n <y < nlp(zo) — 1] (3.5)
and (o)
AR

The proof of Theorem A will be based on the following crucial points:

1) the boundedness of the weighted maximal operator in the spaces LP()(€2) proved in
10], [15];

2) Hedberg’s approach to prove the non-weighted Sobolev theorem with constant p
and « based on the domination of the Riesz potential by the maximal function;



3) a development of the technique of estimation of LP()-norms of power functions of
distance truncated to exterior of a ball, given in [19] in the non-weighted case, for the
weighted case.

The above mentioned development constitutes the essential body of the paper, see the
next section. Theorem A itself is proved in Section 5.

Remark. When 0 <~ < n[p(zg) — 1], condition (3.2) may be weakened: it suffices to

assume its validity only at the point to which the weight is fized, that is, |a(z) — a(xy)| <

Ao — | < 5. Indeed, condition (3.2) is used in the proof of Theorem A only in

[z—zq]

(5.8) (where there was chosen xo = 0). As for negative values of ~y, condition (3.2) was
used in its generality when passing to the conjugate operator in Subsection 5.2.

in

4 Estimation of weighted L’()-norms of power func-
tions of distance truncated to exterior of a ball

4.1 Setting of the problem.

1, it x>
Let X () = { 0, if |z|<r
origin of radius r and let

be the characteristic function of the ball centered at the

gs(z,y, 1) = e — y|"Dx,(xz — y) (4.1)

where ((z) in future will be chosen as ((z) = a(z) — n.
We are interested in estimation of the weighted norms

ngvp(T,r) = ”gﬁ(ﬂ%y,T)HLm-)(Q,\yp(w) (4.2)

(taken with respect to y) as r — 0, where we suppose that 0 € Q and v(y) is some variable
exponent. In future, we will need this norm with p(-) replaced by p(:) and v(y) chosen as

vy) = o

The next subsections are aimed to derive the required estimate of ng, ,(x,7) as r — 0.

4.2 An auxiliary estimate.

Lemma 4.1. Let e; = (1,0,...,0). For the integral

0<t< 4.3
/ uF |y—e1|b’ 0, (4:3)

lyl<t

where a <n, b<n, a+b<mn, the following estimate is valid

6\a|+|b| tn—a

J“’b(t)Sc(n—a)(n—b)(n—a—b) D 0<t< oo, (4.4)

5



where C > 0 is an absolute constant not depending on t,a and b (depending only on n).

Proof. We separate the cases 0 <t < 1/2, 1/2 <t <2and 2 <t < 0.

The case 0 <t < 1/2. We have |y —ey| <t+1 < 2and |y — e 21—|y[21—t2%.

Therefore, |yflel|b < 2%l and then J,u(t) <20 f Iz% which gives the estimate
lyl<t

91|

n—a

Jap(t) < C A 0<t<1/2

(with C = [S,_1]).
The case 1/2 < t < 2. We have
dy dy
Jup(t) = / S A— / — I +D
) yl*ly — ex]’ yl*ly — e’
lyl<1/2 1/2<|y|<t

Making use of (4.5) with ¢t = 1/2, we see that

olbl
L <C )
n—a
In the integral I we have # < 2lal g0 that
I, < 2l / Ay / dy
B ly — el lyl°
1/2<yl<|t 1/2<|y—e1|<|t

(4.6)

Observe that |[y—e;| < ¢ implies that |y| < t+1 < 3sothat {y: [y—e1| <t} C {y : |y| < 3}

and then alalt
21413

<C .

= n—b
From (4.6)-(4.7) we have

lol olal 3ol 1
t) < - <t<2
Ja’b()_o(n—a%—n—b)7 2~ =

The case 2 <t < oco. We have

dy dy
%¢t:t/——————+ / W
O="] Wy —ep ylly —ep 2T

ly|<2 2<|y|<t

By (4.8) with ¢t = 2 we have

olbl olal 3ol
ggc( ¥ )

(4.7)

(4.8)

(4.9)



To estimate I, we observe that % < |y — e1] < 2yl so that

dy dy 21 e
[b] 7 [6] g =  4n—a—b
n<2 [ opimed [ gEm-la et e
2<y|<[t ly| <[t
Then from (4.9)-(4.10)
olbl 9olal 310l 90|
Jos(t) < C et ) t>2. 4.11
olt) < (n—a+n—b+n—a—b ) - (4-11)
Unifying estimates (4.5), (4.8) and (4.11), we get (4.4). O

Corollary. Let 0 <r < oo, 0 € Q,v > —n and a function h(z) defined on ) satisfy
the conditions

sup |h(z)| == H < oo, (4.12)
e
sup[h(x) +n] := —dy < 0, (4.13)
e
and
suplh(z) +n+] = —d; <0. (4.14)
xeQ)
Then
[ ey < oy sen, @)

ly—z|>r

where C' > 0 does not depend on x and r.

Proof. We transform the integral A(z,r):= [ |y—z["@|y|” dy by the dilatation
ly—z|>r
change of variables y = |z|z:

A(Z‘ﬂ“) _ |x|h(m)+n+7 /

x t
277|>7
‘ [ 17 Ja|

The translation z — Lﬁ—‘ — 2z and rotation arguments yield
Az, r) = ||t @+nty / |z —eq|" 2" dz
21> 15
where e; = (1,0, ...,0). Finally, after the inversion change of variables

lu — eq] du
Jul fulr

u ) 1
Z:W with |z|:m, |z —e1| =



we get
_ —“/d
A(z,7) = |z[M@+m+ / Ju— e " du. (4.16)

|u|h(x)+2n+'y

|z|
lul<

We arrived at the integral .J, () estimated in (4.4). Making use of (4.4) with

t=—, a=h(x)+2n+vy, b=—y,

we arrive at (4.15) after easy evaluations with conditions (4.12)-(4.14) taken into account.
O

4.3 Estimation of ng, ,(z,r).

Theorem 4.2. Let Q be a bounded domain, 0 € Q, let p € P(Q), v € L=(Q) and
B € L>*(Q) and let also v(x) satisfy the logarithmic condition at the origin

A 1
) - <1, yeQ  pl<; (4.17)
and let v(0) > —n. If
sup[B(x)p(z) + n] := —dy < 0, (4.18)
xeQ)
sup[fB(x)p(z) + v(z) + n] :== —d; <0, (4.19)
z€QN
and
suplB(z)p(z) + v(0) + 1] i= —d < 0, (4.20)
xeQ)
then . Vo)
N, ) < CrPOTaE (1 4 |2|)ro . (4.21)

forall x € Q, 0 <r < diam 2, where C' > 0 does not depend on x and r.

Proof. For the norm ng,, = ng,,(z,r) as defined in (4.2) we have

o 1B@)\ PW)
/ (M) |y|l’(y) dy =1 (422)

/s nBvp
)
ly—x|>r

by definition (2.3).

Ist step: values ng,,(x,r) > 1 are only of interest. First we observe that the right-
hand side of (4.21) is bounded from below:

n v(z)
inf PO (r - J2)) 70 = > 0. (4.23)
0<T'2§ia7n Q



To verify (4.23), suppose first that v(z) > 0. Then by (4.19)

n_ v(z) n_ v(z) _ 18@)p(z)tr(z)+n| _1B@)p(x)+v(z)+n|
T’B(I)+p(z) (r —+ |x|)p(2) > rﬁ(x)+p(2)+p(z) =7 p(z) > D p(z)

where D = diam €). The right hand side here is bounded from below since
L>(§2). When v(z) < 0, we observe that

|8(x)p(x)+v(z)+n]
p(z) =

rﬁ(x)+ﬁ(r —+ |x’)% > rﬂ(x)—i_ﬁD;g)) = 7«_|5(x)+ﬁ|D;Eg

where (4.18) was taken into account. The right hand side here is also bounded from below.
From (4.23) we conclude that to prove (4.21), we may suppose that

ngyp(z,r) > 1.

2nd step: small values of v are only of interest. We assume that r is small enough,
0 < r < gg. To show that this assumption is possible, we have to check that the right-hand
side of (4.21) is bounded from below and ng,, ,(z, ) is bounded from above when r > &,.
The former is obvious, to verify the latter, we observe that from (4.22) it follows that

_ . 1B@)p)
y—x ,
1> ly = =77V ly["®) dy

whence
Npa(@,T) < / ly — 2P [y O, y)o(y) dy

yeQ
ly—z[>eq

where u(z,y) = |y — x|S@PO-P@] and v(y) = |y[*®©). By direct estimation of
In u(z,y) and In v(y) we obtain that

e NAB < y(x,y) < NAB, x,y €8 (4.24)
where N and A are the constants from (3.2) and B = sup |G(z)|, and
e
<O < ryen (4.25)

with some constant ¢ > 0 (one may take ¢ = max{2As, N sup |v(z)|}, where As is the
e

constant from (4.17)).
Therefore,

dy

Ngp(,7) < eTNAP ly — x| PPE |y dy < etNAB BP PES
Q

ye
ly—x|>eq

= const




which proves the boundedness of ng,, ,(z, ) from above.
The value of g will be chosen later.

3rd step: a rough estimate. First, we derive a weaker estimate
g up(a,r) < CrP@ (4.26)

which will be used later do obtain the final estimate (4.21). To this end, we note that
always \P(¥) < \InfP(v) 4 \swpP() 5o that from (4.22) and (4.25) we have

_ p|B(x)\ PO _ 2|B(=)
xr x
1< / [(’y | ) (’3/ | ) ] |y|u(0)

yeQ nBvp NB,v,p

ly—z|>r

Since |y — z| > r and ((z) < 0, we obtain

() Gy | [ e
ngvp nB,vp

x pO x . . .
Hence (r;% ) ) + (Tﬁ( ) > > ¢ which yields * P > C and we arrive at the estimate in
B,v,p

ng,v,p ng,v,p

(4.26).
4rd step. We split integration in (4.22) as follows

’y_x’3 p(y)
TR R
B.v,p

1(ze0)  Qa(z,e0)  Q3(m,e0)

1<

where

ly — x|’
M (z,60) =y eN: r<|y—z| <gy,—— >1¢,
ng.vp

Qg(x,eo)—{yEQ: T<|y—x|<€o,—<1},
ngv,p

Qa(z,80) ={y €Q: |y—2|>eo}.
oth step: Estimation of Z;. We have

_ . |B()\ P@)
7, - / (u) Y'Y (2, ) dy (4.28)

ng,v.p
Ql (3;760)

where
ly — z|P@ >p(y)—P(fﬂ)

nBvp

UA%y%=<

10



The estimate
e VA < (x,y) < N (4.29)

is valid. In its proof below we follow a similar estimation in [19], p. 266. We have

l <|y—fc|ﬁ<z>)
lin uy(z,y)] < A|—"2x2 2

[z—y|

ly—=|#=)

Since > 1, we obtain

B,v,p

ﬁxln%m—lnnM ﬁa:ln%m
|6(x)]| ‘le ﬁp§A|()|N|y|§AB

lln u,.(z,y)] < A

where B = sup |#(z)| (without loss of generality we may assume that N > 1). Hence
e

(4.29) follows.
By (4.29) and (4.25) we obtain from (4.30)

C
o) / |y — o[ P@PE) |y 7O dy - (4.30)

n
/87V7p|yiz|>7.

C x x v
i< oy / ly — a PP |y 1O dy <
nﬁ’y’pﬂl(:v,so)

Now we make use of the estimate obtained in (4.15) which gives

T, <

C

I (1 [0, (4.31)
B:v.p

The validity of conditions (4.12)-(4.14) under which the estimate (4.15) was obtained,

follows from assumptions of our theorem.

6th step: Estimation of Iy and the choice of €p. In the integral Z, we have

_ p|B@)\ Peo®
I, <C / (ly—xl) ly|"© dy (4.32)

ngv,p
Qo (x,Eo)

where
Peo(xz) = min  p(y)

ly—zo0|<eo

and (4.25) was taken into account. Then

C
IQ S |y — x'ﬁ(ﬂf)pso(ﬂf) |,y|l/(0) dy
Peg (@)
B’V’p QQ(Z,E())
and consequently
C
Ls—® [y — 2]l Jy O dy. (4.33)

ByP |y—z|>r

11



We wish to apply estimate (4.15), but to this end we have to guarantee the validity of
conditions (4.12)-(4.14). This may be achieved by a choice of ¢( sufficiently small so that

B(x)pey () +n <=6 <0 and  [(x)pe, () + n+v(0) < =5, <0

which is easily derived from conditions (4.18)-(4.20) and continuity of p(x) (compare with
Lemma 1.7 from [19]). Conditions (4.12)-(4.14) being satisfied, we make use of (4.15) and
get

@z @4 (o ] ) (0) (4.34)

where C' does not depend on x and r.

Tth step: Estimation of Z3. We have

C X 14
Lo T L=T(o)= [ ly= =l dy.
B,vsp oo
ly—z|>eq

The integral Z,(z) is a bounded function of . Indeed, by (4.24)-(4.25) we obtain

14(13) <C / |y _ x0|ﬁ(:c)p(ac)|y|u(0) dy <C / |y _ x0|ﬁ(m)p(m)|y|y(0) dy

ez ly=zl>eo0

which is bounded by (4.15). Therefore,

C
Iy < ——- (4.35)
Msup
8th step. Gathering estimates (4.31), (4.34) and (4.35), we have from (4.27)
B(@)p(x)+n B(@)peq (@)+n 1
1 <G T—(T + |z))"© + L(r + |z])"@ + (4.36)
p(z) Peg (@) nt?
ﬁ:l/7p B,VJ) ﬂ’”’p
with a certain constant Cy not depending on x and r. We may assume that
1\
ngup(T, 1) 2 ) = C (4.37)

because for those x and r where ng, ,(x,r) < Cj there is nothing to prove, the right-hand
side of (4.21) being bounded from below according to (4.23). In the situation (4.37) we
derive from (4.36) the inequality

B(z)p(z)+n B(z)pey (z)+n
T r 0
1< + (r + |z)"©. (4.38)
np(r) pEO (2?)
B,v,p B,vsp

12



P=o (@) p(x) . pep (T)
Since ng,p(z,7) > 1 we observe that ( 1 ) < ( 1 ) and <rﬁ<>> o <

nB,v,p ng,v,p

2 \P(®)
C (Tﬁ( ) >p by (4.26). Hence,

ng,v,p

pB@)peq(@)+n B(z)p(x)+n

Peg (2) - p(z)
"50p Bup

Therefore, from (4.38) we derive the estimate

B@)p(@)+n

p(x) (7” + |x’)ll(0) > C

B.:p
which yields (4.21), because

v(z)—v(0)

e < (r ot [af) T < e

with some C' > 0, the latter inequality being easily obtained by estimating In (r +
v(z)—v(0

©)
|z|) " »@ — with (4.17) taken into account. O

5 Proof of Theorem A

5.1 The case v > 0.

We base ourselves on the well known Hedberg’s approach to reduce the boundedness of
the Riesz potential to that of the maximal operator which requires an information about
the behaviour of the norms || |y — a:|f8(“)||Lp(.)(Q\B( as 7 — 0, which was obtained in
the preceding section.

We have

10 f(z) = / f(y_)dy+ / M::Ar(x)—{—Br(x). (5.1)

o =yl 2 =y

zo,1))

zeQ TE
lz—y|<r lx—y|<r

We make use of the inequality

2nra(x)

A4 @)] < oo

M f(x) (5.2)

which is known in the case of a(z) = const (see for instance, [1], p. 54) and remains valid
in case it is variable.
By (5.2) and the first condition in (3.1) we have

A ()] < er°@ M f(x) (5.3)

with some absolute constant ¢ > 0 not depending on x and r.

13



We assume for simplicity that zo = 0. Let f(z) > 0 and || f|| o),z < 1 . Applying
the Holder inequality (2.8) in the integral B,(x), we obtain

|Br(2)| <k ngup(@, 0l fll o0y ey < npwp(,T) (5.4)
where N
B(x) =a(xr) —n and vir) = ———.
() = al2) @)= 1

We make use of our estimate (4.21) and obtain
|Br(@)] < C v (r o [a]) 7500, (5.5)

the assumptions of Theorem 4.2 being satisfied by (3.1) and the fact that v > 0. From
(5.5) we obtain

B (z)] < C |z 70 ¢, (5.6)

since v > 0.
Therefore, taking into account (5.3) and (5.6) in (5.1), we arrive at

G ()f( )<C[ Mf(x )_erﬁ P | (5.7)

It remains to choose the value of » which minimizes the right-hand side. A direct calcu-

lation provides
p(z)

T:[__&_ﬁ7lur3M£ﬂwT

q(z)o(z)

Substituting this into (5.7), after easy evaluations we get

p(z)

w() p(z)

10 f(z) < Cla| =57 M f ()] 7 .

Hence,
@ Q

Since a(x) and p(z) satisfy the logarithmic Dini conditions (and, consequently, g(z) as
well), we see that
Cylz|” < |zt wo@a@) < Cy)x| (5.8)

2(0)

o) 7 according to (3.6). Therefore,

under the choice p =

/W\JQ D" do < C/|x|7|Mf( P da

p(z)
/|xlu ]]a(.)f(g;)’q(x) dr < O/ mﬁ M ( fo(lz) )] du
Q o |$|m

14

or




where .
folz) = |27@ f(z) € LPY(Q), [ follrer <1

We again refer to the logarithmic condition for p(x) which provides the equivalence
|27~ |z]7O (5.9)
and gives

Q

Q

p(z)
|xlﬁ - M (éﬂ@)] dx :/|M5f0(x)|p($)dx
p(0) o

(5.10)

where 6 = & and M % is the weighted maximal operator (2.9).

It remains to make use of Theorem 2.2. Condition (2.10) of that theorem with ¢ = ;TEOL)

means that —n < v < n[p(0) — 1] which is satisfied by (3.5). By Theorem 2.2 we have

1M° fo|l Loy < Cllfoller < C. Then [ |M° fo(x)|P®dz < C and by (5.10) we obtain that
Q

/|x!“|[o‘(')f(a:)|q(x) de<C forall  felPOQa)  with | f]lpoqup <1

which is equivalent to (3.3).

5.2 The case of negative 7.

This case is reduced to the previous case by the duality arguments. First we observe that
the operator conjugate to 7°¢) has the form

(1) gfa) = / e / A~ 1w (51

where the equivalence
Cilz —y|" @ < o — "W < Cola —y|" o
follows from the logarithmic condition for a(z).
We pass to the duality statement in Theorem A considering that v > 0 there. By
(5.11) we obtain from (3.3) that
HIQ(')QH(ch)(g,mv)* < OHQH(Lq(J(Q,\xw)*‘
In view of (2.7) this takes the form

III“(')9||LP<.)(9W;’@> < Cl9l (04 (5.12)
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where the passage of the type (5.9) has been used. Now there is a sense to redenote

=M, - H1, q(z) = pi(z)
1—¢(0) 1 —p(0)
where v, is already negative.
For the exponent p;(z) we have
np(x) [n — a(2)]lp(x) —1]

= d — = > .
Pl = - a4 T emE = T et 7"
Its Sobolev exponent is

np(x)

q(r) = =p(x)

n—pi(z)a(n)
and it is easy to see that the new weight exponents +; and u; are related to each other
by the necessary relation of type (3.6), that is

_ 0(0)
p1(0)

In the new notation, estimate (5.12) has the form

1 71

1709l gppeny < Cllllmcrgainy (5.13)
Note also that
0<y<np0) -1 <= a(0)pi(0)—n <7 <0

so that the estimate in (5.13) is nothing else but our Theorem A for the negative subin-
terval of possible values of .
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