

Hardy inequality in the generalized Lebesgue spaces

by

S. Samko

University of Algarve, Portugal

Abstract

The Hardy type inequality

$$\left\| |x - x_0|^{\beta - \alpha} \int_{\Omega} \frac{f(y) dy}{|y - x_0|^{\beta} |x - y|^{n - \alpha}} \right\|_{L^{p(\cdot)}(\Omega)} \leq C \|f\|_{L^{p(\cdot)}(\Omega)}, \quad 0 < \alpha < n, \quad x_0 \in \bar{\Omega}$$

is proved for the spaces $L^{p(\cdot)}(\Omega)$ with variable exponent $p(x)$ in the case of bounded domains Ω in R^n , $-\frac{n}{p(x_0)} < \beta < \frac{n}{q(x_0)}$.

Key words: *Hardy inequality, Lebesgue spaces with variable exponents, maximal function*

AMS Classification 2000: 46E35

1. Introduction

The classical Hardy inequality ([9]) for fractional integrals states that

$$\left\| x^{\beta - \alpha} \int_0^x \frac{f(y) dy}{y^{\beta} (x - y)^{1 - \alpha}} \right\|_{L^p(0,b)} \leq C \|f\|_{L^p((0,b))}, \quad 0 < \alpha < 1,$$

where $\alpha - \frac{1}{p} < \beta < \frac{1}{q}$, $\frac{1}{p} + \frac{1}{q} = 1$ and $0 < b \leq \infty$. Its generalization

$$\int_{\mathbb{R}^n} |x|^{\mu} |I^{\alpha} \varphi(x)|^p dx \leq C \int_{\mathbb{R}^n} |x|^{\gamma} |\varphi(x)|^p dx \quad (1.1)$$

for the n -dimensional fractional integration (Riesz potential operator)

$$I^\alpha \varphi(x) = \frac{1}{\gamma_n(\alpha)} \int_{\mathbb{R}^n} \frac{\varphi(y) dy}{|x-y|^{n-\alpha}}, \quad 0 < \alpha < n, \quad (1.2)$$

where $\gamma_n(\alpha) = \frac{2^\alpha \pi^{\frac{n}{2}} \Gamma(\frac{\alpha}{2})}{\Gamma(\frac{n-\alpha}{2})}$ (see for instance [20], p.37), was proved by Stein-Weiss [23] under the natural assumptions on the parameters:

$$1 \leq p < \infty, \quad \alpha > 0, \quad \alpha p - n < \gamma < n(p-1), \quad \mu = \gamma - \alpha p. \quad (1.3)$$

We prove a Stein-Weiss-type generalization of the Hardy type inequality for the Lebesgue spaces $L^{p(\cdot)}(\Omega)$ with variable exponent $p(x)$, in the case of bounded domains Ω , see Theorem A below.

Nowadays there is an evident increase of interest to the theory of these spaces and Sobolev type spaces $W^{m,p(\cdot)}(\Omega)$ generated by them, as well as to the operator theory in these spaces. This is caused by possible applications to models with non-standard local growth (in elasticity theory, fluid mechanics, differential equations, see for example [17], [5] and references therein) and is based on recent breakthrough result on boundedness of the maximal Hardy-Littlewood operator in these spaces. We refer, for example, to the papers [1], [2], [3], [4], [14], [15], [11], [12], [10], [13], [16], [18], [19], [21] and references therein in connection with the generalized Lebesgue spaces.

The boundedness statement of Theorem A adjoins to weighted variable exponent estimates obtained in [14], see also [10] and [11].

It is worthwhile emphasizing that in the result of Theorem A the bounds obtained for the weight power function $|x-x_0|^\beta$ depend only on the value of the exponent $p(x)$ at the point x_0 to which the weight function is fixed.

2. Preliminaries.

The generalized Lebesgue space $L^{p(\cdot)}(\Omega)$ with variable exponent is introduced as a set of functions for which the following modular is finite

$$I_p(f) := \int_{\Omega} |f(x)|^{p(x)} dx < \infty, \quad \Omega \subseteq \mathbb{R}^n. \quad (2.1)$$

When $1 \leq p(x) \leq P < \infty$ for $x \in \Omega$, this is a Banach space with respect to the norm

$$\|f\|_{p(\cdot)} = \inf \left\{ \lambda > 0 : I_p \left(\frac{f}{\lambda} \right) \leq 1 \right\}.$$

The basics on the spaces $L^{p(\cdot)}$ may be found in [8], [16], [17], [18], [19], [21].

We make use of the following result on the boundedness of the weighted maximal function

$$M^\beta f(x) = |x - x_0|^\beta \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x) \cap \Omega} \frac{|f(y)|}{|y - x_0|^\beta} dy, \quad (2.2)$$

in the spaces with variable exponent proved in [10], [11] (see also [14]) (the non-weighted case is due to L.Diening [2], [4]).

Theorem 2.1. *Let Ω be a bounded domain in \mathbb{R}^n and $p(x)$ satisfy conditions*

$$1 < p_0 \leq p(x) \leq P < \infty, \quad x \in \overline{\Omega} \quad (2.3)$$

and

$$|p(x) - p(y)| \leq \frac{A}{\ln \frac{1}{|x-y|}}, \quad |x - y| \leq \frac{1}{2}, \quad x, y \in \overline{\Omega}. \quad (2.4)$$

Then the operator M^β with $x_0 \in \overline{\Omega}$ is bounded in $L^{p(x)}(\Omega)$ if

$$-\frac{n}{p(x_0)} < \beta < \frac{n}{q(x_0)}. \quad (2.5)$$

3. The main statement.

In Theorem below we assume that $0 < \alpha < n$ and $x_0 \in \overline{\Omega}$. Note that a weaker estimate of the type (3.1) with $|x - x_0|^\beta$ instead of $|x - x_0|^{\beta-\alpha}$ was obtained in [14], see also [10] and [11], and the case $n = 1$ and $\beta = 0$ was proved in [7].

Theorem A. *Let Ω be a bounded domain in \mathbb{R}^n and $p(x)$ satisfy conditions (2.3) and (2.4). Then the Hardy-type inequality is valid*

$$\left\| |x - x_0|^{\beta-\alpha} \int_{\Omega} \frac{f(y) dy}{|y - x_0|^\beta |x - y|^{n-\alpha}} \right\|_{p(\cdot)} \leq c \|f\|_{p(\cdot)} \quad (3.1)$$

for all β in the interval

$$\alpha - \frac{n}{p(x_0)} < \beta < \frac{n}{q(x_0)}. \quad (3.2)$$

Proof.

For simplicity we take $x_0 = 0 \in \overline{\Omega}$. We may consider non-negative functions $f(y)$ and assume that $f(y)$ is continued as zero outside the domain Ω .

We denote

$$I_\beta^\alpha f(x) = |x|^{\beta-\alpha} \int_{\Omega} \frac{f(y) dy}{|y|^\beta |x-y|^{n-\alpha}}. \quad (3.3)$$

The following pointwise estimate is valid

$$I_\beta^\alpha f(x) \leq c M^\beta f(x) + Bf(x), \quad (3.4)$$

where $M^\beta f(x)$ is the weighted maximal function (2.2), c is an absolute constant not depending on x, f (and x_0 , when writing this estimate for any point $x_0 \in \overline{\Omega}$) and

$$Bf(x) = |x|^{\beta-\alpha} \int_{|y-x| \geq 2|x|} \frac{f(y) dy}{|y|^\beta |x-y|^{n-\alpha}}. \quad (3.5)$$

Indeed,

$$\begin{aligned} I_\beta^\alpha f(x) &= |x|^{\beta-\alpha} \int_{|y-x| \leq 2|x|} \frac{f(y) dy}{|y|^\beta |x-y|^{n-\alpha}} + |x|^{\beta-\alpha} \int_{|y-x| \geq 2|x|} \frac{f(y) dy}{|y|^\beta |x-y|^{n-\alpha}} \\ &:= A_\beta f(x) + Bf(x). \end{aligned} \quad (3.6)$$

To show that the operator $A_\beta f(x)$ admits the pointwise estimate

$$A_\beta f(x) \leq M^\beta f(x), \quad (3.7)$$

we observe that it has the form

$$\begin{aligned} A_\beta f(x) &= \frac{|x|^\beta}{|x|^n} \int_{\frac{|x-y|}{|x|} \leq 2} \left(\frac{|x-y|}{|x|} \right)^{\alpha-n} \varphi(y) dy \\ &= |x|^\beta \frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} k \left(\frac{x-y}{\varepsilon} \right) \varphi(y) dy \end{aligned} \quad (3.8)$$

where we temporarily denoted $\varepsilon = |x|$, $\varphi(y) = \frac{f(y)}{|y|^\beta}$ and

$$k(x) = \begin{cases} |x|^{\alpha-n}, & |x| \leq 2 \\ 0, & |x| \geq 2 \end{cases}$$

Since the kernel $k(x)$ is radial, decreasing and integrable, the dilation $\frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} k\left(\frac{x-y}{\varepsilon}\right) \varphi(y) dy$ may be dominated by the maximal operator, see [22] or [6], p. 31-32,

$$\frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} k\left(\frac{x-y}{\varepsilon}\right) \varphi(y) dy \leq M\varphi(x)$$

where $M\varphi$ stands for $M^0\varphi = M^\beta\varphi \Big|_{\beta=0}$ (observe that this pointwise estimation admits a possibility for ε to depend on the point x , see the proof in [22], [6]). Therefore, from (3.8)

$$A_\beta f(x) \leq c|x|^\beta M\varphi(x) = cM^\beta f(x). \quad (3.9)$$

Thus, estimate (3.7) has been obtained.

Then, by Theorem 2.1, the operator A_β is bounded in the space $L^{p(\cdot)}(\Omega)$ if $-\frac{n}{p(0)} < \beta < \frac{n}{q(0)}$ which is satisfied by (3.11).

It remains to prove the boundedness of the operator B . Obviously, $|x - y| \geq 2|x|$ implies that

$$|y| \geq |x - y| - |x| \geq |x - y| - \frac{|x - y|}{2} = \frac{|x - y|}{2}.$$

Therefore,

$$Bf(x) = |x|^{\beta-\alpha} \int_{|y-x| \leq 2|y|} \frac{f(y) dy}{|y|^\beta |x - y|^{n-\alpha}} := B_1 f(x).$$

The operator conjugate to B_1 has the form

$$B_1^* g(x) = |x|^{-\beta} \int_{|y-x| \leq 2|x|} \frac{g(y) dy}{|y|^{\alpha-\beta} |x - y|^{n-\alpha}}$$

which is nothing else but the operator of the familiar type A_β which we had in (3.6), namely

$$B_1^* = A_{\alpha-\beta}.$$

According to (3.7) and Theorem 2.1, the operator B_1^* is bounded in the conjugate space $L^{q(\cdot)}(\Omega)$ if and only if $-\frac{n}{q(0)} < \alpha - \beta < \frac{n}{p(0)}$, that is, $\alpha - \frac{n}{p(0)} < \beta < \alpha + \frac{n}{q(0)}$, which is satisfied by (3.11). Therefore, the operator B_1 is bounded in $L^{p(\cdot)}(\Omega)$ and then B is bounded in this space. \square

Remark 3.1. Analysis of the proof of Theorem A shows that it is also valid in the case when the order α is variable as well, in the form

$$\left\| |x - x_0|^{\beta - \alpha(x_0)} \int_{\Omega} \frac{f(y) dy}{|y - x_0|^{\beta} |x - y|^{n - \alpha(x)}} \right\|_{p(\cdot)} \leq c \|f\|_{p(\cdot)} \quad (3.10)$$

for all β in the interval

$$\alpha(x_0) - \frac{n}{p(x_0)} < \beta < \frac{n}{q(x_0)} \quad (3.11)$$

if $\inf_{x \in \Omega} \alpha(x) > 0$ and $\alpha(x)$ satisfies the same logarithmic condition as $p(x)$ in (2.4).

References

- [1] D. Cruz-Uribe, A. Fiorenza, and C.J. Neugebauer. The maximal function on variable L^p -spaces. *Preprint of Istituto per le Applicazioni del Calcolo "Mauro Picone" - Sezione di Napoli.*, (249/02):1–15, 2002.
- [2] L. Diening. Maximal functions on generalized Lebesgue spaces $L^{p(x)}$. *Preprint Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg*, (02).
- [3] L. Diening. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$. *Preprint Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg*, (22).
- [4] L. Diening. Maximal functions on generalized Lebesgue spaces $L^{p(x)}$. *Math. Inequal. and Appl.*, 2002. (to appear).

- [5] L. Diening and M. Ružička. Calderon-Zygmund operators on generalized Lebesgue spaces $L^{p(x)}$ and problems related to fluid dynamics. *Preprint Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg*, (21/2002, 04.07.2002).
- [6] J. Duoandikoetxea. *Fourier Analysis*. Amer. Math. Soc., "Graduate Studies", 1953. 542 pages.
- [7] D.E. Edmunds and A. Meskhi. Potential Type Operators in and $L^{p(x)}$ Spaces. *Zeitschrift für Analysis und ihre Anwendungen*, 21(3):681–690, 2002.
- [8] D.E. Edmunds and J. Rákosník. Density of smooth functions in $W^{k,p(x)}(\Omega)$. *Proc. R. Soc. Lond.*, **A**, 437:229–236, 1992.
- [9] H.G. Hardy and J.E. Littlewood. Some properties of fractional integrals, i. *Math. Z.*, 27(4):565–606, 1928.
- [10] V. Kokilashvili and S. Samko. Maximal and fractional operators in weighted $L^{p(x)}$ spaces. *Revista Matematica Iberoamericana*. (to appear).
- [11] V. Kokilashvili and S. Samko. Maximal and Fractional Operators in Weighted $L^{p(x)}$ - Spaces. *Proc. A. Razmadze Math. Inst.*, 129:145–149, 2002.
- [12] V. Kokilashvili and S. Samko. Singular Integrals and Potentials in Some Banach Spaces with Variable Exponent. *Proc. A. Razmadze Math. Inst.*, 129:150–155, 2002.
- [13] V. Kokilashvili and S. Samko. Singular Integrals in Weighted Lebesgue Spaces with Variable Exponent. *Georgian Math. J.*, 10(1):145–146, 2003.
- [14] V. Kokilashvili and S. Samko. Maximal and fractional operators in weighted $L^{p(x)}$ spaces. *Preprint, Instituto Superior Técnico, Lisbon, Departamento de Matemática*, (13):1–26, May 2002.
- [15] V. Kokilashvili and S. Samko. Singular Integrals and Potentials in Some Banach Spaces with Variable Exponent. *Preprint, Instituto Superior Técnico, Lisbon, Departamento de Matematica*, (24):1–14, September 2002.

- [16] O. Kováčik and J. Rákosník. On spaces $L^{p(x)}$ and $W^{k,p(x)}$. *Czechoslovak Math. J.*, 41(116):592–618, 1991.
- [17] M. Ružička. *Electroreological Fluids: Modeling and Mathematical Theory*. Springer, Lecture Notes in Math., 2000. vol. 1748, 176 pages.
- [18] S.G. Samko. Convolution type operators in $L^{p(x)}$. *Integr. Transf. and Special Funct.*, 7(1-2):123–144, 1998.
- [19] S.G. Samko. Differentiation and integration of variable order and the spaces $L^{p(x)}$. Proceed. of Intern. Conference "Operator Theory and Complex and Hypercomplex Analysis", 12–17 December 1994, Mexico City, Mexico, Contemp. Math., Vol. 212, 203-219, 1998.
- [20] S.G. Samko. *Hypersingular Integrals and their Applications*. London-New-York: Taylor & Francis, Series "Analytical Methods and Special Functions", vol. 5, 2002. 358 + xvii pages.
- [21] I.I. Sharapudinov. The topology of the space $\mathcal{L}^{p(t)}([0, 1])$ (in Russian). *Mat. Zametki*, 26(4):613–632, 1979.
- [22] E.M. Stein. *Singular Integrals and Differentiability Properties of Functions*. Princeton Univ. Press, 1970.
- [23] E.M. Stein and G. Weiss. Fractional integrals on n-dimensional Euclidean space. *J. Math. and Mech.*, 7(4):503–514, 1958.