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Abstract

The Riesz potential operator of variable order α(x) is shown to be bounded
from the Lebesgue space Lp(·)(Rn) with variable exponent p(x) into the
weighted space L

q(·)
ρ (Rn), where ρ = (1 + |x|)−γ with some γ > 0 and

1
q(x) = 1

p(x) − α(x)
n when p(x) is not necessarily constant at infinity. It is as-

sumed that the exponent p(x) satisfies the logarithmic continuity condition
both locally and at infinity and 1 < p(∞) ≤ p(x) ≤ P < ∞, x ∈ Rn.
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1 Introduction

We consider the Riesz potential operator

Iα(·)f(x) =

∫

Rn

f(y)

|x− y|n−α(x)
dy (1.1)

in the Lebesgue generalized spaces Lp(·)(Rn) with the variable exponent p(x).
We refer for instance to the papers [20], [15], [19], [18] for the spaces Lp(·).
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(The order α(x) of the potential operator is also assumed to be variable.)
Nowadays there is an evident increase of investigations related to both the
theory of the spaces Lp(·)(Ω) themselves and the operator theory in these
spaces. This is caused by possible applications to models with non-standard
local growth (in elasticity theory, fluid mechanics, differential equations, see
for example [16], [6] and references therein) and is based on recent break-
through result on boundedness of the Hardy-Littlewood maximal operator
in these spaces. We refer, for example, to the papers [2], [3], [4], [5], [6],[7],
[9], [10], [11], [12], [13], [14], see also references therein.

The boundedness of the operator Iα(·) from the space Lp(·)(Rn) into the
space Lq(·)(Rn) with the limiting Sobolev exponent

1

q(x)
=

1

p(x)
− α(x)

n
(1.2)

was an open problem for a long time. It was solved in the case of bounded
domains. First, in [17], in the case of bounded domains Ω there was proved
a conditional result: the Sobolev theorem is valid for the potential operator
Iα(·) within the framework of the spaces Lp(·)(Ω) with p(x) satisfying the
logarithmic Dini condition, if the maximal operator is bounded in the space
Lp(·)(Ω). After L.Diening [3], [5] proved the boundedness of the maximal
operator, the validity of the Sobolev theorem for bounded domains became
an unconditional statement.

We refer also to the paper D.E.Edmunds and A.Meskhi [8] where some
weighted statements on Lp(·) − Lp(·)- boundedness for the one-dimensional
fractional integrals were obtained.

This problem still remains open for unbounded domains in the general
case.

Recently, L. Diening [4] proved Sobolev’s theorem for the potential Iα on
the whole space Rn assuming that p(x) is constant at infinity (p(x) ≡ const
outside some large ball) and satisfies the same logarithmic condition as in [17].
Another progress for unbounded domains is the recent result of D.Cruz-Uribe,
A. Fiorenza, and C.J. Neugebauer [2] on the boundedness of the maximal
operator in unbounded domains for exponents p(x) satisfying the logarithmic
smoothness condition both locally and at infinity.

In this paper we prove Sobolev-type theorem for the potential Iα(·) from
the space Lp(·)(Rn) into the weighted space L

q(·)
ρ (Rn) with the power weight ρ

fixed to infinity, under the logarithmic condition for p(x) satisfied locally and
at infinity, not supposing that p(x) is constant at infinity but assuming that
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1 < p(∞) ≤ p(x) ≤ P < ∞ (Theorem A). The crucial points of the proof
are the usage of the above mentioned result on maximal functions obtained
in [2] and the estimates for ‖ |x − x0|β(x0)‖Lp(·)(Rn\B(x0,r)) as r → 0 and
r →∞ obtained in [17], see Propositions 1 and 2 in Section 3.

N o t a t i o n :

χΩ(x) is the characteristic function of a set Ω in Rn;
|Ω| is the Lebesgue measure of Ω;
B(x0, r) is the ball centered at x0 and of radius r, |Bn| = |B(0, 1)|;
p(x) : Rn −→ [1,∞) is a measurable function, p0 = inf

x∈Rn
p(x), P =

sup
x∈Rn

p(x); everywhere inf and sup stand for ess inf and ess sup.

2 Statement of the main result.

By Lp(·) we denote the space of functions f(x) on Ω such that

Ap(f) =

∫

Ω

|f(x)|p(x)dx < ∞,

where p(x) is a measurable function on Rn with values in [1,∞) and

1 ≤ p0 ≤ p(x) ≤ P < ∞, x ∈ Rn. (2.1)

This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf

{
λ > 0 : Ap

(
f

λ

)
≤ 1

}
(2.2)

(see e.g. [15]).
We assume that the exponent p(x) satisfies the condition

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Rn; (2.3)

we shall also use the assumption, introduced in [18], Definitions 3.2-3.3, that
there exists p(∞) = lim

|x|→∞
p(x) and

|p(x)− p(∞)| ≤ A∞
ln(e + |x|) , x ∈ Rn. (2.4)
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Note that (2.4) is equivalent to the condition

|p(x)− p(y)| ≤ C

ln[e + min(|x|, |y|)] (2.5)

introduced by D. Cruz-Uribe, A. Fiorenza and C.J.Neugebauer [2] to treat
the maximal functions in spaces with variable exponent on Rn.

Condition (2.4) is obviously fulfilled for functions p(x) satisfying the
Hölder condition at infinity:

|p(x)− p(∞)| ≤ C

(1 + |x|)λ
, 0 < λ ≤ 1, x ∈ Rn. (2.6)

The order α(x) of the Riesz potential operator is not supposed to be
continuous. We assume that it is a measurable function on Rn satisfying the
following assumptions

α0 := inf
x∈Rn

α(x) > 0, (2.7)

and
sup
x∈Rn

p(x)α(x) < n, sup
x∈Rn

p(∞)α(x) < n. (2.8)

Theorem A. Let assumptions (2.3), (2.4), (2.7) and (2.8) be satisfied
and let

1 < p(∞) ≤ p(x) ≤ P < ∞. (2.9)

Then the following weighted Sobolev-type estimate is valid for the operator
Iα(·): ∥∥(1 + |x|)−γ(x)Iα(·)f

∥∥
Lq(·)(Rn)

≤ c ‖f‖Lp(·)(Rn) (2.10)

where
1

q(x)
=

1

p(x)
− α(x)

n
(2.11)

is the Sobolev exponent and

γ(x) = A∞α(x)

[
1− α(x)

n

]
≤ n

4
A∞, (2.12)

A∞ being the Dini-Lipschitz constant from (2.4).
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Corollary. Under the assumptions of Theorem A, estimate (2.11) is
valid also for the fractional maximal operator

Mα(·)f(x) = sup
r>0

1

|B(x, r)|n−α(x)

∫

B(x,r)

|f(y)| dy.

Remark. 1. If α(x) satisfies the condition of type (2.4): |α(x)−α(∞)| ≤
C

ln(e+|x|) , x ∈ Rn, then the weight (1 + |x|)−γ(x) is equivalent to the weight

(1 + |x|)−γ(∞).
2. One can also treat operator (1.1) with α(x) replaced by α(y). In the

case of potentials over bounded domains Ω such potentials differ unessen-
tially, if the function α(x) satisfies the smoothness logarithmic condition as
in (2.3), since

c1|x− y|n−α(y) ≤ |x− y|n−α(x) ≤ c2|x− y|n−α(y)

in this case, see [17], p.277.

3 Preliminaries

3.1 Estimates of Lp(·)-norms of powers of distance trun-
cated to exterior of a ball.

In this subsection we reproduce some results from [18]-[17] with slight mod-
ifications.

Let β(x) be a function on Rn and x0 ∈ Rn and consider

µβ = µβ(x0, r) = ‖ |x− x0|β(x0)‖Lp(·)(Rn\B(x0,r)) (3.1)

so that ∫

|y|≥r

( |y|β(x0)

µβ

)p(x0+y)

dy = 1 (3.2)

by the definition of the norm in (2.2).

Lemma 3.1. The function µβ(x0, r) is decreasing in r. If conditions
(2.1), (2.3) are satisfied and n + β(x0)p(x0) ≤ 0, then limr→0 µβ(x0, r) = ∞.
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Proof. The proof is straightforward. 2

In [17]-[18] the estimation of µβ(x0, r) as r → 0 and r →∞ was obtained
under the following assumptions

B := sup
x∈Rn

|β(x)| < ∞, (3.3)

−d1 := sup
x∈Rn

[n + β(x)p(x)] < 0, (3.4)

−d2 := sup
x∈Rn

[n + β(x)p(∞)] < 0. (3.5)

a). The ”norming” value r0. To reproduce the estimates for µβ(x0, r)
and distinguish between ”small” values 0 < r < r0 and ”large” values of
r > r0, we need the number

r0 = r0(x0) for which µβ(x0, r0) = 1.

This number is the root of the equation

∫

|x|>r0

|x|β(x0)p(x+x0) dx = 1;

a positive root of this equation certainly exists for p(x) satisfying (2.3), if

n + β(x0)p(x0) ≤ 0, n + β(x0)p(∞) < 0,

see [17], Lemma 1.3.

Lemma 3.2. ([17], Lemmas 1.4 and 1.5). The number r0 as func-
tion of x0 is bounded from above and below:

0 < c1 ≤ r0(x0) ≤ c2 < ∞ (3.6)

where c1 and c2 are constants not depending on x0, if assumptions (2.1),
(2.3), (3.3)-(3.5) are satisfied and there exists the limit p(∞) = lim

|x|→∞
p(x).

b). Estimates for µβ(x0, r) as r → 0 and r →∞. In [17] the following
statements were proved.
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PROPOSITION 1 (an estimate as r → 0, [17], Th.1.8). Let p(x) and
β(x) satisfy assumptions (2.1), (2.3) and (3.3)-(3.5). Then

‖ |x− x0|β(x0)‖Lp(·)(Rn\B(x0,r)) ≤ Cr
β(x0)+ n

p(x0) , 0 < r ≤ r0, (3.7)

where C > 0 does not depend on r and x0.

PROPOSITION 2 (an estimate as r → ∞, [17], Th.1.10). Let p(x)
and β(x) satisfy assumptions (2.1), (2.3) and (3.3)-(3.5). Then

C1

K(x0)
rβ(x0)+ n

p(∞) ≤ ‖ |x− x0|β(x0)‖Lp(·)(Rn\B(x0,r)) ≤ C2K(x0)r
β(x0)+ n

p(∞) ,

(3.8)

for large r

(
r ≥ max

{
2

1
n , 1

|Bn| 1n
, r0

})
, where C1 and C2 do not depend on

r and x0, while

K(x0) = (1 + |x0|)
A∞|β(x0)|

p(∞) ,

A∞ being the Dini-Lipschitz constant from (2.4); in the case where p(x) ≥
p(∞) one may take K(x0) ≡ 1 in (3.8).

We shall prove Proposition 2 in the next section, since in [17] it was
proved with the worse exponent for the factor K(x0).

Lemma 3.3. Under the assumptions of Lemma 3.2, there exist absolute
constants 0 < c1 < c2 < ∞ not dependent on x0 such that

µβ(x0, r) ≤ 1 for r ≥ c2 (3.9)

and
µβ(x0, r) ≥ 1 for r ≤ c1 (3.10)

uniformly in x0, and µβ(x0, r) is uniformly bounded from above and below for
c1 ≤ r ≤ c2:

0 < m1 ≤ µβ(x0, r) ≤ m2 < ∞ for c1 ≤ r ≤ c2 (3.11)

with m1 and m2 not depending on x0.

Proof. Statements (3.9)- (3.10) follow immediately from (3.6) with the
same constants c1 and c2. The bounds (3.11) are obtained from (3.2) by easy
estimations. 2
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Corollary (to Propositions 1 and 2). Let p(x) and β(x) satisfy assump-
tions (2.1), (2.3) and (3.3)-(3.5). Then

‖ |x− x0|β(x0)‖Lp(·)(Rn\B(x0,r)) ≤ Cr
β(x0)+ n

p(x0) , 0 < r ≤ 1, (3.12)

and

‖ |x− x0|β(x0)‖Lp(·)(Rn\B(x0,r)) ≤ CK(x0)r
β(x0)+ n

p(∞) , r ≥ 1, (3.13)

where C > 0 is an absolute constant nor depending on r and x0. The estimate
(3.12) is valid for all 0 < r < ∞, if p(x) ≤ p(∞), x ∈ Rn.

Proof. Corollary follows directly from Propositions 1 and 2 in view of
Lemma 3.2. 2

3.2 Boundedness of the maximal operator in Lp(·)(Rn).

The boundedness of the maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|f(y)| dy, (3.14)

was proved by L.Diening [3] and [5] for bounded domains, and also for Rn

but in the case when p(x) is constant at infinity (that is, outside some large
ball). Recently, D. Cruz-Uribe, A. Fiorenza and C.J.Neugebauer [2] proved
the boundedness of the maximal operator in Lp(·)(Rn) under condition (2.4)
on the behaviour of p(x) at infinity. We shall use that result which runs as
follows.

PROPOSITION 3 (boundedness of the maximal operator, [2], Th.1.4).
Let Ω be an arbitrary open set in Rn and let p : Ω −→ [1,∞) satisfy the con-
dition 1 < p0 ≤ p(x) ≤ P < ∞, x ∈ Ω and conditions (2.3) and (2.4) on
Ω. Then the maximal operator M is bounded on Lp(·)(Ω).

4 Proof of the main result

a). A rough estimate of µβ(x0, r) from below.

8



We make use of the following rough estimate of µβ = µβ(x0, r) from below:

µβ(x0, r) ≥ 2−
B
n rβ(x0) for r ≥ |Bn|− 1

n , (4.1)

(see [17], Lemma 1.9). Its proof is straightforwardly derived from (3.2):

1 ≥
∫

r<|y|<µ
1
β
β

( |y|β(x0)

µβ

)p(x0+y)

dy ≥
∫

r<|y|<µ
1
β
β

dy = |Bn|
(
µ

n
β

β − rn
)

from which (4.1) easily follows (in the above estimates we assumed that
µβ ≤ rβ, since in the contrary case there is nothing to prove).

b). Proof of Proposition 2. We rewrite relation (3.2) as

∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

ωr(y, x0) dy = 1, (4.2)

where

ωr(y, x0) = ωr(y, x0) =

( |y|β(x0)

µβ

)p(x0+y)−p(∞)

.

To derive estimates (3.8) from (4.2), we need the following lemma.

Lemma 4.1. Let p(x) : Rn −→ [1,∞) and β(x) : Rn −→ R1 be bounded
functions satisfying conditions (2.1), (2.3), (2.4), and (3.3-(3.5). Then

1

c
(1 + |x0|)−A∞|β(x0)| ≤ ωr(y, x0) ≤ c(1 + |x0|)A∞|β(x0)|, x0 ∈ Rn (4.3)

for all r ≥ max

(
c2,

1

|Bn| 1n

)
, where c > 0 does not depend on r and x0.

Proof. We have

ωr(y, x0) ≤ 2
B(P−p0)

n

(
|y|β(x0)

2
B
n µβ

)p(y+x0)−p(∞)

where |y|β(x0)

2
B
n µβ

≤ 1 by (4.1). Therefore,

ln ωr(y, x0) ≤ ln C + [p(y + x0)− p(∞)] · ln
(
|y|β(x0)

2
B
n µβ

)
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= ln C + |p(y + x0)− p(∞)| · ln 2
B
n µβ

|y|β(x0)

with C = 2
B(P−p0)

n . Since β(x0) < 0 by (3.5), we have

ln ωr(y, x0) ≤ ln C + |p(y + x0)− p(∞)|
[
B

n
ln 2 + |β(x0)|ln |y|+ ln µβ

]
.

We observe that µβ ≤ 1 for r ≥ c2 by Lemma 3.3. Consequently,

ln ωr(y, x0) ≤ ln C1 + |p(y + x0)− p(∞)| · |β(x0)| · ln |y|.
Making use of (2.4), we obtain

ln ωr(y, x0) ≤ ln C1 + A∞|β(x0)| ln |y|
ln(e + |y + x0|) . (4.4)

The inequality

ln |y|
ln(e + |y + x0|) ≤ ln (e + |x0|), x0, y ∈ Rn (4.5)

is valid. Indeed ln |y|
ln(e+|y+x0|) ≤

ln (|x0|+|x0+y|)
ln(e+|y+x0|) and, to obtain (4.5), it remains to

note that the maximum of the function g(t) = ln (t+|x0|)
ln (t+e)

, t ≥ 0, is reached at

the point t = 0 when |x0| ≥ e and at the point t = ∞ when |x0| ≤ e. Then
from (4.4) the right-hand side inequality in (4.3) follows. The left-hands side
inequality is proved in a similar way. 2

To prove now estimates (3.8), we observe that from (4.2) and (4.3) it
follows that

1

c
(1 + |x0|)−A∞|β(x0)|

∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

dy ≤ 1 (4.6)

and

1 ≤ c(1 + |x0|)A∞|β(x0)|
∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

dy. (4.7)

Evidently,

∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

dy =
c1

µ
p(∞)
β

rβ(x0)p(∞)+n

|β(x0)p(∞) + n|
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where c1 is an absolute constant. Then from (4.6) and (4.7), we obtain
estimates (3.8) for µβ = ‖ |x− x0|β(x0)‖Lp(·)(Rn\B(x0,r)).

c) Proof of Theorem A. We use the well known approach to re-
duce the boundedness of the Riesz potential to that of the maximal op-
erator which requires an information about the behaviour of the norms
‖ |x − x0|β(x0)‖Lp(·)(Rn\B(x0,r)) as r → 0 and r → ∞. This information is
provided by Propositions 1 and 2.

We have

Iα(·)f(x) =

∫

|x−y|≤r

f(y) dy

|x− y|n−α(x)
+

∫

|x−y|≥r

f(y) dy

|x− y|n−α(x)
:= Ar(x) + Br(x).

(4.8)
We make use of the inequality

|Ar(x)| ≤ 2nrα(x)

2α(x) − 1
Mf(x) (4.9)

which is known in case of α(x) = const (see for instance, [1], p. 54) and
remains valid in case it is variable.

By (4.9) and (2.7) we have

|Ar(x)| ≤ crα(x)Mf(x) (4.10)

with some absolute constant c > 0 not depending on x and r.
We assume that ‖f‖p(·) ≤ 1 . Applying the Hölder inequality for the

Lp(·)-spaces
∣∣∣∣
∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ k‖u‖p‖v‖p′ , p′ =
p

p− 1
(4.11)

in the integral Br(x), we obtain

|Br(x)| ≤ kµβ(x, r)‖f‖p(y) ≤ µβ(x, r) (4.12)

where

µβ(x, r) =
∥∥|x− y|β(x)χ

∥∥
s(y)

,
1

s(x)
+

1

p(x)
= 1. (4.13)

and χ is the characteristic function of {y ∈ Rn : |x − y| > r} and β(x) =
α(x)−n. We make use of Corollary to Propositions 1 and 2, which is possible
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since the assumptions of that Corollary with β(x) = α(x) are satisfied by
conditions of Theorem A. Applying that Corollary with p(x) replaced by
s(x), we obtain

|Br(x)| ≤ c3K(x)r−
n

q(x) , x ∈ Rn, (4.14)

with
K(x) = (1 + |x|) [n−α(x)]A∞

p(∞) (4.15)

and c3 not depending on r and x. Then from (4.8), (4.10) and (4.14), we
have

∣∣Iα(·)f(x)
∣∣ ≤ c4

[
rα(x)Mf(x) + K(x)r−

n
q(x)

]
, 0 < r < ∞, x ∈ Rn. (4.16)

Minimizing the right-hand side with respect to r we see that its minimum
is reached at

rmin =

[
α(x)q(x)

nK(x)
Mf(x)

]− p(x)
n

and easy evaluations yield

∣∣Iα(·)f(x)
∣∣ ≤ c5 [K(x)]

α(x)p(x)
n [Mf(x)]

p(x)
q(x) .

Since p(x) satisfies the logarithmic condition (2.4) at infinity, we may replace

p(x) in [K(x)]
α(x)p(x)

n by p(∞). Then

∣∣Iα(x)f(x)
∣∣ ≤ c6(1+|x|)α(x)(1−α(x)

n )A∞ [Mf(x)]
p(x)
q(x) = c6(1+|x|)γ(x) [Mf(x)]

p(x)
q(x) .

Then

Aq

(
(1 + |x|)−γ(x)Iα(x)f(x)

) ≤ c6

∫

Rn

|Mf(x)|p(x) dx ≤ c7

by Proposition 3. The theorem is proved.

Proof of Corollary to Theorem A. The statement of the corollary
follows from the pointwise estimate

Mα(·)f(x) ≤ cIα(x)|f |(x) (4.17)
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where c does not depend on f and x. To prove (4.17), we observe that for
any x ∈ Rn there exists an r = rx such that

Mα(·)f(x) ≤ 2

|B(x, rx)|n−α(x)

∫

B(x,rx)

|f(y)| dy

and on the other hand

Iα(x)f(x) ≥
∫

B(x,rx)

f(y) dy

|x− y|n−α(x)
≥ c

|B(x, rx)|n−α(x)

∫

B(x,rx)

|f(y)| dy.
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