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Abstract
We introduce a new Banach function space - a Lorentz type space with variable expo-
nent. In this space the boundedness of singular integral and potential type operators is
established, including the weighted case. The variable exponent p(t) is assumed to satisfy
the logarithmic Dini condition and the exponent β of the power weight ω(t) = |t|β is re-
lated only to the value p(0). The mapping properties of Cauchy singular integrals defined
on Lyapunov curves and on curves of bounded rotation are also investigated within the
framework of the introduced spaces.
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1 Introduction

In the last decade the generalized Lebesgue spaces Lp(·)(Ω) and the related
Sobolev type spaces Wm,p(x)(Rn) attracted much attention, we refer to Shara-
pudinov [26] (1979), [27] (1996), Kováćık , Rákosńık [19] (1991), Edmunds,
Rákosňik [10] (1992), Samko [24]-[23] (1998), [25] (1999), Edmunds, Lang,
Nekvinda [9] (1999), which obviously grows at present, see for example, the
recent investigations Cruz, Fiorenza, Neugebauer [3] (2002), Diening [5] - [6]
(2002), Diening, Růžička [7] (2002), Edmunds, Nekvinda [8] (2002), Fiorenza
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[11](2002), Kokilashvili, Samko [15] - [17] (2002), and references therein. In-
vestigations in this topic are strongly stimulated by applications in various
problems related to objects with non-standard local growth in which growth
conditions of variable order arise (in elasticity theory, fluid mechanics, dif-
ferential equations, see for example Růžička [22], [7] and references therein).
The spaces Lp(·)(Ω) and Wm,p(x)(Rn) proved to be an appropriate tool appli-
cable in this area.

The theory of the spaces Lp(·)(Ω) nowadays is quickly developed. After
the first disappointment caused by some undesirable properties (functions
from these spaces are not p(x)-mean continuous, the space Lp(·)(Ω) is not
translation invariant, convolution operators in general do not behave well
and so on) a rapid progress followed for continuous exponents p(x) satisfy-
ing the logarithmic Dini condition. We mention in particular the result on
denseness of C∞

0 -functions in the Sobolev space Wm,p(x)(Rn), see [25], and
the breakthrough connected with the study of maximal operators, see [5], [6].

Because of applications, a reconsideration of the main theorems of har-
monic analysis is actual, with the aim to find new proofs of those theo-
rems which remain valid for variable exponents, or to find their substituting
analogs. Among the challenging problems there were: the Sobolev type
theorem on boundedness of the Riesz potential operator Iα from Lp(·) into
Lq(·), 1

q(x)
= 1

p(x)
− α

n
and the boundedness in Lp(·) of singular integral oper-

ators. Boundedness of Iα (Sobolev type theorem) for bounded domains was
proved in [23] conditionally, under the assumption that the maximal oper-
ator is bounded in the spaces Lp(·), which turns to be unconditional after
the result of [5] - [6] on maximal operators (we refer also to [3] for maximal
operators on unbounded domains).

Singular operators within the framework of the spaces with variable ex-
ponents were treated in [18], [17] and [7].

We introduce a new form of spaces with variable exponents for which
the problem of boundedness of singular type integral operators may be re-
solved positively in a natural way, including the case of weighted spaces with
variable exponents. We consider the Calderon -Zygmund operators, singu-
lar operators with the Cauchy kernel along Lyapunov curves or curves of
bounded variation in the complex plane, the Riesz potential operator and
the Poisson integral and its conjugates. The main statements are given in
Theorems 3.1-3.5, 4.1-4.4.
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2 On Some Banach Function Spaces

Let (Ω, µ) be a measure space and M(Ω, µ) a space of measurable functions
on Ω.

Definition 1 A normed linear space X = (X(Ω, µ), ‖ ‖X) is called a
Banach function space, if the following conditions are satisfied:

i) the norm ‖f‖X is defined for all f ∈ M(Ω, µ);
ii) ‖f‖X = 0 if and only if f(x) = 0 µ-a.e. on Ω;
iii) ‖f‖X =

∥∥|f |
∥∥

X
for all f ∈ X;

iv) for every Q ⊂ Ω with µQ < ∞ we have ‖χQ‖X < ∞;
v) if fn ∈ M(Ω, µ), n = 1, 2, . . . and fn ↗ f µ-a.e. on Ω, then

‖fn‖X ↗ ‖f‖X ;

vi) if f , g ∈ M(Ω, µ) and 0 ≤ f(x) ≤ g(x) µ-a.e. on Ω, then

‖f‖X ≤ ‖g‖X ;

vii) given Q ⊂ Ω with µQ < ∞, there exists a constant cQ such that for
all f ∈ X, ∫

Q

|f(x)|dµ ≤ cQ‖f‖X .

Every Banach function space is a Banach space. For definition and fun-
damental properties of Banach function space we refer to [2].

We shall deal with some special Banach function space.
Let Ω be a bounded open subset of Rn and p(x) a measurable function

on Ω such that
1 < p0 ≤ p(x) ≤ P < ∞, x ∈ Ω (1.1)

and

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω. (1.2)

By Lp(·)(Ω) we denote the space of measurable functions f(x) on Ω such
that

Ap(f) =

∫

Ω

|f(x)|p(x)dx < ∞.

This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf{λ > 0 : Ap(f/λ) ≤ 1}
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(see e.g. [9]). We denote
1

q(x)
= 1− 1

p(x)
.

The following integral transforms will be treated:
a) the potential operator

Iα(x)f(x) =

∫

Ω

f(y)

|x− y|n−α(x)
dx, 0 < α(x) < n,

b) the weighted potential operator

I
α(x)
β f(x) = |x− x0|β

∫

Ω

f(y)

|y − x0|β|x− y|n−α(x)
dy, x0 ∈ Ω

and
c) the Hardy-type operator

Hβf(x) = xβ−1

∫ x

0

f(t)

tβ
dt, Hβ

∗ f(x) = xβ

∫ l

x

f(t)

tβ+1
dt,

where 0 < ` < ∞.
In [16] (see also [15], [14] ) the following theorems were proved:

Theorem I . Under assumptions (1.1), (1.2) and the conditions

inf
x∈Ω

α(x) > 0 and sup
x∈Ω

α(x)p(x) < n, (1.3)

the potential operator Iα(·) is bounded from Lp(·)(Ω) into Lr(·)(Ω) with 1
r(x)

=
1

p(x)
− α(x)

n
.

Theorem II . If the assumptions (1.1) − (1.2) and the condition
inf
x∈Ω

α(x) > 0 are satisfied, then the operator Iα(·) is compact in Lp(·)(Ω).

Theorem III . Under assumptions (1.1), (1.2) and the condition inf
x∈Ω

α(x)> 0,

the operator I
α(·)
β is bounded in Lp(·)(Ω) if

− n

p(x0)
< β <

n

q(x0)
. (1.4)
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Theorem IV . Let 1 ≤ p(x) ≤ P < ∞ for x ∈ [0, `].
I. Let the conditions (1.1), (1.2) be satisfied on a neighbourhood [0, d] of the

origin, d > 0. Then the operators Hβ and Hβ
∗ are bounded from Lp(·)(Ω) into

Ls(·)(Ω) with any s(x) such that 1 ≤ s(x) ≤ S < ∞ for some S, 0 ≤ x ≤ `,
and

s(0) = p(0) and |s(x)− p(x)| ≤ A

ln 1
x

, 0 < x ≤ δ, 0 < δ < 1, (1.5)

if

− 1

p(0)
< β <

1

q(0)
. (1.6)

II. If p(0) ≤ p(x), 0 ≤ x ≤ d, for some d > 0, then the same statement on
boundedness from Lp(·)(Ω) into Ls(·)(Ω) is true if the requirement of validity
of conditions (2.1), (2.2) on [0, d] is replaced by the weaker assumption

p(0) > 1 and |p(x)− p(0)| < A

ln 1
x

, 0 < x < min
(
`, 1/2

)
. (1.7)

Observe that Theorem IV provides norm estimates for Hardy operators
in spaces with variable exponent. In [28] there was proved a natural fact that
the modular inequality for the Hardy operator (and more generally for some
integral operators) is impossible in the case of variable exponents, see [28],
Theorem 2.2.

On the base of Lp(·) we introduce now some new Banach function spaces.
By

f ∗(t) = sup{s ≥ 0 : m{x ∈ Ω : |f(x)| > s} > t}
we denote the non-increasing rearrangement of a function f , m denoting the
Lebesgue measure. It is clear that f ∗(t) = 0 for t > mΩ, since mΩ < ∞.

Let the function p(t) satisfy condition (1.1) for t ∈ [0,mΩ]. In the follow-
ing definition we use the notation

f ∗∗(t) =
1

t

∫ t

0

f ∗(y)dy, f ∗(t) ≤ f ∗∗(t).

Definition 2 The subset of all functions of M(Ω,m) for which

‖f‖Λp(·) = ‖f ∗∗‖Lp(·) < ∞ (1.8)

is called the space Λp(·).
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According to Theorem IV we conclude that there exists a constant c > 0
such that

‖f ∗‖Lp(·) ≤ ‖f ∗∗‖Lp(·) ≤ c‖f ∗‖Lp(·) . (1.9)

Note that ‖f ∗∗‖Lp(·) is a norm. The triangle inequality follows from the
inequality

(f + g)∗∗(t) ≤ f ∗∗(t) + g∗∗(t).

(See e.g. [12], Section 2).

Proposition 1 Λp(·) is a Banach function space.

Proof. Most of requirements of Definition 1 follow directly from properties
of non-increasing rearrangements of functions and properties of the space
Lp(·).

For example, iv) is valid since for 0 ≤ fn ↗ f we have f ∗n ↗ f ∗ (see e.g.
[29], Lemma 3.5, Chapter 5). Then

‖f ∗n‖Lp(·) ↗ ‖f ∗‖Lp(·)

by the property of Lp(·).
Applying the Hölder inequality for Lp(·), we get

∫

Q

|f(x)|dm =

∫ mQ

0

f ∗(t)dt ≤ ‖f ∗‖Lp(·)‖1‖Lq(·) ≤ cQ‖f‖Λp(·) .

¤
Let w(t) be a nonnegative function defined on [0,mΩ] such that

‖w−1‖q(·) < ∞.

Definition 3 The subset of all functions in M(Ω,m) for which

‖f‖
Λ

p(·)
w

= ‖wf ∗∗‖Lp(·) < ∞ (1.10)

is called the space Λ
p(·)
w .

If w(t) = tβ, − 1
p(0)

< β < 1
q(0)

, then from Theorem IV it follows that

‖f‖
Λ

p(·)
w
≈ ‖f ∗w‖Λp(·) .

The space Λ
p(·)
w is a Banach space. The proof is similar as above.

In the sequel for w(t) = tβ we put ‖ · ‖
Λ

p(·)
w

= ‖ · ‖
Λ

p(·)
β

.
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3 Integral Transforms in Rn

We begin with the mapping properties of singular operators

Kf(x) = V.P.

∫

Rn

k(y)

|y|n f(x− y) dy, x ∈ Ω,

in Λp(·), where k is an odd function on Rn homogeneous of degree 0 and
satisfying the Dini condition on the unit sphere Sn−1 on Rn

∫ 2

0

ω(δ)

δ
dδ < ∞, where ω(δ) = sup

x,y∈Sn−1,|x−y|≤δ

|k(x)− k(y)|.

As particular cases one may mention the Hilbert transform (n = 1,
k(x) = x

|x|) and the Riesz transforms (n ≥ 2, k(x) =
xj

|x| , j = 1, . . . , n).

Theorem 3.1 Let 1 ≤ p(t) < P < ∞ for t ∈ [0,mΩ]. Let the conditions

1 < p0 ≤ p(t) < P < ∞
and

|p(t1)− p(t2)| ≤ A

ln 1
|t1−t2|

, |t1 − t2| ≤ 1

2

be satisfied in a neighbourhood [0, d] of the origin, d > 0. Then K is bounded
in Λp(·).

Proof. As it is known (see [1])

(Kf)∗(t) ≤ c

(
1

t

∫ t

0

f ∗(y)dy +

∫ mΩ

t

f ∗(y)

y
dy

)
, t > 0. (2.1)

Applying Theorem IV, we obtain the boundedness of K in Lp(·). ¤

Theorem 3.2 Let p(t) satisfy the conditions of Theorem 2.1. Suppose
that

− 1

p(0)
< β <

1

q(0)
. (2.2)

Then the inequality
‖Kf‖p

Λβ
(·) ≤ c‖f‖

Λ
p(·)
β

holds with the constant c not depending on f .
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Proof. Applying (2.1) we obtain

(Kf)∗(t)tβ ≤ c

(
tβ−1

∫ t

0

f ∗(y) dy + tβ
∫ mΩ

t

f ∗(y)

y
dy

)
=

= c

(
tβ−1

∫ t

0

f ∗(y)yβ

yβ
dy + tβ

∫ mΩ

t

f ∗(y)yβ

yβ+1
dy

)
.

Now from Theorem IV it follows that

‖(Kf)∗tβ‖Lp(·) ≤ c‖f ∗ · yβ‖Lp(·) . ¤

From Theorem 2.2, for the Riesz transforms

Rjf(x) = V.P.

∫

Ω

xj − yj

|x− y|n+1
f(y)dy, j = 1, 2, . . . , n,

we have the following corollary.

Corollary 3.1 Let p be as in Theorem 2.1. Then the operators Rj (j =

1, . . . , n) are bounded in Λ
p(·)
β under condition (2.2).

In the sequel we discuss the boundedness in Λp(·) of Riesz potentials and
give an application to imbedding of certain spaces of differentiable functions.

The next theorem deals with the Riesz potential operator

Iαf(x) =

∫

Ω

f(y)

|x− y|n−α
dy, x ∈ Ω, 0 < α < n.

Theorem 3.3 Let p(t) satisfy the assumptions of Theorem 2.2 and s(x)
be a measurable function on [0,mΩ] such that 1 ≤ s(x) < S < ∞ for all
x ∈ [0,mΩ] and

s(0) = p(0) and |s(x)− p(x)| ≤ A

ln 1
|x|

, 0 < x < δ, δ > 0.

Then Iα is bounded from Lp(·) into Ls(·). Moreover, if

− 1

p(0)
< β <

1

p(0)
,

then the inequality
‖tβIα‖Λs(·) ≤ c‖tβf‖Λp(·) (2.3)

holds with the constant c not depending on f .
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Proof. We make use of the estimate for the decreasing rearrangements of Iα

(see [21]):

(Iαf)∗(t)≤c

(
t−1+α/n

∫ t

0

f ∗(y)dy+

∫ N

t

f ∗(y)y−1+α/ndy

)
=c(B1f+B2f).

Applying Theorem IV, we obtain

‖B1f‖Ls(·) =

∥∥∥∥t−1+α/n

∫ t

0

f ∗(y)yα/n

yα/n
dy

∥∥∥∥
Ls(·)

≤

≤ c‖f ∗(y)yα/n‖Lp(·) ≤ c‖f ∗‖Lp(·) = c1‖f‖Λp(·)

since 0 < t < mΩ and 0 < α < n.
Similarly, according to the same theorem we have

‖B2f‖Ls(·) = ‖
∫ N

t

f ∗(y)y−1+α/ndy‖ ≤

≤ c‖f ∗(y)yα/n‖Lp(·) ≤ c1‖f ∗‖Lp(·) = c2‖f‖Λp(·) . ¤

For a multi-index of nonnegative integers K = (k1, k2, . . . , kn), let DK =
∂|K|

∂
k1
1 ...∂kn

n

, |K| = k1 + k2 + . . . + kn.

Theorem 3.4 Let n ≥ 2 and let k = |K| be any positive integer smaller
than n. Suppose that p(x) and s(x) satisfy the assumptions of Theorem 2.1.
Then

i) there exists a positive constant c such that

‖u‖Λs(·) ≤ c‖DKu‖Λp(·) (2.4)

for all real-valued functions u on Ω where the continuation by zero beyond Ω
has weak derivatives up to the order k over Rn.

(ii) If Ω is convex, then a positive constant c exists such that

inf
Q∈Qk−1

‖f −Q‖Λs(·) ≤ c‖DKu‖Λp(·) (2.5)

for all real valued functions u on Ω which have weak derivatives up to the
order k in Ω. Here Qk−1 denotes the set of all polynomials Q of degree
≤ k − 1.

In the case k = 1, inequality (2.5) holds with Q equal to the mean value
of u over Ω, Q = 1

mΩ

∫
Ω

u(x)dx.
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Proof. The part i). It is clear that DKu ∈ L1(Ω). Then by Theorem 1.1.
10/2 of [20] we have the estimate

|u(x)| ≤ c

∫

Ω

|DKu(y)|
|x− y|n−k

dy for x ∈ Ω. (2.6)

Applying Theorem 2.1, we arrive at the desired result.
The proof of part ii) is similar, since by Theorem 1.1. 10/1 of [9], there

exists a constant c depending only on n, k and Ω, and a polynomial Q ∈ Qk−1,
depending on u, such that

|u(x)−Q(x)| ≤ c

∫

Ω

|DKu(y)|
|x− y|n−k

dy for x ∈ Ω

provided that DKu ∈ L1(Ω). ¤
Now we pass to the mapping properties of Poisson integral and conjugate

Poisson integrals in Λ
p(·)
β spaces. We consider the Poisson integral

uf (x, y) =

∫

Ω

f(u)
y

(|x− u|2 + y2)(n+1)/2
du, x, y ∈ Ω

and the system of conjugate Poisson integrals

vj
f (x, y) =

∫

Ω

f(u)
xj − yj

(|x− u|2 + y2)(n+1)/2
du, x, y ∈ Ω j = 1, 2, . . . , n.

Since mΩ < ∞, for f ∈ Lp(·)(Ω) we have f ∈ Lp0(Ω). Thus we conclude
that

Tf(x) = sup
y>0

|uf (x, y)| ≤ cMf(x) (2.7)

and
vj

f (x, y) = uRj
(x, y) (2.8)

(see [29], Chapters 6 and 2).
From (2.7), by the known estimate (see [1]) we have

(sup
y
|uf (x, y)|)∗(t) ≤ c(Mf)∗(t) ≤ c11/t

∫ t

0

f ∗(y)dy. (2.9)

By means of Theorem IV we derive the following result.
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Theorem 3.5 Let p(t) and β satisfy the conditions of Theorem I. Then

T is bounded in Λ
p(·)
β .

Now consider the operator

T̃jf(x) = sup
y
|vj

f (x, y)|.

By inequality (2.9) we have

(T̃jf)∗(t) ≤ c1/t

∫ t

0

f ∗(y) dy.

Thus
‖T̃jf‖Λ

p(·)
β
≤ c‖Rj‖Λ

p(·)
β

. (2.10)

Basing on (2.10) and Corollary 1 we obtain the following result.

Theorem 3.6 Let a function p(t) and a number β satisfy the assumptions

of Theorem 2.1. Then the operators T̃j are bounded in Λ
p(·)
β .

Remark 1 Applying the results of [5] and using the idea which was devel-
oped above, we can deduce that the theorems of this section are also valid in
Rn if a function p(t) is assumed to satisfy the local logarithmic Dini condition
and in addition is constant outside some large interval (0, t0), i.e. p(t) = p,
t > t0. For the power weight we assume that

max

(
−1

p
,− 1

p(0)

)
< β < min

(
1

q
,

1

q(0)

)
,

where q = p
p−1

.

4 Cauchy Singular Integrals on Lyapunov

Curves and Curves of Bounded Rotation

In this section we deal with the Cauchy singular integral

SΓf(t) =

∫

Γ

f(τ)

τ − t
dτ, t = t(s), 0 ≤ s ≤ `,
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where Γ is a finite rectifiable Jordan curve on which the arc-length is chosen
as a parameter, starting from any fixed point.

Γ is called Lyapunov curve if t′(s) ∈ Lip α, 0 < α ≤ 1. When t′(s) is a
function of bounded variation, Γ is called a curve of bounded rotation.

Our goal is to study the mapping properties of SΓ when Γ is a Lyapunov
curve or a curve of bounded rotation without cusps.

We assume the function p(s) to be defined on [0, l]. The function f(t(s))
will be denoted by f0(s).

Theorem 4.1 Let Γ be a Lyapunov curve. The operator SΓ is bounded in
Λp(s) if

1 < p0 ≤ p(s) ≤ P < ∞ for s ∈ [0, l]

and the condition

|p(s1)− p(s2)| ≤ A

ln 1
|s1−s2|

is satisfied in a neighbourhood of the origin.

Proof. In the case of Lyapunov curve the following estimate

(SΓf)(t(σ)) ≤
(∣∣∣∣

∫ l

0

f0(s)

σ − s
ds

∣∣∣∣ +

∫ l

0

|f0(s)|
|s− σ|1−α

ds

)
(3.1)

holds with α ∈ (0, 1) (see e.g. [13]). Applying Theorems 2.1 and 2.3, we
obtain the boundedness of SΓ in Λp(·). ¤

Theorem 4.2 Let Γ be a curve of bounded rotation without cusps. Let
p(s) satisfy the condition of Theorem 2.1 with m denoting the arc-length
measure on Γ. Then the operator SΓ is bounded in Λp(s).

Proof. We have

SΓf(t(s)) =

∫ l

0

f0(σ)

σ − s
dσ +

∫ l

0

(
t′(σ)dσ

t(σ)− t(s)
− 1

σ − s

)
f0(σ) dσ (3.2)

As t′(s) is a function of bounded variation, we have

|t′(s)− t′(σ)| ≤ |V (s)− V (σ)|,

where V (s) is the total variation of t′ on [0, l].
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Let

Tf(t(s)) =

∫ l

0

h(σ, s)f0(σ) dσ,

where

h(σ, s) =
t′(σ)

t(σ)− t(s)
− 1

σ − s
.

Since Γ is a curve of bounded rotation without cusps, it satisfies the arc-chord
condition, i.e.

0 < c1 <
∣∣∣t(s)− t(σ)

s− σ

∣∣∣.
Therefore, we can derive the estimate

|h(σ, s)| ≤
∣∣∣ t′(σ)

t(σ)− t(s)
− 1

σ − s

∣∣∣ ≤ c

(s− σ)2

∣∣∣∣
∫ σ

s

|t′(s)− t′(u)| du

∣∣∣∣ ≤

≤ c

(s− σ)2

∣∣∣∣
∫ s

σ

|v(s)− v(u)| du

∣∣∣∣ ≤ c(s− σ)−1(V (s)− V (σ)).

Thus

|Tf(t(s))| ≤ c

∫ l

0

V (s)− V (σ)

s− σ
f0(σ) dσ ≤

≤ c

(
V (s)

∣∣∣∣
∫ l

0

f0(σ)

s− σ
dσ

∣∣∣∣ +

∣∣∣∣
∫ l

0

V (σ)f0(σ)

s− σ
dσ

∣∣∣∣
)

. (3.3)

Now from (3.1) and (3.3) and boundedness of the function V , in virtue
of Theorem 1.1 we obtain the boundedness of SΓ in Λp(s). ¤

Note that for the p(s) a constant function p(s) = p the boundedness of
SΓ on Lyapunov curve and on curve of bounded rotation without cusps was
proved in [13] and [4], respectively.

Theorem 4.3 Let Γ be a Lyapunov curve or a curve of bounded rotation
without cusps. Let

w(s) = |t(s)− t(0)|β

where

− 1

p(0)
< β <

1

q(0)
.

Then the Cauchy singular operator SΓ is bounded in Λp
w.
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Proof. As mentioned in the proof of Theorem 3.2, Γ satisfies the arc-chord
condition. Thus

w(s) ∼ sβ.

Therefore, we may follow the scheme of the proof of Theorems 3.1 and
3.2 and apply Theorems 1.2 and 2.1 to obtain the boundedness of SΓ in Λp

w.
¤

Basing on the recent results on the singular integrals from [7] and on
the proofs of Theorems 3.1 and 3.2 we conclude the validity of the following
theorem.

Theorem 4.4 Let Γ be a Lyapunov curve or a curve of bounded rotation
without cusps. If the function p(s) satisfies the conditions (1.1) and (1.2) on
Ω = [0, l], then SΓ is bounded in Lp(s).
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