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Abstract
We introduce a new Banach function space - a Lorentz type space with variable expo-
nent. In this space the boundedness of singular integral and potential type operators is
established, including the weighted case. The variable exponent p(t) is assumed to satisfy
the logarithmic Dini condition and the exponent 3 of the power weight w(t) = [t/ is re-
lated only to the value p(0). The mapping properties of Cauchy singular integrals defined
on Lyapunov curves and on curves of bounded rotation are also investigated within the

framework of the introduced spaces.
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1 Introduction

In the last decade the generalized Lebesgue spaces LP()(Q) and the related
Sobolev type spaces W™P(®) ( R™) attracted much attention, we refer to Shara-
pudinov [26] (1979), [27] (1996), Kovacik , Rékosnik [19] (1991), Edmunds,
Rékosnik [10] (1992), Samko [24]-[23] (1998), [25] (1999), Edmunds, Lang,
Nekvinda [9] (1999), which obviously grows at present, see for example, the
recent investigations Cruz, Fiorenza, Neugebauer [3] (2002), Diening [5] - [6]
(2002), Diening, Ruzicka [7] (2002), Edmunds, Nekvinda [8] (2002), Fiorenza



[11](2002), Kokilashvili, Samko [15] - [17] (2002), and references therein. In-
vestigations in this topic are strongly stimulated by applications in various
problems related to objects with non-standard local growth in which growth
conditions of variable order arise (in elasticity theory, fluid mechanics, dif-
ferential equations, see for example Ruzicka [22], [7] and references therein).
The spaces LP()(Q) and W@ (R™) proved to be an appropriate tool appli-
cable in this area.

The theory of the spaces LP()(Q) nowadays is quickly developed. After
the first disappointment caused by some undesirable properties (functions
from these spaces are not p(x)-mean continuous, the space LP()(Q) is not
translation invariant, convolution operators in general do not behave well
and so on) a rapid progress followed for continuous exponents p(z) satisfy-
ing the logarithmic Dini condition. We mention in particular the result on
denseness of Cg°-functions in the Sobolev space W™P@) (R"), see [25], and
the breakthrough connected with the study of maximal operators, see [5], [6].

Because of applications, a reconsideration of the main theorems of har-
monic analysis is actual, with the aim to find new proofs of those theo-
rems which remain valid for variable exponents, or to find their substituting
analogs. Among the challenging problems there were: the Sobolev type
theorem on boundedness of the Riesz potential operator I* from LP() into
L), ﬁ = ﬁ — 2 and the boundedness in LP0) of singular integral oper-
ators. Boundedness of I* (Sobolev type theorem) for bounded domains was
proved in [23] conditionally, under the assumption that the maximal oper-
ator is bounded in the spaces L), which turns to be unconditional after
the result of [5] - [6] on maximal operators (we refer also to [3] for maximal
operators on unbounded domains).

Singular operators within the framework of the spaces with variable ex-
ponents were treated in [18], [17] and [7].

We introduce a new form of spaces with variable exponents for which
the problem of boundedness of singular type integral operators may be re-
solved positively in a natural way, including the case of weighted spaces with
variable exponents. We consider the Calderon -Zygmund operators, singu-
lar operators with the Cauchy kernel along Lyapunov curves or curves of
bounded variation in the complex plane, the Riesz potential operator and
the Poisson integral and its conjugates. The main statements are given in
Theorems 3.1-3.5, 4.1-4.4.



2 On Some Banach Function Spaces

Let (€2, 1) be a measure space and M (£2, 1) a space of measurable functions
on §.

Definition 1 A normed linear space X = (X(Q,pn),|| ||x) is called a
Banach function space, if the following conditions are satisfied:

i) the norm || f||x is defined for all f € M(Q, u);

it) || fllx =0 if and only if f(z) =0 p-a.e. on Q;

i) | flx = ||LFll for all € X

i) for every Q C  with u@ < oo we have ||xgllx < oo;

v) if fu€ M(Q,p),n=1,2,... and f, / [ p-a.e. on ), then

[ fullx 7 NLf Nl x5
vi) if f, g€ M(Q,u) and 0 < f(x) < g(x) p-a.e. on Q, then
1fllx < llgllx;

vit) given Q@ C Q with p@Q) < oo, there exists a constant cg such that for
all f e X,

Awmws@mu

Every Banach function space is a Banach space. For definition and fun-
damental properties of Banach function space we refer to [2].

We shall deal with some special Banach function space.

Let © be a bounded open subset of R" and p(x) a measurable function

on ) such that

1<py<p(x)<P<oo, x€Q (1.1)
and
A 1 —
p@) =p)l < —— le—yl <5 zye (1.2)
lz—yl

By LP0)(2) we denote the space of measurable functions f(x) on 2 such
that

%mzémmMm<m

This is a Banach function space with respect to the norm
| fll ey = nf{A > 0: A, (f/\) <1}
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(see e.g. [9]). We denote
1 1

q() p(z)
The following integral transforms will be treated:
a) the potential operator

1@ f(z) = /Q %dw, 0 < a(z) <n,

b) the weighted potential operator

I“Df2) =z — 2 B/ /) dy, x9 € )
38 f( ) | 0| 0 |y—l’0|ﬁ|l’—y|n_a(x) Y 0

and
c¢) the Hardy-type operator

v !
Hﬁf(ﬂc)za:ﬁ‘l/O %dt, HY f(x) = 2" i {;—th,

where 0 < ¢ < o0.
In [16] (see also [15], [14] ) the following theorems were proved:

Theorem I . Under assumptions (1.1), (1.2) and the conditions

inf a(z) >0 and supa(x)p(z) < n, (1.3)
EaSY) zeQ

the potential operator I°0) is bounded from LPO)(Q) into L™ () with ﬁ =
1 a(z)

p(z) n

Theorem II . If the assumptions (1.1) — (1.2) and the condition
in(fza(az) > 0 are satisfied, then the operator I1°C) is compact in LPC)(€2).
re

Theorem III . Under assumptions (1.1), (1.2) and the condition in{f2 a(x)>0,
re
the operator [g(') is bounded in LPC)(Q) if

—M<B<M. (1.4)



Theorem IV . Let 1 < p(z) < P < oo for z € [0,/].

L. Let the conditions (1.1), (1.2) be satisfied on a neighbourhood [0, d] of the
origin, d > 0. Then the operators H? and HP are bounded from Lp(')(Q) into
LO(Q) with any s(x) such that 1 < s(z) < S < 0o for some S, 0 < x </,
and

5(0) =p(0) and |s(z) — p(z)] < lnil’ 0<zx<d, 0<d<l, (1.5)
i 1 1
—m < ﬁ < m . (16>

IL. If p(0) < p(z), 0 < x < d, for some d > 0, then the same statement on
boundedness from LPO)(Q) into L*)(Q) is true if the requirement of validity
of conditions (2.1), (2.2) on [0,d] is replaced by the weaker assumption

p(0) > 1 and [p(z) — p(0)] < mil, 0<z<min(61/2).  (17)

Observe that Theorem IV provides norm estimates for Hardy operators
in spaces with variable exponent. In [28] there was proved a natural fact that
the modular inequality for the Hardy operator (and more generally for some
integral operators) is impossible in the case of variable exponents, see [28],
Theorem 2.2.

On the base of LP() we introduce now some new Banach function spaces.
By

f5(t) =sup{s > 0:m{x € Q: |f(x)| > s} >t}

we denote the non-increasing rearrangement of a function f, m denoting the
Lebesgue measure. It is clear that f*(t) = 0 for ¢ > m{2, since mQ < oo.

Let the function p(t) satisfy condition (1.1) for ¢ € [0, m€]. In the follow-
ing definition we use the notation

=1 [ e ro<ro.
0
Definition 2 The subset of all functions of M (2, m) for which

| fllarer = 1 2oy < 00 (1.8)

is called the space APC),



According to Theorem IV we conclude that there exists a constant ¢ > 0
such that

L s < W Mpver < el f Moo (1.9)
Note that ||f**||;») is a norm. The triangle inequality follows from the
inequality
(f+9)" (1) < (1) + 97 ().
(See e.g. [12], Section 2).

Proposition 1 A?") is a Banach function space.

Proof. Most of requirements of Definition 1 follow directly from properties
of non-increasing rearrangements of functions and properties of the space
LpC)

For example, iv) is valid since for 0 < f,, /* f we have f} 7 f* (see e.g.
[29], Lemma 3.5, Chapter 5). Then

|l ooy /1] o)

by the property of LP().
Applying the Hélder inequality for LP(), we get

mQ
/Q!f(fﬂ)!dm =/ Fr@)dt < L f ] oo 1] zacr < cqll fllaser-

U
Let w(t) be a nonnegative function defined on [0, mf2] such that

Hw_1||q(.) < Q.

Definition 3 The subset of all functions in M (€2, m) for which

1Nl yper = llw ™[ oy < 00 (1.10)

is called the space APD,
If w(t) = t°, —ﬁ <p< ﬁ, then from Theorem IV it follows that

HfHAg(') ~ || fw|| arc -

The space A2V is a Banach space. The proof is similar as above.
In the sequel for w(t) = t* we put || - || o) = || - || ot
w s
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3 Integral Transforms in R"

We begin with the mapping properties of singular operators

Kf(a:):V.P./n% (x —y) dy, x€Q,

in AP0), where k is an odd function on R™ homogeneous of degree 0 and
satisfying the Dini condition on the unit sphere S"~! on R"

w(o)
—2 dd < oo, where w(d) = sup |k(z) — E(y)|.
0 d z,yeSn—1 |z—y|<§
As particular cases one may mention the Hilbert transform (n = 1,
k(x) = rz7) and the Riesz transforms (n>2, k(z)= %, j=1,...,n).
Theorem 3.1 Let 1 < p(t) < P < oo fort € [0,mS]. Let the conditions
1 <po<p(t)<P<x

and

A 1
Ip(t1) — p(t2)] < —, |-t <<
[t1—t2] 2
be satisfied in a neighbourhood [0, d] of the origin, d > 0. Then K is bounded
in AP,

Proof. As it is known (see [1])

. L "y
wro ey [ rowe [T EPa) 0 e
0 t
Applying Theorem IV, we obtain the boundedness of K in LP0). O

Theorem 3.2 Let p(t) satisfy the conditions of Theorem 2.1. Suppose

that
1 1

—m < ﬁ < m (22)

Then the inequality
HEFIR, () < el fll o

holds with the constant ¢ not depending on f.
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Proof. Applying (2.1) we obtain

(I < o / e [TT0 )

t Yy

ms2
i [T gy O

Now from Theorem IV it follows that

K)o <cllf* - yP e, O

From Theorem 2.2, for the Riesz transforms

VP / ‘LU ‘TH—I )dya j = 1,2, oo, n,

we have the following corollary.

Corollary 3.1 Let p be as in Theorem 2.1. Then the operators R; (j =
1,...,n) are bounded in Ag(') under condition (2.2).

In the sequel we discuss the boundedness in AP0) of Riesz potentials and
give an application to imbedding of certain spaces of differentiable functions.
The next theorem deals with the Riesz potential operator

):/L)_dy, re, 0<a<n.
o |z —y[re

Theorem 3.3 Let p(t) satisfy the assumptions of Theorem 2.2 and s(x)
be a measurable function on [0,mS] such that 1 < s(x) < S < oo for all
x € [0,mS] and

A

In L

s(0) = p(0) and [s(z) = p(z)| <

, O<xz<d, 0>0.

1 1
ORI}
then the inequality
[#7 Tl ascr < €ll7 f ]l pneo (2.3)

holds with the constant ¢ not depending on f.
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Proof. We make use of the estimate for the decreasing rearrangements of 7,
(see [21]):

t N
(hﬁﬂﬂ§4}uwf/fﬂw@+/ F@wlmm@):dBJ+Bﬁ)
0 t
Applying Theorem IV, we obtain

t opx a/n
Bl = e [0
0

<

a/n 150)

<l W)y e < el FF Moy = call fllare

since 0 <t <mf) and 0 < a < .
Similarly, according to the same theorem we have

N
1Bofllio = | / Py ey <
t

<l @Y o < allf o = cal fllapo. O

For a multi-index of nonnegative integers K = (ki, ka, ..., ky,), let DX =
Ok

Theorem 3.4 Let n > 2 and let k = |K| be any positive integer smaller
than n. Suppose that p(x) and s(x) satisfy the assumptions of Theorem 2.1.
Then

i) there exists a positive constant ¢ such that

A < el DR ulf pne (2.4)

[[ul

for all real-valued functions u on €2 where the continuation by zero beyond )
has weak derivatives up to the order k over R".
(i1) If Q is convex, then a positive constant ¢ exists such that

inf | f - Q]

o < c|llDE . 2.5
o As) < e[ D™ | aney (2.5)

for all real valued functions u on ) which have weak derivatives up to the
order k in €. Here Qj_1 denotes the set of all polynomials ) of degree
<k-—1.

In the case k = 1, inequality (2.5) holds with Q equal to the mean value
of wover Q, Q= -5 [, u(z)dz.



Proof. The part i). Tt is clear that DXu € L'(2). Then by Theorem 1.1.
10/2 of [20] we have the estimate

| D" u(y)|

lu(@)| <c [ ——
Qlr —yln*

dy for x €. (2.6)
Applying Theorem 2.1, we arrive at the desired result.

The proof of part ii) is similar, since by Theorem 1.1. 10/1 of [9], there
exists a constant ¢ depending only on n, k and €2, and a polynomial Q) € Qy_1,
depending on u, such that

DX u(y)]

iz =y dy for z e
0l —

u(z) — Q(z)| < c
provided that D¥u € L1(Q2). O

Now we pass to the mapping properties of Poisson integral and conjugate
Poisson integrals in Ag(') spaces. We consider the Poisson integral

Y
we) = | F0) ot du ny €0

and the system of conjugate Poisson integrals

j .CL’j — yj d .
)= f L TyeQ j=1,2,...,n
vf(x y) / (U)(’x u’2 y2)(n+1)/2 u, x,Y i n

Since m$ < oo, for f € LP)(Q) we have f € LP°(€2). Thus we conclude
that

Tf(x) = Sup ug(z,y)| < M f(x) (2.7)
and A
U}(l‘,y) = UR; (x,y) (28)

(see [29], Chapters 6 and 2).
From (2.7), by the known estimate (see [1]) we have

(Sl;p Jup(z,y)|)" (1) < c«(M[)*(t) < Cll/lt/O [ (y)dy. (2.9)

By means of Theorem IV we derive the following result.
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Theorem 3.5 Let p(t) and [ satisfy the conditions of Theorem 1. Then
T is bounded in Ag(').

Now consider the operator
T, () = sup [vh(z, )]
y

By inequality (2.9) we have

t
Ty <t [ £y
0
Thus N
HijHAg(u < CHRjHAgw (2.10)
Basing on (2.10) and Corollary 1 we obtain the following result.

Theorem 3.6 Let a function p(t) and a number (3 satisfy the assumptions
of Theorem 2.1. Then the operators T; are bounded in AZ(').

Remark 1 Applying the results of [5] and using the idea which was devel-
oped above, we can deduce that the theorems of this section are also valid in
R™ if a function p(t) is assumed to satisfy the local logarithmic Dini condition
and in addition is constant outside some large interval (0,%y), i.e. p(t) = p,
t > ty. For the power weight we assume that

o () < <ol ).

where ¢ = z%'

4 Cauchy Singular Integrals on Lyapunov
Curves and Curves of Bounded Rotation

In this section we deal with the Cauchy singular integral

Srf(t) = ") g o t(s), 0<s<{,

r7—t
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where I is a finite rectifiable Jordan curve on which the arc-length is chosen
as a parameter, starting from any fixed point.

' is called Lyapunov curve if #'(s) € Lip o, 0 < aw < 1. When #/(s) is a
function of bounded variation, I' is called a curve of bounded rotation.

Our goal is to study the mapping properties of S when I' is a Lyapunov
curve or a curve of bounded rotation without cusps.

We assume the function p(s) to be defined on [0,!]. The function f(#(s))
will be denoted by fo(s).

Theorem 4.1 Let I" be a Lyapunov curve. The operator St is bounded in
APG) if
1<py<p(s)<P<oo for sel0,l]

and the condition

A
In —t

[s1—s2]

Ip(s1) — p(s2)| <

18 satisfied in a neighbourhood of the origin.

Proof. In the case of Lyapunov curve the following estimate

el < | hlo) | + o ) G

0 0—8§ o |s—all=

holds with o € (0,1) (see e.g. [13]). Applying Theorems 2.1 and 2.3, we
obtain the boundedness of Sp in AP(). O

Theorem 4.2 Let I' be a curve of bounded rotation without cusps. Let
p(s) satisfy the condition of Theorem 2.1 with m denoting the arc-length
measure on I'. Then the operator Sy is bounded in AP,

Proof. We have

Spf(t(s)) = Mda—i—/o (t(t/(">d" _ )fo(a) do (3.2)

0 0—S5 o)—t(s) o-—s

As t/(s) is a function of bounded variation, we have
[#'(s) = t'(0)| < [V(s) = V()]

where V (s) is the total variation of ¢ on [0, ].

12



Let l
T5H(s) = | o s)ale) do
where (o) ) .
t(o)—t(s) o—s

Since I is a curve of bounded rotation without cusps, it satisfies the arc-chord
condition, i.e.

h(o,s) =

t(s) =1t
0< c < ‘M .
s—ao
Therefore, we can derive the estimate

7o s)| < ‘t(ai/@e(s) o i s‘ = (s —CU)2 /: ) 1)) du] <
< | [ 10— )] ] < s = o)V (s) = Vi)
Thus
e <e [ YOV ) 45 <
< C(V(s)’ Ol fof"g da’ + /Ol w da‘ ) (3.3)

Now from (3.1) and (3.3) and boundedness of the function V, in virtue
of Theorem 1.1 we obtain the boundedness of Sp in AP®), O

Note that for the p(s) a constant function p(s) = p the boundedness of
Sr on Lyapunov curve and on curve of bounded rotation without cusps was
proved in [13] and [4], respectively.

Theorem 4.3 Let I' be a Lyapunov curve or a curve of bounded rotation
without cusps. Let

w(s) = [t(s) = £(0)]”

where
_L < ﬁ < L
p(0) q(0)

Then the Cauchy singular operator Sr is bounded in AP .

13



Proof. As mentioned in the proof of Theorem 3.2, I' satisfies the arc-chord
condition. Thus

w(s) ~ s°.

Therefore, we may follow the scheme of the proof of Theorems 3.1 and
3.2 and apply Theorems 1.2 and 2.1 to obtain the boundedness of St in A?.
O

Basing on the recent results on the singular integrals from [7] and on
the proofs of Theorems 3.1 and 3.2 we conclude the validity of the following
theorem.

Theorem 4.4 Let I" be a Lyapunov curve or a curve of bounded rotation
without cusps. If the function p(s) satisfies the conditions (1.1) and (1.2) on
Q = [0,1], then Sr is bounded in LP®).
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