

Memoirs on Diff. Equat. Math. Phys.
 Razmadze Math. Inst., Tbilisi,
 2003, vol. 29, 99-106

On the Inversion and Characterization of the Riesz Potentials in the weighted Lebesgue Spaces

by

V. Kokilashvili , A. Meskhi

Mathematical Institute of the Georgian Academy of Sciences, Georgia
 and

S. Samko

University of Algarve, Portugal

Abstract

The method of approximative inverse operators is applied to the inversion problem for the Riesz potentials $f = I^\alpha \varphi$, $0 < \Re \alpha < n$, with densities φ in the Lebesgue spaces $L_w^p(\mathbb{R}^n)$ with Muckenhoupt weight w , together with the characterization of the range $I^\alpha(L_w^p)$ in the general situation when potentials $f \in L_v^q(\mathbb{R}^n)$, where $1 < p < \infty$ and $q \geq p$ and Muckenhoupt weights w and v are independent, being related to each other only by integral inequalities

Key words: *weighted Lebesgue spaces, Riesz potential operator, hypersingular integrals, approximative inverses, Muckenhoupt weights*

AMS Classification 2000: 31 B99, 46 E35, 46P05, 26A33

1 Introduction

We consider the Riesz potential operator

$$f(x) = I^\alpha \varphi(x) = \frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^n} \frac{\varphi(y)}{|x - y|^{n-\alpha}} dy, \quad (1.1)$$

where as usual

$$\gamma(\alpha) = \frac{2^\alpha \pi^{\frac{n}{2}} \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right)}, \quad (1.2)$$

as acting from a weighted Lebesgue spaces $L_w^p(\mathbb{R}^n)$ into another such space $L_v^q(\mathbb{R}^n)$ with $q > p > 1$ and general weight functions w and v of Muckenhoupt type.

We admit complex values of α and assume that $0 < \Re\alpha < n$.

It is known ([18], Ch.3 and Ch. 7; [19], Section 27) that in the case of real α the operator (left) inverse to I^α has the form of hypersingular operator

$$\varphi(x) = (I^\alpha)^{-1}f(x) = \mathbb{D}^\alpha f(x) := \frac{1}{d_{n,\alpha}} \int_{\mathbb{R}^n} \frac{(\Delta_y f)(x)}{|y|^{n+\alpha}} dy, \quad (1.3)$$

known also as the Riesz fractional derivative, where $(\Delta_y^\ell f)(x)$ is a centered or non-centered finite difference of f of order ℓ ($\ell > \alpha$ or $\ell > 2 \lceil \frac{\alpha}{2} \rceil$ depending on the type of the finite difference), and the integral in (1.3) is treated as convergent in the norm of the space of functions φ , this also works for complex α with $0 < \alpha < 2$ and $\ell = 1$; see [18] and [19] for details. The inversion of the potential I^α with densities $\varphi \in L^p(\mathbb{R}^n)$ and description of the range $I^\alpha[L^p(\mathbb{R}^n)]$ in terms of the constriction (1.3) was given in [15], see also [18], Theorems 3.22, 7.9 and 7.11. Similar results for the weighted spaces $L_w^p(\mathbb{R}^n)$ with the Muckenhoupt weight w were obtained in [13] and [12] (see [18], Theorem 7.36).

A modification of the method of hypersingular operators which works for all complex α with $0 < \Re\alpha < n$, but requires the generalized finite differences, may be found in [18], p. 83.

There exists also an alternative approach to the inversion of the Riesz potential operator based on the method of approximative inverse operators (AIO) which works well for all complex α in the strip $0 < \Re\alpha < n$. This approach realized in [16] (see also [18], Ch. 11) for non-weighted spaces $L^p(\mathbb{R}^n)$, provides the construction of the inverse operator in the form

$$\mathbb{D}^\alpha f(x) = \lim_{\substack{\varepsilon \rightarrow 0 \\ (L_p)}} T_\varepsilon^\alpha f, \quad 0 < \Re\alpha < n, \quad 1 < p < \frac{n}{\Re\alpha}, \quad (1.4)$$

where

$$T_\varepsilon^\alpha f = \varepsilon^{-n} \int_{\mathbb{R}^n} h_\alpha(y) f(x - \varepsilon y) dy \quad (1.5)$$

where the kernel $h_\alpha(y) \in L^1(\mathbb{R}^n)$ has the property that its Fourier transform has the form

$$\hat{h}_\alpha(\xi) = |\xi|^\alpha \hat{k}(\xi) \quad (1.6)$$

where $k(x)$ may be any function such that

$$k(x) \in L^1(\mathbb{R}^n) \bigcap I^\alpha(L^1). \quad (1.7)$$

See also a similar approach for the realization of fractional powers of operators in [17]. An extension of this alternative inversion of [16] to the case of weighted spaces with Muckenhoupt weight was given in [14]. Observe that relation (1.7) means that

$$h_\alpha(x) \in L^1(\mathbb{R}^n) \quad \text{and} \quad h_\alpha(x) = \mathbb{D}^\alpha k(x), \quad k \in L^1(\mathbb{R}^n). \quad (1.8)$$

so that

$$h_\alpha(x) \in L^1(\mathbb{R}^n) \quad \text{and} \quad I^\alpha h_\alpha(x) \in L^1(\mathbb{R}^n). \quad (1.9)$$

Some examples of functions $k(x)$ and $h_\alpha(x)$ satisfying conditions (1.6)-(1.8) were given in [16], see also [18], Sections 1.4-1.5 of Ch. 11.

The results obtained in [16] provide a characterization of the range $I^\alpha(L_w^p)$, in particular, in terms of its imbedding into the space $L_v^q(\mathbb{R}^n)$ with the Sobolev exponent $q = \frac{np}{n-\alpha p}$ (which assumes that $p < \frac{n}{\alpha}$) and exponent $v = w^{\frac{q}{p}}$.

Meanwhile, it is actual to obtain a more general result for densities $\varphi \in L_w^p(\mathbb{R}^n)$ and potentials $f \in L_v^q(\mathbb{R}^n)$, when $1 < p < \infty$ (not only $1 < p < \frac{n}{\Re \alpha}$) and $q \geq p$ (not only $q = \frac{np}{n-\Re \alpha p}$) and weights w and v are independent, being related to each other only by integral inequalities (two weight approach, see [5], [3], [4], [2]).

This goal is realized in this paper.

Notation:

$x = (x_1, \dots, x_n) \in \mathbb{R}^n$;

for $E \subset \mathbb{R}^n$, by $|E|$ we denote the Lebesgue measure of E ;

$B(x, r)$ is the ball of radius r centered at the point x ;

$F\varphi(\xi) = \hat{\varphi}(\xi) = \int_{\mathbb{R}^n} e^{i\xi y} \varphi(y) dy$;

$F^{-1}f(x) = \hat{f}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-ix\xi} f(\xi) d\xi$;

$\langle f, \omega \rangle = \int_{\mathbb{R}^n} f(x) \overline{\omega(x)} dx$;

$\mathcal{S} = \mathcal{S}(\mathbb{R}^n)$ is the Schwartz space of rapidly decreasing functions.

2 Preliminaries

a) On weights and weighted spaces. Let w be a locally integrable almost everywhere positive function called a weight on \mathbb{R}^n . As usual, by $L_w^p(\mathbb{R}^n)$ we denote the weighted Lebesgue space of all measurable functions $f : \mathbb{R}^n \rightarrow \mathbb{R}^1$ with the finite norm

$$\|f\|_{L_w^p} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx \right)^{\frac{1}{p}}, \quad 1 \leq p < \infty.$$

Definition 2.1. Let $1 < p < \infty$. We say that a weight w belongs to A_p , if

$$\sup \left(\frac{1}{|B|} \int_B w(x) dx \right) \left(\frac{1}{|B|} \int_B w^{1-p'}(x) dx \right)^{p-1} < \infty, \quad p' = \frac{p}{p-1},$$

where the supremum is taken over all balls $B, B \subset \mathbb{R}^n$.

As is well known [11], [1], the Hardy-Littlewood maximal operator

$$Mf(x) = \sup_{B \ni x} \int_B |f(y)| dy$$

is bounded in the space $L_w^p(\mathbb{R}^n)$ if and only if $w \in A_p$.

It is known that

$$L_w^p(\mathbb{R}^n) \subset L_\rho^1(\mathbb{R}^n), \quad \rho(x) = (1 + |x|)^{-n} \quad (2.1)$$

for any weight $w \in A_p$ and

$$w \in A_p \Leftrightarrow w^{1-p'} \in A_{p'}, \quad (2.2)$$

for all $1 < p < \infty$.

We remind the definition of the Lizorkin class

$$\Phi = \{\varphi \in \mathcal{S} : \hat{\varphi} \in \Psi\}, \quad \text{where} \quad \Psi = \{\psi \in \mathcal{S} : (D^k)(0) = 0, |k| = 0, 1, 2, \dots\}$$

see [7], [8], [9] (see also [18], p.39), which is invariant with respect to the Riesz potential operator I^α .

The Riesz potential operator $I^{i\theta}$ of purely order $i\theta$ is defined by its Fourier multiplier $m(\xi) = |\xi|^{i\theta}$:

$$I^{i\theta}\varphi = F^{-1}|\xi|^{i\theta}F\varphi, \quad \varphi \in \Phi, \quad \theta \in \mathbb{R}^1 \quad (2.3)$$

which is well suited for the space $L_w^p(\mathbb{R}^n)$, $w \in A_p$, according to Theorem C given below.

Lemma 2.2. *The operator $I^{i\theta}$ is bounded in the space $L_w^p(\mathbb{R}^n)$, $1 < p < \infty$ for all $w \in A_p$*

The statement of the lemma is obtained by the direct verification of the Mikhlin-Hörmander condition

$$\sup_{R>0} \left(R^{s|j|-n} \int_{R<|\xi|<2R} |D^j m(\xi)|^s d\xi \right) < \infty, \quad |j| \leq n,$$

where $1 < s \leq 2$, which is sufficient for $m(\xi)$ to be a Fourier multiplier in the weighted space $L_w^p(\mathbb{R}^n)$, $1 < p < \infty$, with $w \in A_p$, see [6], Theorem 2 (one may choose any $s \in (1, 2]$ different from $\frac{n}{n-1}, \frac{n}{n-2}, \dots, \frac{n}{n-k}$, $k \leq \frac{n}{2}$ when checking this condition for $m(\xi) = |\xi|^{i\theta}$).

Definition 2.3. Let μ be a measure on \mathbb{R}^n . We say that μ satisfies the doubling condition if there exists a positive constant b such that the inequality

$$\mu B(x, 2r) \leq b\mu B(x, r)$$

holds for all the balls $B(x, r)$.

Definition 2.4. A measure μ on \mathbb{R}^n satisfies the reverse doubling condition if there exists positive constants η_1 and η_1 such that

$$\mu B(x, \eta_1 r) \geq \eta_2 \mu B(x, r)$$

holds for all the balls $B(x, r)$.

The following statement is well known, see [20], page 11, Lemma 20.

Proposition A. *Let μ satisfy the doubling condition. Then μ satisfies the reverse doubling condition.*

In the sequel we denote $wE = \int_E w(x) dx$ for any measurable set $E \subset \mathbb{R}^n$, where w is a weight. Note that this measure satisfies the reverse doubling condition if $w \in A_p$.

We will base ourselves on the following theorems.

Theorem A (see [4], p.116). *Let $1 < p < \infty$, $0 < \alpha < n$ and let w and v be weights on \mathbb{R}^n . Let the weights v and $w^{1-p'}$ satisfy the reverse doubling condition. Then the operator I^α is bounded from $L_w^p(\mathbb{R}^n)$ into $L_v^q(\mathbb{R}^n)$ if and only if*

$$\sup |B|^{\frac{\alpha}{n}-1} \left(\int_B v(x) dx \right)^{\frac{1}{q}} \left(\int_B w^{1-p'}(x) dx \right)^{\frac{1}{p'}} < \infty \quad (2.4)$$

where the supremum is taken over all the balls $B \subset \mathbb{R}^n$.

Remark 2.5. Let $1 < p < \infty$ and let α be complex with $0 < \Re \alpha < n$ and let the weights v and $w^{1-p'}$ satisfy the reverse doubling condition. The operator I^α is bounded in the space $L_w^p(\mathbb{R}^n)$ if and only if condition (2.4) is satisfied with $|B|^{\frac{\alpha}{n}-1}$ replaced by $|B|^{\frac{\Re \alpha}{n}-1}$.

Indeed it suffices to observe that $I^\alpha \varphi = I^{i\theta} I^{\Re \alpha} \varphi$ for $\varphi \in \Phi$ where Φ is dense in $L_w^p(\mathbb{R}^n)$ by Theorem C and the operator $I^{i\theta}$ is boundedly invertible in $L_w^p(\mathbb{R}^n)$.

For the dilatation kernels

$$k_\varepsilon(x) = \frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right)$$

the following extension of Stein's theorem to weighted spaces was given in [12], see also [18], Theorem 7.31.

Theorem B. *a) Let $k(x)$ have a non-increasing radial dominant $b(|x|) \in L_1(\mathbb{R}^n)$ and $f \in L_w^p$, $w \in A_p$. Then*

$$\sup_{\varepsilon > 0} |(k_\varepsilon * f)(x)| \leq c \|b\|_1 (Mf)(x), \quad (2.5)$$

where $(Mf)(x)$ is the Hardy-Littlewood maximal function.

b) If in addition $\int_{\mathbb{R}^n} k(x) dx = 1$, then

$$(k_\varepsilon * f)(x) \rightarrow f(x)$$

as $\varepsilon \rightarrow 0$ in the L_w^p -norm and almost everywhere.

Theorem C ([18], Theorem 7.34 and [13], Theorem 4.3). *The Lizorkin class Φ is dense in the weighted space $L_w^p(\mathbb{R}^n)$ for any weight $w \in A_p$, $1 < p < \infty$.*

Theorem D ([10], [21]). *Let $1 < p < \infty$ and $0 < \alpha < \frac{n}{p}$. The operator I^α is bounded from $L^p(\mathbb{R}^n)$ to $L_v^p(\mathbb{R}^n)$ if and only if $I^\alpha v \in L_{loc}^{p'}$ and*

$$I^\alpha [I^\alpha v]^{p'}(x) \leq c I^\alpha v(x) \quad \text{almost everywhere.} \quad (2.6)$$

Remark 2.6. Theorem D is also valid for complex α with $0 < \Re \alpha < n$, if condition (2.6) is replaced by

$$I^{\Re \alpha} [I^{\Re \alpha} v]^{p'}(x) \leq c I^{\Re \alpha} v(x) \quad \text{almost everywhere,} \quad (2.7)$$

see arguments in the proof of Corollary 2.5.

We shall also need the condition dual to (2.7), namely

$$I^{\Re \alpha} [I^{\Re \alpha} w^{1-p'}]^p(x) \leq c I^{\Re \alpha} w^{1-p'}(x) \quad \text{almost everywhere.} \quad (2.8)$$

A simple example of weight functions $w \in A_p$ and $v \in A_q$ for which condition (2.4) holds, is that of power functions:

$$w(x) = |x|^\beta, \quad v(x) = |x|^\gamma, \quad (2.9)$$

where

$$-n < \beta < n(p-1), \quad -n < \gamma < n(p-1) \quad \text{and} \quad \frac{n+\beta}{p} = \frac{n+\gamma}{q} + \Re \alpha. \quad (2.10)$$

As regards conditions (2.6) and (2.8), they are valid for

$$v(x) = |x|^{-\Re \alpha p} \in A_p, \quad 0 < \Re \alpha < \frac{n}{p}, \quad \text{and} \quad w(x) = |x|^{\Re \alpha p} \in A_p, \quad 0 < \Re \alpha < \frac{n}{p'}, \quad (2.11)$$

respectively

c) **Appropriate kernels.**

Definition 2.7. A kernel $h_\alpha(x) \in L^1(\mathbb{R}^n)$, $0 < \Re\alpha < n$, is called *appropriate* if it satisfies the assumption in (1.9) and

$$\int_{\mathbb{R}^n} (I^\alpha h_\alpha)(x) dx = 1$$

and both $h_\alpha(x)$ and $I^\alpha h_\alpha(x)$ have integrable non-increasing radial dominants.

It is known that the following functions are examples of *appropriate* kernels:

$$1) \quad h_\alpha(x) = F^{-1}(|\xi|^\alpha e^{-|\xi|}) = \frac{\Gamma(n+\alpha)}{2^{n-1}\pi^{\frac{n}{2}}\Gamma(\frac{n}{2})} F\left(\frac{n+\alpha}{2}, \frac{n+\alpha+1}{2}; \frac{n}{2}; -|x|^2\right) \quad (2.12)$$

where $F\left(\frac{n+\alpha}{2}, \frac{n+\alpha+1}{2}; \frac{n}{2}; z\right)$ is the Gauss hypergeometric function, and

$$2) \quad h_\alpha(x) = \frac{(-1)^m}{\gamma_n(2m-\alpha)} \Delta^m \left(\frac{1}{(1+|x|^2)^{\frac{n+\alpha}{2}-m}} \right) \quad (2.13)$$

$$= \frac{1}{\gamma_n(-\alpha)} \left[\frac{1}{(1+|x|^2)^{\frac{n+\alpha}{2}}} + \sum_{k=1}^n \frac{(-1)^k c_{m,k}}{(1+|x|^2)^{\frac{n+\alpha}{2}+k}} \right]$$

where $c_{m,k} = \binom{m}{k} \frac{\binom{\frac{n+1}{2}}{k}}{\binom{\frac{\alpha}{2}-m+1}{k}}$ and m is any integer such that $m > \frac{\Re\alpha}{2}$, $\alpha \neq 2, 4, 6, \dots$, see [18], Lemmas 11.7-11.8 and 11.13.

Obviously, the set of appropriate kernels is rich enough. Indeed, if $h_\alpha(x)$ is an appropriate kernel, then any convolution

$$\mathcal{K} * h_\alpha(x) = \int_{\mathbb{R}^n} \mathcal{K}(x-y) h_\alpha(y) dy$$

where $\mathcal{K} \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \mathcal{K}(y) dy = 1$, is again appropriate kernel.

3 Statements of the main results.

Our first theorem provides the following two-weighted result on the inversion of the Riesz potential operator.

Theorem 3.1. *Let $1 < p < \infty$, $0 < \Re\alpha < n$ and $w \in A_p$. Assume that there exist $q, p < q < \infty$ and a weight function $v \in A_q$ such that (2.4) holds. Then the equality*

$$f = I^\alpha \varphi \quad \text{with} \quad \varphi \in L_w^p(\mathbb{R}^n) \quad (3.1)$$

implies

$$\varphi = \lim_{\varepsilon \rightarrow 0} T_\varepsilon^\alpha f = \lim_{\varepsilon \rightarrow 0} \varepsilon^{-n} \int_{\mathbb{R}^n} h_\alpha(y) f(x - \varepsilon y) dy \quad (3.2)$$

where $h_\alpha(y)$ is any appropriate kernel (see Definition 2.7) and the limit in (3.2) is taken in L_w^p -norm or almost everywhere.

The next theorem gives the two-weighted description of the range of the Riesz potential.

Theorem 3.2. *Let $1 < p < \infty$, $0 < \Re\alpha < n$ and $w \in A_p$ and let there exist $q, p < q < \infty$ and $v \in A_q$ such that (2.4) holds. A function f belongs to the range $I^\alpha(L_w^p)$ if and only if*

- i) $f \in L_v^q(\mathbb{R}^n)$,
- ii) *one of the following two conditions is fulfilled:*
 - a) $\lim_{\varepsilon \rightarrow 0} T_\varepsilon^\alpha f \in L_w^p(\mathbb{R}^n)$ where T_ε^α is the operator (1.5) with any appropriate kernel $h_\alpha(x)$ and the limit is taken with respect to the $L_w^p(\mathbb{R}^n)$ -norm;
 - b) $\sup_{\varepsilon > 0} \|T_\varepsilon^\alpha f\|_{L_w^p} < \infty$.

The following theorem presents the corresponding inversion statement for the Riesz potential operators in the case where $0 < p < \frac{n}{\Re\alpha}$ and $w \equiv 1$ and is based on Theorem D.

Theorem 3.3. *Let $1 < p < \infty$, $0 < \Re\alpha < \frac{n}{p}$ and $v \in A_p$. Suppose that (2.6) holds. A function f belongs to the range $I^\alpha(L^p)$ if and only if*

- i) $f \in L_v^p(\mathbb{R}^n)$,
- ii) *one of the following two conditions is fulfilled:*
 - a) $\lim_{\varepsilon \rightarrow 0} T_\varepsilon^\alpha f \in L^p(\mathbb{R}^n)$ with any appropriate kernel $h_\alpha(x)$ in the operator T_ε^α , the limit being taken with respect to the $L^p(\mathbb{R}^n)$ -norm;
 - b) $\sup_{\varepsilon > 0} \|T_\varepsilon^\alpha f\|_{L^p} < \infty$.

Finally, the last two theorems give some statements dual to the situation considered in Theorem 3.3 and provide both the inversion statement and the characterization of the range.

Theorem 3.4. *Let $1 < p < \infty$, $0 < \Re\alpha < \frac{n}{p'}$ and $w \in A_p$. Suppose that*

$I^\alpha(w^{1-p'}) \in L_{loc}^p$ and (2.8) holds. If $f = I^\alpha\varphi$, where $\varphi \in L_w^p(\mathbb{R}^n)$, then

$$\varphi = \lim_{\varepsilon \rightarrow 0} T_\varepsilon^\alpha f = \lim_{\varepsilon \rightarrow 0} \varepsilon^{-n} \int_{\mathbb{R}^n} h_\alpha(y) f(x - \varepsilon y) dy \quad (3.3)$$

where $h_\alpha(y)$ is any appropriate kernel and the limit is taken in L_w^p -norm or almost everywhere.

Theorem 3.5. Let $1 < p < \infty$, $0 < \Re\alpha < \frac{n}{p'}$ and $w \in A_p$. Suppose that $I^\alpha(w^{1-p'}) \in L_{loc}^p$ and (2.8) holds. Then $f \in I^\alpha(L_w^p)$ if and only if

- i) $f \in L^p(\mathbb{R}^n)$,
- ii) one of the following two conditions is fulfilled:
 - a) $\lim_{\varepsilon \rightarrow 0} T_\varepsilon^\alpha f \in L_w^p(\mathbb{R}^n)$ where $\lim_{\varepsilon \rightarrow 0} T_\varepsilon^\alpha$ is the same as in (3.3) with any appropriate kernel $h_\alpha(x)$ and the limit being taken in the $L_w^p(\mathbb{R}^n)$ -norm;
 - b) $\sup_{\varepsilon \neq 0} \|T_\varepsilon^\alpha f\|_{L_w^p} < \infty$.

4 Proofs.

The proofs of Theorems 3.1 and 3.2 represent a modification of proofs of Theorems 3.1 and 3.2 from [14].

Proof of Theorem 3.1.

For $\varphi \in \Phi$ there holds the equality

$$(T_\varepsilon^\alpha I^\alpha \varphi)(x) = \frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right) * \varphi \quad \text{with} \quad k(x) \in L^1(\mathbb{R}^n) \quad (4.1)$$

which follows via Fourier transforms from (1.5)–(1.7). Let us show that this relation remains valid for all $\varphi \in L_w^p(\mathbb{R}^n)$. Let ε be fixed and let $\varphi_0 \in L_w^p(\mathbb{R}^n)$. To show that (4.1) is valid for φ_0 , we pass to the limit in (4.1) when $\Phi \ni \varphi \rightarrow \varphi_0$, but do this in different norms for the left-hand and right-hand sides of (4.1).

By Theorem C, there exists a sequence $\varphi_m \in \Phi$ such that $\varphi_m \rightarrow \varphi_0$ in the L_w^p -norm. The left-hand side operator

$$A_\varepsilon = T_\varepsilon^\alpha I^\alpha$$

is bounded from $L_w^p(\mathbb{R}^n)$ into $L_v^q(\mathbb{R}^n)$ by Theorem A (with Remark 2.5 taken into account) and Theorem B and Proposition A and the fact that $w \in A_p$ and $v \in A_q$. Therefore,

$$A_\varepsilon \varphi_m \rightarrow A_\varepsilon \varphi_0 \quad \text{in} \quad L_v^q(\mathbb{R}^n). \quad (4.2)$$

On the other hand, the right-hand side operator

$$B_\varepsilon = \frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right) *$$

is bounded in the space $L_w^p(\mathbb{R}^n)$ by Theorem B and the fact that $w \in A_p$. Therefore,

$$B_\varepsilon \varphi_m \rightarrow B_\varepsilon \varphi_0 \quad \text{in} \quad L_w^p(\mathbb{R}^n). \quad (4.3)$$

From (4.2)-(4.3) it follows that there exists a subsequence φ_{m_k} such that

$$A_\varepsilon \varphi_{m_k} \rightarrow A_\varepsilon \varphi_0 \quad \text{and} \quad A_\varepsilon \varphi_{m_k} \rightarrow A_\varepsilon \varphi_0 \quad \text{almost everywhere}$$

and we arrive at (4.1) for $\varphi_0 \in L_w^p(\mathbb{R}^n)$.

It remains to observe that by Theorem C and the condition $w \in A_p$, we have that $\frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right) * \varphi$ converges in $L_w^p(\mathbb{R}^n)$ as $\varepsilon \rightarrow 0$. Therefore, passing to the limit in (4.1) as $\varepsilon \rightarrow 0$, we obtain the desired relation (3.2).

Proof of Theorem 3.2.

Necessity follows from Theorem A (with Remark 2.5 taken into account) and B and relation (4.1) proved for $f \in L_w^p(\mathbb{R}^n)$.

Let us prove the sufficiency. Let $f \in L_v^q(\mathbb{R}^n)$ and suppose that condition a) of our theorem is satisfied. Let $\varphi = \lim_{\varepsilon \rightarrow 0} T_\varepsilon^\alpha f$, the limit being in the $L_w^p(\mathbb{R}^n)$ -norm. The relation is valid

$$\langle f, \psi \rangle = \langle I^\alpha \varphi, \psi \rangle, \quad \psi \in \Phi. \quad (4.4)$$

Indeed, for $\varphi \in \Phi$ we have

$$\begin{aligned} \langle I^\alpha \varphi, \psi \rangle &= \langle \varphi, I^\alpha \psi \rangle = \left\langle \lim_{\substack{\varepsilon \rightarrow 0 \\ (L_w^p)}} T_\varepsilon^\alpha f, I^\alpha \psi \right\rangle = \lim_{\varepsilon \rightarrow 0} \langle T_\varepsilon^\alpha f, I^\alpha \psi \rangle \\ &= \lim_{\varepsilon \rightarrow 0} \langle f, T_\varepsilon^\alpha I^\alpha \psi \rangle = \lim_{\varepsilon \rightarrow 0} \left\langle f, \frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right) * \psi \right\rangle = \langle f, \varphi \rangle. \end{aligned}$$

Here the first passage follows from Fubini theorem which is justified with the aid of the Hölder inequality:

$$|\langle I^\alpha \varphi, \psi \rangle| \leq \|I^\alpha \varphi\|_{L_v^q} \|\psi\|_{L_{v^{1-q'}}^{q'}} < \infty$$

since $I^\alpha \varphi \in L_v^q(\mathbb{R}^n)$ by Theorem A. The third passage is obvious as the convergence in $L_w^p(\mathbb{R}^n)$ implies that in the space Φ' . The fourth passage follows from Fubini theorem:

$$|\langle f, T_\varepsilon^\alpha I^\alpha \psi \rangle| \leq \|f\|_{L_v^q} \|T_\varepsilon^\alpha I^\alpha \psi\|_{L_{v^{1-q'}}^{q'}} < \infty$$

(note that $I^\alpha \psi \in \Phi$ and by Theorem B $T_\varepsilon^\alpha I^\alpha \psi \in L_{v^{1-q'}}^{q'}$ because $v^{1-q'} \in A_{q'}$). The fifth passage, that is, equality (4.1) has already been justified. The last passage is justified with the aid of the Hölder inequality and Theorem B since $\frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right) * \psi \rightarrow \psi$ almost everywhere and

$$\left| \left\langle f, \frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right) * \psi \right\rangle \right| \leq \|f\|_{L_v^q} \left\| \frac{1}{\varepsilon^n} k\left(\frac{x}{\varepsilon}\right) * \psi \right\|_{L_{v^{1-q'}}^{q'}} \leq c \|f\|_{L_v^q}.$$

From (4.4) it follows that

$$f(x) = (I^\alpha \varphi)(x) + P(x),$$

where $P(x)$ is a polynomial. By (2.1) we obtain that $P(x) \equiv 0$. Hence $f \in I^\alpha(L_w^p)$.

Now let $f \in L_v^q(\mathbb{R}^n)$ and suppose that condition b) is satisfied. Since the space $L_w^p(\mathbb{R}^n)$, we have that the set $\{T_\varepsilon^\alpha f\}_{\varepsilon>0}$ is weakly compact. Hence there exists a subsequence $\{T_{\varepsilon_k}^\alpha f\}_{k=1}^\infty$ which weakly converges in $L_w^p(\mathbb{R}^n)$ to a function $\varphi \in L_w^p(\mathbb{R}^n)$. Arguing as above, we easily obtain that $f(x) = (I^\alpha \varphi)(x)$.

Proof of Theorem 3.3 is obtained repeating arguments of the proof of Theorem 3.2, but with reference to Theorems B, C and D this time.

Proof of Theorem 3.4 is similar to that of Theorem 3.1. We only note that, by duality arguments, from Theorem D (with Remark 2.6 taken into account) the operator I^α is bounded from $L_w^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ if and only if $I^\alpha w^{1-p'} \in L_{loc}^p$ and (2.8) holds.

Proof of Theorem 3.5 is similar to that of Theorem 3.1.

References

- [1] J. Duoandikoetxea. *Fourier Analysis*. Amer. Math. Soc., "Graduate Studies", 1995. 542 pages.
- [2] D.E. Edmunds, V. Kokilashvili, and A. Meskhi. *Bounded and compact integral operators*, volume 543 of *Mathematics and its Applications*. Kluwer Academic Publishers, Dordrecht, 2002.
- [3] M. A. Gabidzashvili, I.Z. Genebashvili, and Kokilashvili V. Two-weight inequalities for generalized potentials. *Trudy Mat. Inst. Steklov.*, 194(Issled. po Teor. Differ. Funktsii Mnogikh Peremen. i ee Prilozh. 14):89–96, 1992.
- [4] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec. *Weight theory for integral transforms on spaces of homogeneous type*. Pitman Monographs and Surveys, Pure and Applied Mathematics: Longman Scientific and Technical, 1998. 422 pages.
- [5] V.M. Kokilashvili. Two-weighted estimates for some integral transforms in Lebesgue spaces with mixed norm and imbedding theorems. *Georgian Math. J.*, 1(5):495–503, 1994.
- [6] D. S. Kurtz and R. L. Wheeden. Results on weighted norm inequalities for multipliers. *Trans. Amer. Math. Soc.*, 255:343–362, 1979.

- [7] P.I. Lizorkin. Generalized Liouville differentiation and the functional spaces $L_p^r(E_n)$. Imbedding theorems (Russian). *Math. Sb.*, 60(3):325–353, 1963.
- [8] P.I. Lizorkin. Generalized Liouville differentiations and the multiplier method in the theory of imbeddings of classes of differentiable functions (Russian). *Trudy Mat. Inst. Steklov*, 105:89–167, 1969.
- [9] P.I. Lizorkin. Operators connected with fractional differentiation and classes of differentiable functions (Russian). *Trudy Mat. Inst. Steklov*, 117:212–243, 1972.
- [10] V. G. Maz'ya and I. E. Verbitsky. Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. *Ark. Mat.*, 33(1):81–115, 1995.
- [11] B. Muckenhoupt. Weighted norm inequalities for the Hardy maximal function. *Trans. Amer. Math. Soc.*, 165:207–226, 1972.
- [12] V.A. Nogin. Weighted spaces $L_{p,r}^\alpha(p_1, p_2)$ of differentiable functions of fractional smoothness (Russian). *Mat. Sb. (N. S.)*, 131(2):213–224, 1986. Transl. in *Math. USSR-Sb.*, 1966, **58**, no 1, 209-221.
- [13] V.A. Nogin and S.G. Samko. Inversion and description of Riesz potentials with densities in weighted L_p -spaces (Russian). *Izv. Vuzov. Matematika*, (1):70–72, 1985. Transl. in *Soviet Math. (Izv. VUZ)*.
- [14] V.A. Nogin and S.G. Samko. Inversion and characterization of Riesz potentials in weighted spaces via approximative inverse operators. *Proc. A. Razmadze Math. Inst.*, 129:99–106, 2002.
- [15] S.G. Samko. Spaces of Riesz potentials (Russian). *Izv. Akad. Nauk SSSR, ser. Mat.*, 40(5):1143–1172, 1976. Transl. in *Math. USSR Izvestija*, **10** (1976), no 5, 1089-1117.
- [16] S.G. Samko. A new approach to the inversion of the Riesz potential operator. *Fract. Calc. Appl. Anal.*, 1(3):225–245, 1998.
- [17] S.G. Samko. Approximative approach to fractional powers of operators. In *Proceedings of the Second ISAAC Congress, Vol. 2 (Fukuoka, 1999)*, volume 8 of *Int. Soc. Anal. Appl. Comput.*, pages 1163–1170. Kluwer Acad. Publ., 2000.
- [18] S.G. Samko. *Hypersingular Integrals and their Applications*. London-New-York: Taylor & Francis, Series "Analytical Methods and Special Functions", vol. 5, 2002. 358 + xvii pages.

- [19] S.G. Samko, A.A. Kilbas, and O.I. Marichev. *Fractional Integrals and Derivatives. Theory and Applications.* London-New-York: Gordon & Breach. Sci. Publ., (Russian edition - *Fractional Integrals and Derivatives and some of their Applications*, Minsk: Nauka i Tekhnika, 1987.), 1993. 1012 pages.
- [20] J.-O. Strömberg and A. Torchinsky. *Weighted Hardy spaces*, volume 1381 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1989.
- [21] I. E. Verbitsky and R. L. Wheeden. Weighted trace inequalities for fractional integrals and applications to semilinear equations. *J. Funct. Anal.*, 129(1):221–241, 1995.