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Abstract

The method of approximative inverse operators is applied to the inversion problem
for the Riesz potentials f = Iαϕ, 0 < <α < n, with densities ϕ in the Lebesgue spaces
Lp

w(Rn) with Muckenhoupt weight w, together with the characterization of the range
Iα(Lp

w) in the general situation when potentials f ∈ Lq
v(Rn), where 1 < p < ∞ and

q ≥ p and Muckenhoupt weights w and v are independent, being related to each other
only by integral inequalities

Key words: weighted Lebesgue spaces, Riesz potential operator, hypersingular
integrals, approximative inverses, Muckenhoupt weights

AMS Classification 2000: 31 B99, 46 E35, 46P05, 26A33

1 Introduction

We consider the Riesz potential operator

f(x) = Iαϕ(x) =
1

γ(α)

∫

Rn

ϕ(y)

|x− y|n−α
dy, (1.1)

where as usual

γ(α) =
2απ

n
2 Γ

(
α
2

)

Γ
(

n−α
2

) , (1.2)

as acting from a weighted Lebesgue spaces Lp
w(Rn) into another such space Lq

v(Rn)
with q > p > 1 and general weight functions w and v of Muckenhoupt type.
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We admit complex values of α and assume that 0 < <α < n.
It is known ([18], Ch.3 and Ch. 7; [19], Section 27 ) that in the case of real α

the operator (left) inverse to Iα has the form of hypersingular operator

ϕ(x) = (Iα)−1f(x) = Dαf(x) : =
1

dn,α

∫

Rn

(∆yf)(x)

|y|n+α
dy, (1.3)

known also as the Riesz fractional derivative, where (∆`
yf)(x) is a centered or non-

centered finite difference of f of order ` (` > α or ` > 2
[

α
2

]
depending on the type of

the finite difference), and the integral in (1.3) is treated as convergent in the norm of
the space of functions ϕ, this also works for complex α with 0 < α < 2 and ` = 1; see
[18] and [19] for details. The inversion of the potential Iα with densities ϕ ∈ Lp(Rn)
and description of the range Iα[Lp(Rn)] in terms of the constriction (1.3) was given
in [15], see also [18], Theorems 3.22, 7.9 and 7.11. Similar results for the weighted
spaces Lp

w(Rn) with the Muckenhoupt weight w were obtained in [13] and [12] (see
[18], Theorem 7.36).

A modification of the method of hypersingular operators which works for all
complex α with 0 < <α < n, but requires the generalized finite differences, may be
found in [18], p. 83.

There exists also an alternative approach to the inversion of the Riesz potential
operator based on the method of approximative inverse operators (AIO)which works
well for all complex α in the strip 0 < <α < n. This approach realized in [16] (see
also [18], Ch. 11) for non-weighted spaces Lp(Rn), provides the construction of the
inverse operator in the form

Dαf(x) = lim
ε→0
(Lp)

Tα
ε f, 0 < <α < n, 1 < p <

n

<α
, (1.4)

where

Tα
ε f = ε−n

∫

Rn

hα(y)f(x− εy) dy (1.5)

where the kernel hα(y) ∈ L1(Rn) has the property that its Fourier transform has
the form

ĥα(ξ) = |ξ|αk̂(ξ) (1.6)

where k(x) may be any function such that

k(x) ∈ L1(Rn)
⋂

Iα(L1). (1.7)

See also a similar approach for the realization of fractional powers of operators in
[17]. An extension of this alternative inversion of [16] to the case of weighted spaces
with Muckenhoupt weight was given in [14]. Observe that relation (1.7) means that

hα(x) ∈ L1(Rn) and hα(x) = Dαk(x), k ∈ L1(Rn). (1.8)
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so that
hα(x) ∈ L1(Rn) and Iαhα(x) ∈ L1(Rn). (1.9)

Some examples of functions k(x) and hα(x) satisfying conditions (1.6)-(1.8) were
given in [16], see also [18], Sections 1.4-1.5 of Ch. 11.

The results obtained in [16] provide a characterization of the range Iα(Lp
w),

in particular, in terms of its imbedding into the space Lq
v(Rn) with the Sobolev

exponent q = np
n−αp

(which assumes that p < n
α
) and exponent v = w

q
p .

Meanwhile, it is actual to obtain a more general result for densities ϕ ∈ Lp
w(Rn)

and potentials f ∈ Lq
v(Rn), when 1 < p < ∞ (not only 1 < p < n

<α
) and q ≥ p (not

only q = np
n−<αp

) and weights w and v are independent, being related to each other

only by integral inequalities (two weight approach, see [5], [3], [4], [2]).
This goal is realized in this paper.

N o t a t i o n :

x = (x1, ..., xn) ∈ Rn;
for E ⊂ Rn, by |E| we denote the Lebesgue measure of E;
B(x, r) is the ball of radius r centered at the point x;
Fϕ(ξ) = ϕ̂(ξ) =

∫
Rn

eiξyϕ(y) dy;

F−1f(x) = f̂(x) = 1
(2π)n

∫
Rn

e−ixξf(ξ) dξ;

〈f, ω〉 =
∫
Rn

f(x)ω(x) dx;

S = S(Rn) is the Schwartz space of rapidly decreasing functions.

2 Preliminaries

a) On weights and weighted spaces. Let w be a locally integrable almost
everywhere positive function called a weight on Rn. As usual, by Lp

w(Rn) we denote
the weighted Lebesgue space of all measurable functions f : Rn → R1 with the finite
norm

‖f‖Lp
w

=




∫

Rn

|f(x)|pw(x) dx




1
p

, 1 ≤ p < ∞.

Definition 2.1. Let 1 < p < ∞. We say that a weight w belongs to Ap, if

sup


 1

|B|
∫

B

w(x) dx





 1

|B|
∫

B

w1−p′(x) dx




p−1

< ∞, p′ =
p

p− 1
,
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where the supremum is taken over all balls B,B ⊂ Rn.
As is well known [11], [1], the Hardy-Littlewood maximal operator

Mf(x) = sup
B3x

∫

B

|f(y)| dy

is bounded in the space Lp
w(Rn) if and only if w ∈ Ap.

It is known that

Lp
w(Rn) ⊂ L1

ρ(Rn), ρ(x) = (1 + |x|)−n (2.1)

for any weight w ∈ Ap and

w ∈ Ap ⇔ w1−p′ ∈ Ap′ , (2.2)

for all 1 < p < ∞.
We remind the definition of the Lizorkin class

Φ = {ϕ ∈ S : ϕ̂ ∈ Ψ}, where Ψ = {ψ ∈ S : (Dk)(0) = 0, |k| = 0, 1, 2, ...}

see [7], [8], [9] (see also [18], p.39), which is invariant with respect to the Riesz
potential operator Iα.

The Riesz potential operator I iθ of purely order iθ is defined by its Fourier
multiplier m(ξ) = |ξ|iθ:

I iθϕ = F−1|ξ|iθFϕ, ϕ ∈ Φ, θ ∈ R1 (2.3)

which is well suited for the space Lp
w(Rn), w ∈ Ap, according to Theorem C given

below.

Lemma 2.2.The operator I iθ is bounded in the space Lp
w(Rn), 1 < p < ∞ for all

w ∈ Ap

The statement of the lemma is obtained by the direct verification of the Mikhlin-
Hörmander condition

sup
R>0

(
Rs|j|−n

∫

R<|ξ|<2R

|Djm(ξ)|s dξ

)
< ∞, |j| ≤ n,

where 1 < s ≤ 2, which is sufficient for m(ξ) to be a Fourier multiplier in the
weighted space Lp

w(Rn), 1 < p < ∞, with w ∈ Ap, see [6], Theorem 2 (one may
choose any s ∈ (1, 2] different from n

n−1
, n

n−2
, ..., n

n−k
, k ≤ n

2
when checking this

condition for m(ξ) = |ξ|iθ).
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Definition 2.3. Let µ be a measure on Rn. We say that µ satisfies the doubling
condition if there exists a positive constant b such that the inequality

µB(x, 2r) ≤ bµB(x, r)

holds for all the balls B(x, r).

Definition 2.4. A measure µ on Rn satisfies the reverse doubling condition if
there exists positive constants η1 and η1 such that

µB(x, η1r) ≥ η2µB(x, r)

holds for all the balls B(x, r).
The following statement is well known, see [20], page 11, Lemma 20.

Proposition A. Let µ satisfy the doubling condition. Then µ satisfies the reverse
doubling condition.

In the sequel we denote wE =
∫
E

w(x) dx for any measurable set E ⊂ Rn, where

w is a weight. Note that this measure satisfies the reverse doubling condition if
w ∈ Ap.

We will base ourselves on the following theorems.

Theorem A (see [4], p.116). Let 1 < p < ∞, 0 < α < n and let w and v be
weights on Rn. Let the weights v and w1−p′ satisfy the reverse doubling condition.
Then the operator Iα is bounded from Lp

w(Rn) into Lq
v(Rn) if and only if

sup |B|αn−1




∫

B

v(x) dx




1
q



∫

B

w1−p′(x) dx




1
p′

< ∞ (2.4)

where the supremum is taken over all the balls B ⊂ Rn.

Remark 2.5. Let 1 < p < ∞ and let α be complex with 0 < <α < n and let
the weights v and w1−p′ satisfy the reverse doubling condition. The operator Iα is
bounded in the space Lp

w(Rn) if and only if condition (2.4) is satisfied with |B|αn−1

replaced by |B|<α
n
−1.

Indeed it suffices to observe that Iαϕ = I iθI<αϕ for ϕ ∈ Φ where Φ is dense in
Lp

w(Rn) by Theorem C and the operator I iθ is boundedly invertible in Lp
w(Rn).

For the dilatation kernels

kε(x) =
1

εn
k

(x

ε

)
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the following extension of Stein’s theorem to weighted spaces was given in [12], see
also [18], Theorem 7.31.

Theorem B. a) Let k(x) have a non-increasing radial dominant b(|x|) ∈ L1(Rn)
and f ∈ Lp

w, w ∈ Ap. Then

sup
ε>0

|(kε ∗ f)(x)| ≤ c‖b‖1(Mf)(x), (2.5)

where (Mf)(x) is the Hardy-Littlewood maximal function.
b) If in addition

∫
Rn

k(x)dx = 1, then

(kε ∗ f)(x) → f(x)

as ε → 0 in the Lp
w-norm and almost everywhere.

Theorem C ([18], Theorem 7.34 and [13], Theorem 4.3). The Lizorkin class Φ
is dense in the weighted space Lp

w(Rn) for any weight w ∈ Ap, 1 < p < ∞.

Theorem D ([10], [21] ). Let 1 < p < ∞ and 0 < α < n
p
. The operator Iα is

bounded from Lp(Rn) to Lp
v(Rn) if and only if Iαv ∈ Lp′

loc and

Iα[Iαv]p
′
(x) ≤ cIαv(x) almost everywhere. (2.6)

Remark 2.6. Theorem D is also valid for complex α with 0 < <α < n, if
condition (2.6) is replaced by

I<α[I<αv]p
′
(x) ≤ cI<αv(x) almost everywhere, (2.7)

see arguments in the proof of Corollary 2.5.

We shall also need the condition dual to (2.7), namely

I<α[I<αw1−p′ ]p(x) ≤ cI<αw1−p′(x) almost everywhere. (2.8)

A simple example of weight functions w ∈ Ap and v ∈ Aq for which condition
(2.4) holds, is that of power functions:

w(x) = |x|β, v(x) = |x|γ, (2.9)

where

−n < β < n(p− 1), −n < γ < n(p− 1) and
n + β

p
=

n + γ

q
+<α. (2.10)

As regards conditions (2.6) and (2.8), they are valid for

v(x) = |x|−<αp ∈ Ap, 0 < <α <
n

p
, and w(x) = |x|<αp ∈ Ap, 0 < <α <

n

p′
,

(2.11)
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respectively

c) Appropriate kernels.

Definition 2.7. A kernel hα(x) ∈ L1(Rn), 0 < <α < n, is called appropriate if
it satisfies the assumption in (1.9) and

∫

Rn

(Iαhα)(x) dx = 1

and both hα(x) and Iαhα(x) have integrable non-increasing radial dominants.

It is known that the following functions are examples of appropriate kernels:

1) hα(x) = F−1(|ξ|αe−|ξ|) =
Γ(n + α)

2n−1π
n
2 Γ

(
n
2

)F

(
n + α

2
,
n + α + 1

2
;
n

2
;−|x|2

)

(2.12)
where F

(
n+α

2
, n+α+1

2
; n

2
; z

)
is the Gauss hypergeometric function, and

2) hα(x) =
(−1)m

γn(2m− α)
∆m

(
1

(1 + |x|2)n+α
2
−m

)

(2.13)

=
1

γn(−α)

[
1

(1 + |x|2)n+α
2

+
n∑

k=1

(−1)kcm,k

(1 + |x|2)n+α
2

+k

]

where cm,k =
(

m
k

) (n+1
2 )

k

(α
2
−m+1)

k

and m is any integer such that m > <α
2

, α 6= 2, 4, 6, ... ,

see [18], Lemmas 11.7-11.8 and 11.13.
Obviously, the set of appropriate kernels is rich enough. Indeed, if hα(x) is an

appropriate kernel, then any convolution

K ∗ hα(x) =

∫

Rn

K(x− y)hα(y) dy

where K ∈ L1(Rn) and
∫
Rn

K(y) dy = 1, is again appropriate kernel.

3 Statements of the main results.

Our first theorem provides the following two-weighted result on the inversion of the
Riesz potential operator.
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Theorem 3.1. Let 1 < p < ∞, 0 < <α < n and w ∈ Ap. Assume that there
exist q, p < q < ∞ and a weight function v ∈ Aq such that (2.4) holds. Then the
equality

f = Iαϕ with ϕ ∈ Lp
w(Rn) (3.1)

implies

ϕ = lim
ε→0

T α
ε f = lim

ε→0
ε−n

∫

Rn

hα(y)f(x− εy) dy (3.2)

where hα(y) is any appropriate kernel (see Definition 2.7) and the limit in (3.2) is
taken in Lp

w-norm or almost everywhere.

The next theorem gives the two-weighted description of the range of the Riesz
potential.

Theorem 3.2. Let 1 < p < ∞, 0 < <α < n and w ∈ Ap and let there exist
q, p < q < ∞ and v ∈ Aq such that (2.4) holds. A function f belongs to the range
Iα(Lp

w) if and only if
i) f ∈ Lq

v(Rn),
ii) one of the following two conditions is fulfilled:
a) lim

ε→0
T α

ε f ∈ Lp
w(Rn) where T α

ε is the operator (1.5) with any appropriate kernel

hα(x) and the limit is taken with respect to the Lp
w(Rn)-norm;

b) sup
ε>0

‖Tα
ε f‖Lp

w
< ∞.

The following theorem presents the corresponding inversion statement for the
Riesz potential operators in the case where 0 < p < n

<α
and w ≡ 1 and is based on

Theorem D.

Theorem 3.3. Let 1 < p < ∞, 0 < <α < n
p

and v ∈ Ap. Suppose that (2.6)

holds. A function f belongs to the range Iα(Lp) if and only if
i) f ∈ Lp

v(Rn),
ii) one of the following two conditions is fulfilled:
a) lim

ε→0
T α

ε f ∈ Lp(Rn) with any appropriate kernel hα(x) in the operator Tα
ε , the

limit being taken with respect to the Lp(Rn)-norm;
b) sup

ε>0
‖Tα

ε f‖Lp < ∞.

Finally, the last two theorems give some statements dual to the situation con-
sidered in Theorem 3.3 and provide both the inversion statement and the charac-
terization of the range.

Theorem 3.4. Let 1 < p < ∞, 0 < <α < n
p′ and w ∈ Ap. Suppose that
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Iα(w1−p′) ∈ Lp
loc and (2.8) holds. If f = Iαϕ, where ϕ ∈ Lp

w(Rn), then

ϕ = lim
ε→0

T α
ε f = lim

ε→0
ε−n

∫

Rn

hα(y)f(x− εy) dy (3.3)

where hα(y) is any appropriate kernel and the limit is taken in Lp
w-norm or almost

everywhere.

Theorem 3.5. Let 1 < p < ∞, 0 < <α < n
p′ and w ∈ Ap. Suppose that

Iα(w1−p′) ∈ Lp
loc and (2.8) holds. Then f ∈ Iα(Lp

w) if and only if
i) f ∈ Lp(Rn),
ii) one of the following two conditions is fulfilled:
a) lim

ε→0
Tα

ε f ∈ Lp
w(Rn) where lim

ε→0
T α

ε is the same as in (3.3) with any appropriate

kernel hα(x) and the limit being taken in the Lp
w(Rn)-norm;

b) sup
ε0
‖Tα

ε f‖Lp
w

< ∞.

4 Proofs.

The proofs of Theorems 3.1 and 3.2 represent a modification of proofs of Theorems
3.1 and 3.2 from [14].

Proof of Theorem 3.1.
For ϕ ∈ Φ there holds the equality

(Tα
ε Iαϕ)(x) =

1

εn
k

(x

ε

)
∗ ϕ with k(x) ∈ L1(Rn) (4.1)

which follows via Fourier transforms from (1.5)–(1.7). Let us show that this relation
remains valid for all ϕ ∈ Lp

w(Rn). Let ε be fixed and let ϕ0 ∈ Lp
w(Rn). To show that

(4.1) is valid for ϕ0, we pass to the limit in (4.1) when Φ 3 ϕ → ϕ0, but do this in
different norms for the left-hand and tight-hand sides of (4.1).

By Theorem C, there exists a sequence ϕm ∈ Φ such that ϕm → ϕ0 in the
Lp

w-norm. The left-hand side operator

Aε = T α
ε Iα

is bounded from Lp
w(Rn) into Lq

v(Rn) by Theorem A (with Remark 2.5 taken into
account) and Theorem B and Proposition A and the fact that w ∈ Ap and v ∈ Aq .
Therefore,

Aεϕm → Aεϕ0 in Lq
v(Rn). (4.2)

On the other hand, the right-hand side operator

Bε =
1

εn
k

(x

ε

)
∗
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is bounded in the space Lp
w(Rn) by Theorem B and the fact that w ∈ Ap. Therefore,

Bεϕm → Bεϕ0 in Lp
w(Rn). (4.3)

From (4.2)-(4.3) it follows that there exists a subsequence ϕmk
such that

Aεϕmk
→ Aεϕ0 and Aεϕmk

→ Aεϕ0 almost everywhere

and we arrive at (4.1) for ϕ0 ∈ Lp
w(Rn).

It remains to observe that by Theorem C and the condition w ∈ Ap, we have
that 1

εn k
(

x
ε

) ∗ ϕ converges in Lp
w(Rn) as ε → 0. Therefore, passing to the limit in

(4.1) as ε → 0, we obtain the desired relation (3.2).

Proof of Theorem 3.2.
Necessity follows from Theorem A (with Remark 2.5 taken into account) and B

and relation (4.1) proved for f ∈ Lp
w(Rn).

Let us prove the sufficiency. Let f ∈ Lq
v(Rn) and suppose that condition a) of

our theorem is satisfied. Let ϕ = lim
ε→0

T α
ε f , the limit being in the Lp

w(Rn)-norm. The

relation is valid
〈f, ψ〉 = 〈Iαϕ, ψ〉 , ψ ∈ Φ. (4.4)

Indeed, for ϕ ∈ Φ we have

〈Iαϕ, ψ〉 = 〈ϕ, Iαψ〉 =

〈
lim
ε→0
(L

p
w)

Tα
ε f, Iαψ

〉
= lim

ε→0
〈Tα

ε f, Iαψ〉

= lim
ε→0

〈f, T α
ε Iαψ〉 = lim

ε→0

〈
f,

1

εn
k

(x

ε

)
∗ ψ

〉
= 〈f, ϕ〉 .

Here the first passage follows from Fubini theorem which is justified with the aid of
the Hölder inequality:

| 〈Iαϕ, ψ〉 | ≤ ‖Iαϕ‖Lq
v
‖ψ‖

Lq′
v1−q′

< ∞

since Iαϕ ∈ Lq
v(Rn) by Theorem A. The third passage is obvious as the convergence

in Lp
w(Rn) implies that in the space Φ′. The fourth passage follows from Fubini

theorem:
| 〈f, T α

ε Iαψ〉 | ≤ ‖f‖Lq
v
‖T α

ε Iαψ‖
Lq′

v1−q′
< ∞

(note that Iαψ ∈ Φ and by Theorem B Tα
ε Iαψ ∈ Lq′

v1−q′ because v1−q′ ∈ Aq′). The
fifth passage, that is, equality (4.1) has already been justified. The last passage is
justified with the aid of the Hölder inequality and Theorem B since 1

εn k
(

x
ε

)∗ψ → ψ
almost everywhere and

∣∣∣∣
〈

f,
1

εn
k

(x

ε

)
∗ ψ

〉∣∣∣∣ ≤ ‖f‖Lq
v

∥∥∥∥
1

εn
k

(x

ε

)
∗ ψ

∥∥∥∥
Lq′

v1−q′

≤ c‖f‖Lq
v
.
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From (4.4) it follows that

f(x) = (Iαϕ)(x) + P (x),

where P (x) is a polynomial. By (2.1) we obtain that P (x) ≡ 0. Hence f ∈ Iα(Lp
w).

Now let f ∈ Lq
v(Rn) and suppose that condition b) is satisfied. Since the space

Lp
w(Rn), we have that the set {Tα

ε f}ε>0 is weakly compact. Hence there exists a
subsequence

{
T α

εk
f
}∞

k=1
which weakly converges in Lp

w(Rn) to a function ϕ ∈ Lp
w(Rn).

Arguing as above, we easily obtain that f(x) = (Iαϕ)(x).

Proof of Theorem 3.3 is obtained repeating arguments of the proof of Theorem
3.2, but with reference to Theorems B,C and D this time.

Proof of Theorem 3.4 is similar to that of Theorem 3.1. We only note that,
by duality arguments, from Theorem D (with Remark 2.6 taken into account) the
operator Iα is bounded from Lp

w(Rn) to Lp(Rn) if and only if Iαw1−p′ ∈ Lp
loc and

(2.8) holds.

Proof of Theorem 3.5 is similar to that of Theorem 3.1.
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