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Abstract

For the singular integral operators with piecewise continuous coefficients
there is proved the criterion of Fredholmness and formula for index in the
generalized Lebesgue spaces Lp(·)(Γ) on a finite closed Lyapunov curve Γ or a
curve of bounded rotation. The obtained criterion shows that Fredholmness
in this space and the index depend on values of the function p(t) at the
discontinuity points of the coefficients of the operator, but do not depend on
values of p(t) at points of their continuity.

Key words: variable exponent, Lebesgue spaces, singular operator, Fred-
holm operators, essential spectrum

AMS Classification 2000: 45E05, 46E30

1 Introduction

We consider the singular integral operator

Aϕ(t) : = u(t)ϕ(t) +
v(t)

πi

∫

Γ

ϕ(τ) dτ

τ − t
= f(t), t ∈ Γ, (1.1)

or
A = aP+ + bP−, a = u + v, b = u− v, (1.2)
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where P± = 1
2
(I ± S) are the projectors, generated by the singular integral

operator

Sϕ(t) =
1

πi

∫

Γ

ϕ(τ) dτ

τ − t
,

in the generalized Lebesgue spaces Lp(·)(Γ) with a variable exponent p(t)
satisfying the logarithmic smoothness condition. The coefficients u and v are
assumed to be piece-wise continuous and Γ is a finite closed curve in the
complex plane.

We obtain necessary and sufficient conditions for the operator A to be
Fredholm in the space Lp(·)(Γ) and give a formula for the index under some
natural assumptions on p(x), see Theorem A. The obtained criterion shows
that Fredholmness of the operator A in the space Lp(t)(Γ) and its index
depend on values of the function p(t) at the discontinuity points of the co-
efficients a(t) and b(t), but do not depend on values of p(t) at points of
continuity.

The generalized Lebesgue spaces Lp(·) with variable exponent and opera-
tors in these spaces are intensively studied nowadays. One may see an evident
rise of interest to these spaces and to the corresponding Sobolev type spaces
Wm,p(·) during the last decade, especially the last years. The increase in
studying both the spaces Lp(·) or Wm,p(·) themselves and the operator the-
ory in these spaces is observed. As is known, this interest is aroused, apart
from mathematical curiosity, by possible applications to models with the so
called non-standard local growth (in fluid mechanics, elasticity theory, in
differential equations, see for example [23], [7] and references therein).

The development of the operator theory in the spaces Lp(·) encountered
essential difficulties from the very beginning. For example, in the case of
the spaces Lp(·)(Rn), the convolution operators in general are not bounded
in these spaces, the Young theorem not being valid in the general case. A
convolution operator may be bounded in this space if, roughly speaking, its
kernel has singularity only at the origin, see [24]. One of the problems which
were open for a long time, was the boundedness of the maximal operator
and of singular operators in these spaces. The boundedness of the maximal
operator was recently proved by L.Diening [5], [6] in case of bounded domains
Ω ⊂ Rn or in the case of Ω = Rn, but p(x) constant at infinity. Recently,
D.Cruz-Uribe, A. Fiorenza, and C.J. Neugebauer [4] proved the boundedness
of the maximal operator on unbounded domains when the exponent p(x) is
not necessary constant at infinity.
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There is also an evident progress in this direction for singular opera-
tors. L.Diening and M.Ružička [7] proved the boundedness of Calderon-
Zygmund type operators in these spaces. As is known, for application, the
weighted boundedness of singular operators is required. The weighted es-
timates with power weights were proved by the authors for the maximal
operator on bounded domains in [15]-[19], see also [14], and for singular type
operators in [20], [16], [18], [17].

In this paper we give an application of the weighted results obtained in
[20], [16], [18], [17], to the theory of Fredholm solvability of singular integral
equations (1.1) with piece-wise continuous coefficients. As is well known to
researches in this field, to investigate such equations in this or other function
space, one should know exactly what are necessary and sufficient conditions
of weighted singular operator in this space. These conditions being known, to
obtain the criterion of Fredholmness, one should follow the known scheme of
investigation of singular operators in already studied situations, for example
in the spaces Lp(Γ), p = const. This scheme may be rewritten in terms
of an arbitrary Banach space of functions defined on Γ, subject to some
natural axioms. We do this in Section 4. As a model of the scheme to follow
we use the Gakhov-Muskhelishvili-Khvedelidze-Gohberg-Krupnik scheme of
investigation of singular operators with piece-wise continuous coefficients.

The theory of singular integral operators itself was intensively developed
last decades and was generalized, in particular, to the case of general weights
(Muckenhoupt weights) and Carleson curves, both generalizations leading to
new effects, see [1], [2], [3], [28] and references therein. We do not touch
such generalizations in the Lp(·)-setting in this paper. Basing on the ap-
proaches developed in [1], [2], [3], [28], one can consider the operator A in
these more general situations, as soon as necessary and sufficient conditions
of the boundedness of the singular operator S in the spaces Lp(·)(Γ, ρ) with a
general weight ρ and/or a Carleson curve Γ are known. For the time being,
this boundedness is a challenging open problem in both the cases. This prob-
lem being solved, this would pave the way to obtain results on Fredholmness
of singular integral operators in more general situations.

For ”bad” curves and general weights this open problem is tightly con-
nected with other open questions. As is already known, on Lyapunov curves
the assumption on p(t) guaranteering the boundedness of the singular oper-
ator is the logarithmic smoothness condition, see (2.6), which is necessary in
a sense; at the least, it is surely necessary for the maximal operator.

Can the boundedness of the singular integral operator on a Carleson curve
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be proved under this condition? Or can it be proved if p(t) is even infinitely
differentiable, but variable. Or on the whole class of Carleson curves the
boundedness may be true only for constant p ? All these questions are open.

The paper is organized as follows. The main statement on Fredholmness
of the operator A is given in Theorem A. In this statement for the spaces
Lp(·)(Γ), the curve Γ is assumed to be a Lyapunov curve or a curve of bounded
rotation without cusps.

However, in fact we formulate a more general statement on Fredholmness
of the operator A in an abstract Banach space of functions on Γ, satisfying
some natural axioms. This statement, as already mentioned above, appears
as a result of an abstract Banach space reformulation of the Gohberg-Krupnik
scheme of investigation of singular operators with piece-wise continuous co-
efficients. For the completeness of the presentation and the reader’s conve-
nience we expose this reformulation with proofs in Section 4.

The theorem on Fredholmness of the operator A in the spaces Lp(·)(Γ) is
obtained as a corollary to that abstract Banach space scheme, see Section
5. It is possible to extend the Fredholmness theorem for the operator A also
for piecewise Lyapunov curves or curves of bounded variation with arbitrary
cusps, but we do not dwell on this extension in this paper.

We remind the basics for the Lebesgue spaces with variable exponents in
Subsection 2.1; the reader is referred for details to the papers [27], [21], [26],
[25] in the case of the spaces Lp(·)(Ω), Ω ∈ Rn and to the papers [19], [20],
[16] in the case of the spaces Lp(·)(Γ) on curves.

N o t a t i o n :
Γ is a finite closed rectifiable Jordan curve on a complex plane;
` is its length;
D+ is the interior of the curve Γ and D− is its exterior;
PC(Γ) is the class of piece-wise continuous functions on Γ with a finite
number of jumps;
IndXA is the index of the Fredholm operator A in a Banach space X;
ind a is the winding number of a continuous function a on a closed curve Γ;
αX(A) and βX(A) are deficiency numbers of a Fredholm operator A in the
Banach space X;
Z = {0,±1,±2,±3, ...};

1
q(t)

= 1− 1
p(t)

.
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2 Preliminaries.

a). On Lp(·)-spaces. Let Ω be a bounded open subset of Rn and p(x) a
measurable function on Ω such that 1 < p0 ≤ p(x) ≤ P < ∞, x ∈ Ω and

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω. (2.1)

We refer to ([14], Appendix A) for examples of non-holderian functions sat-
isfying condition (2.1). By Lp(·)(Ω) we denote the space of functions f(x) on
Ω such that

Ap(f) =

∫

Ω

|f(x)|p(x)dx < ∞.

This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf

{
λ > 0 : Ap

(
f

λ

)
≤ 1

}
. (2.2)

Under condition (2.5) the space Lp(·) coincides with the space

{
f(x) :

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ < ∞ for all ϕ(x) ∈ Lq(·)(Ω)

}
(2.3)

where 1
p(t)

+ 1
q(t)

≡ 1, up to equivalence of the norms

‖f‖Lp(·) ∼ sup
‖ϕ‖

Lq(·)≤1

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ ∼ sup
Aq(ϕ)≤1

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ , (2.4)

see [21], Theorem 2.3 or [26], Theorem 3.5.
Let ρ be a measurable almost everywhere positive integrable function.

The weighted Lebesgue space L
p(·)
ρ = Lp(·)(Ω, ρ) is defined as the set of all

measurable functions for which

‖f‖
L

p(·)
ρ

= ‖ρf‖Lp(·) < ∞.

The space Lp(·)(Ω, ρ) is a Banach space.
The space Lp(·)(Γ) on a rectifiable simple curve

Γ =
{
t ∈ C : t = t(s), 0 ≤ s ≤ `

}
,
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where s is the arc length, may be introduced in a similar way via the func-
tional

Ip(f) =

∫

Γ

|f(t)|p(t) |dt| =
`∫

0

∣∣f [t(s)]
∣∣p[t(s)]

ds.

We assume that

1 < p0 ≤ p(t) ≤ P < ∞, t ∈ Γ. (2.5)

Condition (2.1) may be imposed either on the function p(t):

|p(t1)− p(t2)| ≤ A

ln 1
|t1−t2|

, |t1 − t2| ≤ 1

2
, t1, t2 ∈ Γ (2.6)

or on the function p∗(s) = p[t(s)]:

∣∣p∗(s1)− p∗(s2)
∣∣ ≤ A

ln 1
|s1−s2|

, |s1 − s2| ≤ 1

2
, s1, s2 ∈ [0, `]. (2.7)

Since |t(s1)−t(s2)| ≤ |s1−s2|, condition (2.6) always implies (2.7). Inversely,

(2.7) implies (2.6),if there exists λ > 0 such that |s1− s2| ≤ c
∣∣t(s1)− t(s2)

∣∣λ.
Therefore, conditions (2.6) and (2.7) are equivalent, for example on curves
with the so called chord condition.

We shall deal with the weighted space

Lp(·)(Γ, ρ) = {f : ‖f [t(s)]ρ(s)‖Lp(s) < ∞}
where

ρ(s) =
n∏

k=1

|t(s)− t(ck)|βk ≈
n∏

k=1

|s− ck|βk (2.8)

where ck ∈ [0, `], k = 1, 2, ..., n.
We remind the Hölder inequality

∣∣∣∣∣∣

∫

Γ

f(t)g(t) dt

∣∣∣∣∣∣
≤ c‖f‖Lp(·)‖g‖Lq(·) (2.9)

for the spaces with variable exponent. From (2.9) the imbedding follows

Lp(·)(Γ, |t− t0|γ) ⊂ L1(Γ), if γ <
1

q(t0)
. (2.10)
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b). Two theorems on the spaces Lp(·)(Γ). In [18]-[17] the following
statements were proved.

Theorem 2.1. Let Γ be a Lyapunov curve or a curve of bounded rotation
without cusps and let p(s) satisfy conditions (2.5) and (2.7). The operator S

is bounded in the space L
p(·)
ρ (Γ) with the weight function (2.8) if and only if

− 1

p(ck)
< βk <

1

q(ck)
, k = 1, 2, ..., n. (2.11)

Theorem 2.2. Let p(x) satisfy the condition 1 ≤ p(x) ≤ P < ∞, x ∈
Rn and let ρ(x) ≥ 0 be such that |{x ∈ Rn : ρ(x) = 0}| = 0 and

w(x) = [ρ(x)]p(x) ∈ L1
loc(Rn). (2.12)

Then C∞
0 (Rn) is dense in the space Lp(·)(Rn, ρ).

Similarly, the following analogue of Theorem 2.2 can be proved.

Theorem 2.3. Let Γ be a Jordan curve. The set C∞(Γ) (and even the
set of rational functions on Γ) is dense in Lp(·)(Γ, ρ) under the assumptions
1 ≤ p(t) ≤ P < ∞, t ∈ Γ and |{t ∈ Γ : ρ(t) = 0}| = 0 and [ρ(t)]p(t) ∈
L1(Γ).

3 Statement of the main result for the spaces

Lp(·)(Γ).

Let a(t) ∈ PC(Γ) and t1, t2, ..tn be the points of discontinuity of a(t).

Definition 3.1. Following the known definition ([10], p.63), we say that
a function a(t) ∈ PC(Γ) is p(·)-nonsingular, if

inf
t∈Γ
|a(t)| > 0 (3.1)

and at all the points of discontinuity of a(t) the following condition is satisfied:

arg
a(tk − 0)

a(tk + 0)
6= 2π

p(tk)
(mod 2π), k = 1, 2, ..., n. (3.2)
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For a non-vanishing function a(t) ∈ PC(Γ) we denote

θ(tk) =
1

2π

tk+1−0∫

tk+0

d arg a(t). (3.3)

Definition 3.2. Let a(t) ∈ PC(Γ) be a p(·)-nonsingular function. The
integer

indp(·) a =
n∑

k=1

[
θ(tk)− 1

2π
arg

a(tk − 0)

a(tk + 0)

]
, (3.4)

where the values of 1
2π

arg a(tk−0)
a(tk+0)

are chosen in the interval

− 1

q(tk)
<

1

2π
arg

a(tk − 0)

a(tk + 0)
<

1

p(tk)
(3.5)

where 1
p(t)

+ 1
q(t)

≡ 1, is called the p(·)-index of the function a.

Basing on Lemma 2.7 from [11], it is easy to see that indp(·) a is the
same as the Gohberg-Krupnik p-index defined as the winding number of the
curve, obtained from the image a(Γ) of the curve Γ by supplementing it
at its discontinuities by the corresponding circular arcs in the well known
way (see for instance, [10], p. 63-64); the only difference is now in the fact
that the angle of the arc is defined by the exponent p(tk) varying from one
discontinuity point to another.

Theorem A. Let Γ be a closed Lyapunov curve or a curve of bounded
rotation without cusps and let p(t), t ∈ Γ, satisfy assumptions (2.5) and
(2.7). The operator A = aP+ + bP− with a, b ∈ PC(Γ) is Fredholm in the
space Lp(·)(Γ) if and only if

inf
t∈Γ
|a(t)| 6= 0, inf

t∈Γ
|b(t)| 6= 0 (3.6)

and the function a(t)
b(t)

is p(·)-nonsingular . Under these conditions

IndLp(·) A = − indp(·)
a

b
. (3.7)

Theorem A is proved in Section 5.
From Theorem A it follows that the essential spectrum of the operator

aP+ +P− with a ∈ PC(Γ) in the space Lp(·)(Γ) (the set of points on complex
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plane for which an operator is not Fredholm) is described similarly to the case
of constant p, as the union of the images a(Γ) and the well known circular
arcs νp(tk)(a(tk − 0), a(tk + 0)), connecting the points a(tk − 0) and a(tk + 0)
and having the angle 2π

p(tk)
depending on the point tk.

4 Singular integral operators in Banach func-

tion spaces X(Γ).

The theory of singular integral equations with coefficients in PC(Γ) is well
known, for example, in the Lebesgue weighted spaces Lp(Γ, ρ) (see for in-
stance, [10]) and in other spaces of integrable functions. A natural question
is the following. Let X(Γ) be an arbitrary Banach function space on Γ. Under
what axioms on the space X(Γ) the result on Fredholmness of the singular
operator is formulated in the terms similar to those used in Theorem A, that
is, in the terms of X-nonsingular functions and X-index, properly defined.

We give some answer to that question below. In this connection we
observe that the idea of singling out the bounds for the weight functions
(used in Axioms 1 and 2) as the base of construction of Fredholm criterion is
well known in the theory of singular integral operators, see [28]; [1], [3], Ch.
2, [12]. In the context of Carleson curves and general weights this idea led
to the notion of the so called indicator set of the space at the point t0 ∈ Γ,
see [3], p.72. We show that it is possible to axiomatize this idea so that the
Gohberg-Krupnik approach known for Lp(Γ, ρ)-spaces on Lyapunov curves,
may be presented for an arbitrary Banach function space under two natural
axioms.

4.1 Banach function spaces, suitable for singular op-
erators.

Let X = X(Γ) be any Banach space of functions on a closed simple Jordan
rectifiable curve Γ satisfying the following assumptions

C(Γ) ⊂ X(Γ) ⊂ L1(Γ), (4.1)

‖a f‖X ≤ sup
t∈Γ

|a(t)| · ‖f‖X for any a ∈ L∞(Γ), (4.2)
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the operator S is bounded in X(Γ), (4.3)

C∞(Γ) is dense in X(Γ). (4.4)

Assumptions (4.1)-(4.4) will be used to formulate the statement on Fred-
holmness in the case of continuous coefficients. For the case of piece-wise
coefficients we shall also need the following Axioms 1 and 2.

AXIOM 1. For the space X(Γ) there exist two functions α(t) and β(t),
0 < α(t) < 1, 0 < β(t) < 1, such that the operator

|t− t0|γ(t0)S|t− t0|−γ(t0)I, t0 ∈ Γ (4.5)

is bounded in the space X(Γ) for all γ(t0) such that

−α(t0) < γ(t0) < 1− β(t0) (4.6)

and is unbounded in X(Γ) if γ(t0) /∈ (−α(t0), 1− β(t0)).
The functions α(t) and β(t) will be called index functions of the space

X(Γ).

In the case X(Γ) = Lp(·)(Γ, ρ) = {f : |t− t0|µf(t) ∈ Lp(·)(Γ)} we have

α(t) = β(t) =
1

p(t)
+ µ, (4.7)

which follows from Theorem 2.1.

Let X(Γ, |t− t0|γ) = {f : |t− t0|γf(t) ∈ X(Γ)}.
AXIOM 2. For any γ < 1− β(t0) the imbedding X(Γ, |t− t0|γ) ⊂ L1(Γ)

is valid and C∞(Γ) is dense in X(Γ, |t− t0|γ), whatsoever t0 ∈ Γ is.

Lemma 4.1. Let the space X(Γ) satisfy conditions (4.1)-(4.2) and
t1, t2, ..., tn ∈ Γ. Then

n∏

k=1

|t− tk|γk ∈ X(Γ) (4.8)

for all γk > −αk, k = 1, 2, ..., n.

Proof. Let first n = 1. If γ1 ≥ 0, the inclusion (4.8) is obvious because
of the imbedding C(Γ) ⊂ X(Γ).
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Let γ1 ≤ 0. Since 1 ∈ X(Γ), from Axiom 1 it follows that
|t−t1|γ1S (|τ − t1|−γ1) (t) ∈ X(Γ). As −γ1 ≥ 0, we have that S (|τ − t1|−γ1) (t)
is a continuous function non-vanishing at the point y = t1, as is known. Then
|t− t1|γ1 ∈ X(Γ), by property (4.2) taken into account.

The case n > 1 reduces to the case n = 1 by introducing a unity par-

tition on Γ: 1 ≡
n∑

j=1

ωj(t) with ωj(t) ∈ C∞(Γ) and ωj(t) ≡ 0 in a small

neigbourhood of the point tj. Then

n∏

k=1

|t− tk|γk =
n∑

j=1

|t− tj|γjaj(t) (4.9)

with aj(t) ∈ C∞(Γ), so that
n∏

k=1

|t− tk|γk ∈ X in view of the case n = 1 and

(4.2). 2

Let now

X(Γ, ρ) = {f : ρ(t)f(t) ∈ X(Γ)}, ρ(t) =
n∏

k=1

|t− tk|γk , t1, ..., tn ∈ Γ.

(4.10)

Lemma 4.2. Let X(Γ) be a Banach function space satisfying condi-
tions (4.1)-(4.2) and Axioms 1-2. Then the space X(Γ, ρ) satisfies conditions
(4.1)-(4.2) as well, if

−α(tk) < γk < 1− β(tk), k = 1, ..., n.

Proof. To verify properties (4.1)-(4.2) for the space X(Γ, ρ), we observe
that ρ ·C(Γ) ⊂ X(Γ) by Lemma 4.1, which means that C(Γ) ⊂ X(Γ, ρ). The
imbedding X(Γ, ρ) ⊂ L1(Γ) is easily derived from Axiom 2 (introduce the
unity partition).

Property (4.2) for X(Γ, ρ) obviously follows from its validity for X(Γ).
Property (4.3) is in fact postulated in Axiom 1, the passage from the single
weight |t − tk|γk to the weight ρ(t) in (4.10) being justified by the standard
us of a unity partition, as in (4.9). Finally, property (4.2) is also in fact
postulated in Axiom 1 since the space X(Γ, ρ) is the algebraic sum of the
spaces X(Γ, |t− tk|), k = 1, 2, ..., n. 2
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4.2 X-nonsingular functions and X-index of a PC-function.

Here we present an abstract Banach space reformulation of the notions of
p-non-singularity and p-index [10]. A development of these notions in the
context of Carleson curves related to the notion of the indicator set may be
found in [3], Proposition 7.3 and Theorem 7.4.

For a function a ∈ PC(Γ) we put as usual

γ(t) =
1

2πi
ln

a(t− 0)

a(t + 0)
(4.11)

and

ω(t) =
n∏

k=1

(t− z0)
γ(tk)
k (4.12)

where z0 ∈ D+, tk are the points of discontinuity of a and the functions
ωk(z) = (z − z0)

γ(tk)
k stand for univalent analytic functions in the complex

plane with the cut passing from z0 to infinity through the point tk ∈ Γ. The
function

a1(t) =
a(t)

ω(t)
(4.13)

is continuous on Γ independently of the choice of

<γ(tk) =
1

2π
arg

a(tk − 0)

a(tk + 0)
. (4.14)

Following Definitions 3.1 and 3.2, we introduce the following definitions.

Definition 4.3. Let X(Γ) be a Banach function space satisfying Axiom
1. A function a ∈ PC(Γ) is called X-nonsingular if inf

t∈Γ
|a(t)| > 0 and

1

2π
arg

a(tk − 0)

a(tk + 0)
/∈ [α(tk), β(tk)] + Z (4.15)

where [· · · ] + Z stands for the set of
⋃

ξ∈[··· ]
{ξ, ξ ± 1, ξ ± 2, ...}, and α(t) and

β(t) are the index functions of the space X.

Definition 4.4. Let X(Γ) satisfy Axiom 1 and a ∈ PC(Γ) be X-
nonsingular. The integer

indX a =
n∑

k=1

[θ(tk)−<γ(tk)] , (4.16)
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where θ(tk) are increments (3.3) and <γ(tk) are chosen in the interval

β(tk)− 1 < <γ(tk) < α(tk), (4.17)

will be referred to as X-index of the function a.

4.3 The case of a ∈ C(Γ).

Theorem B. Let X(Γ) be any Banach function space satisfying assumptions
(4.1)-(4.4). The operator A = aP+ + bP− with a, b ∈ C(Γ) is Fredholm in
the space X if and only if a(t) 6= 0, b(t) 6= 0 for all t ∈ Γ. In this case
IndXA = indX

b
a

:= κ.

Proof. The proof is completely standard and follows the well known
arguments, but we give short proofs for completeness.

1st step (compactness of the commutators aS−SaI, a ∈ C(Γ)). These
commutators are compact in X(Γ). Indeed, it is known that any function a(t)
continuous on Γ may be approximated in C(Γ) by a rational function r(t),
whatsoever Jordan curve Γ we have, as is known from the famous Mergelyan’s
result, see for instance, [8], p. 169. Therefore, since the singular operator
S is bounded in X(Γ) by assumption (4.3), we obtain that the commutator
aS − SaI is approximated in the operator norm in X by the commutator
rS − SrI which is finite-dimensional operator, and consequently compact in
X(Γ). Therefore, aS − SaI is compact.

2st step (sufficiency). By compactness of the commutators we have
(aP+ + bP−)(bP+ + aP−) = ab I + T , where T is a compact operator, so the
operator (aP+ + bP−) has a regularizer. Consequently, it is Fredholm.

3rd step (the operator A{ = P+ + t{P−). Let 0 ∈ D+ . The operator
A{ is right invertible in X(Γ), if κ ≥ 0 and left invertible if κ ≤ 0 and has the
deficiency numbers αX(A{) = κ and βX(A{) = 0 if κ ≥ 0 and αX(A{) = 0
and βX(A{) = |κ| if κ ≤ 0. Indeed, the operator A{ is Fredholm in X(Γ)
by the sufficiency part of Theorem B (the previous step). The one-sided
invertibility follows from the relations

A{A−{ = I, if κ ≥ 0, A−{A{ = I, if κ ≤ 0

well known on spaces of ”nice” functions and valid on X(Γ) by (4.3)-(4.4).
To obtain the information on the deficiency numbers in the space X(Γ), we
observe that Hλ(Γ) ⊂ C(Γ) ⊂ X(Γ) by (4.1) and that αHλ(A{) = κ in case
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κ ≥ 0 ([22]). Therefore, αX(A{) ≥ κ. Since X(Γ) ⊂ L1(Γ), we also have
αX(A{) ≤ κ. The case κ ≤ 0 is treated similarly.

4th step (the operator N = (t−λ)P++P−). The operator N is invertible
in X(Γ), if λ ∈ D− and is Fredholm with IndX N = −1, if λ ∈ D+. Indeed,
the invertibility in the case when λ ∈ D− is checked directly: N1N = NN1 =
I, where N1 = 1

t−λ
P+ + P−, with conditions (4.3)-(4.4) taken into account.

The case when λ ∈ D+ follows from the 3rd step, since (t − λ)P+ + P− =
(t− λ) [P+ + (t− λ)−1P−] .

5th step (necessity). Suppose that a(t0) = 0 for some t0 ∈ Γ and the
operator A is Fredholm. By compactness of the commutators aS −SaI (the
1st step), we have the relations

aP+ + bP− = (P+ + bP−)(aP+ + P−) + T1 = (aP+ + P−)(P+ + bP−) + T2

where T1 and T2 are compact operators in X(Γ). So aP+ + P− is Fredholm
and a(t0) = 0. We may approximate the function a in C(Γ) by rational
functions aε such that aε(t0) = 0. Then the operators aεP+ + P− with ε
small enough, are Fredholm. To arrive at a contradiction, we follow [9], p.
174, and represent aε as aε(t) = (t− t0)s(t). Then

aεP+ +P− = (sP+ +P−)[(t− t0)P+ +P−] = [(t− t0)P+ +P−](sP+ +P−)+T,

where T is a compact operator. Therefore, the operator (t− t0)P+ + P− has
a regularizer and is a Fredholm operator, which is impossible in view of the
statement of the 4th step and the known property of the stability of index
of Fredholm operator.

6th step (index formula). As in [9], p. 103, we approximate the function

c(t) = a(t)
b(t)

by a rational function r(t) so that

c(t) = r(t)[1 + m(t)] with max
t∈Γ

|m(t)| < 1

‖P+‖X

. (4.18)

Let r(t) = t−{ χ+(t)
χ−(t)

be the factorization of the function r(t). Since ‖m‖C(Γ) <

1, we have ind(1 + m) = 0 and then ind r = ind c = −κ.
In the case κ ≤ 0, the representation is valid:

A = bχ−(I + mP+)

(
1

χ+

P+ +
1

χ−
P−

)
(t−{P+ + P−) (4.19)

with the reference to conditions (4.3)-(4.4). The operator I + mP− is in-
vertible since ‖mP+‖X < 1 by (4.18) and (4.3). Since the operator 1

χ+
P+ +
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1
χ−

P− is also obviously invertible in X, from (4.19) we obtain IndX A =

indX(t−{P+) + P− = κ according to the statement at the 3rd step. 2

4.4 The case of a ∈ PC(Γ).

Theorem C. Let X(Γ) be any Banach function space satisfying assumptions
(4.1)-(4.4) and Axioms 1-2. The operator A = aP+ + bP− with a, b ∈ PC(Γ)
is Fredholm in the space X if

inf
t∈Γ
|a(t)| 6= 0, inf

t∈Γ
|b(t)| 6= 0 (4.20)

and

the function
a(t)

b(t)
is X − nonsingular. (4.21)

In this case
IndXA = −indX

a

b
. (4.22)

Condition (4.20) is also necessary for the operator A to be Fredholm in X.
If the index functions α(t) and β(t) of the space X coincide at the points tk
of discontinuity of the coefficients a(t), b(t):

α(tk) = β(tk), k = 1, 2, ...n, (4.23)

then condition (4.21) is necessary as well.

Proof. Because of condition (4.20) we may assume that b(t) ≡ 1 (the
necessity of (4.20) for both a and b simultaneously is shown similarly to the
case b(t) ≡ 1).

SUFFICIENCY. Let

ω(t) =
ω+(t)

ω−(t)
, ω+(t) =

n∏

k=1

(z − tk)
γ(tk), ω−(t) =

n∏

k=1

(
z − tk
z − z0

)γ(tk)

be the well known factorization of the function (4.12). We remind that <γ(tk)
are chosen according to (4.17). We make use of the well known representation

aP+ + P− =
1

ω−
(a1P+ + P−)ω−(ωP+ + P−), (4.24)

where a1 is function (4.13), see for instance, [11], p. 22. The function a1

is in C(Γ) by the choice of the values γ(tk). Relation (4.24) being valid
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for instance in case of ”nice” functions is extended to the space X(Γ) by
condition (4.4), since both the operator ωP+ +P− and 1

ω− (a1P+ +P−)ω− are
bounded in X(Γ), the former by condition (4.3) and the latter by Lemma
4.2. The operator 1

ω− (a1P+ +P−)ω− is Fredholm in X(Γ) by Theorem B and
Lemma 4.2 and its index in X(Γ) is equal to ind a1 which is nothing else,
but indXa. Thus (4.22) is obtained.

It remains to show that the operator ωP+ + P− is invertible in the space
X(Γ) thanks to the choice (4.17). This is checked in the familiar way:
N(ωP+ + P−) = (ωP+ + P−)N , where N = 1

ω−
(

1
ω
P+ + P−

)
ω−. The op-

erator K is bounded under the choice (4.17) in the space X(Γ) by Lemma
4.2.

NECESSITY. Let the operator A be Fredholm in X. We first assume
that a(tk± 0) 6= 0, k = 1, 2, ..., n. We have to show that a(t) 6= 0 for all other
points and that the required conditions on the jumps are satisfied.

1st step ( reduction to a simpler operator). Since a(tk ± 0) 6= 0, the

function ω(t) is well defined and the function a1(t) = a(t)
ω(t)

is continuous. As

the commutators aS − SaI, a ∈ C(Γ) are compact in the space X(Γ) (see
the 1st step in the proof of Theorem B), we have

A = (ωP+ + P−)(a1P+ + P−) + T (4.25)

From Fredholmness of the operator A we conclude by the Yood theorem (see
f.e. [11], p. 4, Property 1.11) that the operator ωP+ + P− is a Φ−-operator.

2nd step (necessity of the conditions on jumps for the operator ωP+ +
P−). The following lemma reformulates a statement well known for example
for Lp(Γ, ρ)-spaces for the case of the abstract spaces X(Γ).

Lemma 4.5. Let a(tk ± 0) 6= 0, k = 1, 2, ..., n and the space X(Γ) satisfy
conditions (4.1)-(4.4) and Axioms 1-2 and let α(tk) = β(tk), k = 1, 2, ..., n.
The operator Ψ = ωP++P− with ω defined in (4.12), is a Φ+- or Φ−-operator
in the space X(Γ) if and only if

<γk 6= α(tk) (mod 1) for all k = 1, 2, ..., n. (4.26)

Proof. By the sufficiency part of Theorem C, condition (4.26) is sufficient.
To prove the necessity, suppose that <γk = α(tk)+r for some r = 0,±1,±2, ...
and for some k, say k = 1, but that the operator Ψ is a Φ+- or Φ−-operator.
Let first <γk 6= αk (mod 1) for all other k = 2, 3, ..., n. We put Ψ±ε =
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ω±εP+ + P−, ε > 0, where ω±ε = (t− z0)
±ε
1 ω(t). This new function has the

new exponents γ±ε
1 = γ1± ε. We choose ε small enough, so that <γ1± ε−α1

is not an integer. Then, by the sufficiency part of Theorem C, the operators
Ψε and Ψ−ε are Fredholm operators in the space X(Γ, ρ). The calculation of
the index by formula (4.22) gives

IndX [(t− z0)
νP+ +P−] = [α(t1)−<ν] in case <ν 6= α(t1)+m, (4.27)

where m = 0,±1,±2, ... and [· · · ] on the right-hand side stands for the entire
part of a number. Then

IndXΨε−IndXΨ−ε = [<γ(t1)+ε−α(t1)]−[<γ(t1)−ε−α(t1)] = [ε]−[−ε] = 1.
(4.28)

But on the other hand, ‖Ψ±ε − Ψ‖X ≤ c sup
t∈Γ

|(t− z0)
±ε − 1| ≤ c1ε which

contradicts (4.28) by stability theorem for Φ±-operators in Banach spaces.
This proves the lemma for the case k = 1. If condition on (4.26) is

violated for several k = n1, ..., nm, the arguments are similar: the operators
Ψ±ε must then be introduced with the functions ω±ε(t) =

∏m
i=1(t−z0)

±ε
i ω(t).

2

3rd step (necessity of the conditions for the operator N). Since the oper-
ator P+ +ωP− is a Φ−-operator (see the 1st step), by Lemma 4.5, conditions
(4.26) are satisfied. Consequently, by the sufficiency part of our theorem,
the operator P+ + ωP− is a Fredholm operator in the space X(Γ). As is well
known, if any two of the linear operators A,B and AB are Fredholm then
the remaining one is Fredholm as well (see, f.e. [11], p. 4, Property 1.12 ).
Therefore, from (4.25) we conclude that the operator a1P+ +P− is Fredholm
in X. Then by Theorem B, a1(t) 6= 0 and consequently a(t) 6= 0, t ∈ Γ.

4rd step. It remains to lift the assumptions a(tk ± 0) 6= 0, b(tk ± 0) 6= 0.
Suppose that some of the numbers a(tk±0) are equal to zero and the operator
A is Fredholm in X(Γ). There exists a complex number ε with an arbitrarily
small modulus and a point t0 close to tk such that a(tk ± 0) + ε 6= 0, but
a(t0) + ε = 0. Let Aε = (a + ε)P+ + P− . Evidently, ‖Aε − A‖ = ‖εI‖ = ε.
Therefore, by the stability theorem for Fredholm operators, we obtain that
the operator Aε is Fredholm for sufficiently small ε. This contradicts the
preceding part.

2
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5 Proof of Theorem A

Proof. To show that the statements of Theorem A may be obtained from
Theorem C as a particular case, we have to verify that the space Lp(·)(Γ) is
the space of the type X(Γ) under the assumptions of Theorem A. To this end
we have to check conditions (4.1)-(4.4) and Axioms 1-2 of Subsection 4.1.

Condition (4.1) is obvious by assumption (2.5).
Condition (4.2) is evident.
Condition (4.3) follows from Theorem 2.1.
Condition (4.4), that is, denseness of C∞(Γ) in Lp(·)(Γ), follows from

Theorem 2.3.
The validity of Axiom 1 for the space X(Γ) = Lp(·)(Γ) follows from The-

orem 2.1 according to (4.7). The imbedding Lp(·)(Γ, |t − t0|γ) ⊂ L1(Γ) for
γ < 1−β(t0), required by Axiom 2, follows from (2.10) since β(t0) = 1

p(t0)
ac-

cording to (4.7). Finally, the denseness of C∞(Γ) in the spaces X(Γ, |t− t0|γ)
for t0 ∈ Γ follows as a particular case from Theorem 2.2. 2

Remark 5.1. Following the same scheme, it is not difficult to prove that
the operator A = aP+ + bP− with a, b ∈ PC(Γ) has the same solvability
picture in the spaces with variable exponent as in the spaces with constant
p, that is, dim ker A = κ = indp(·)a, dim coker A = 0, if κ ≥ 0, and
dim ker A = 0, dim coker A = |κ|, if κ ≤ 0.

We also note that, basing on (4.7), one can also easily obtain a similar
corollary from Theorem C for the case of the weighted spaces Lp(·)(Γ, ρ) with
the power weight fixed to a finite number of points on Γ.
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