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Abstract

In the weighted Lebesgue space with variable exponent the boundedness
of Calderén-Zygmund operator is established. The variable exponent p(x)
is assumed to satisfy the logarithmic Dini condition and exponent 3 of the
power weight p(z) = |z—x0|? is related only to the value p(z(). The mapping
properties of Cauchy singular integrals defined on Lyapunov curve and on
curves of bounded rotation are also investigated within the framework of the
above- mentioned weighted space.
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1 Introduction

The generalized Lebesgue spaces LP() () and the related Sobolev type spaces
WmP@)(R") variable exponent proved to be an appropriate tool to study
models with with non-standard local growth (in elasticity theory, fluid me-
chanics, differential equations, see for example Ruzicka [18], [6] and references
therein).

These applications stimulate a quickly developing progress in the theory
of the spaces LP1)(Q2) and W™P()( R™). We mention the papers Sharapudinov
23] (1979), [24] (1996), Kovacik , Rékosnik [17] (1991), Edmunds, Rékosnik
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[10] (1992), Samko [19]-[20] (1998), [21] (1999), Edmunds, Lang, Nekvinda
9] (1999), Cruz-Uribe, Fiorenza, Neugebauer [3] (2002), Diening [4] - [5]
(2002), Diening, Ruzicka [6] (2002), Edmunds, Nekvinda [8] (2002), Fiorenza
[11](2002), Kokilashvili, Samko [13] - [16] (2002), see also references therein.

Although the spaces LP1)(2) possess some undesirable properties (func-
tions from these spaces are not p(z)-mean continuous, the space LP()(Q) is
not translation invariant, convolution operators in general do not behave well
and so on), there is an evident progress in their study, stimulated by applica-
tions, first of all for continuous exponents p(z) satisfying the logarithmic Dini
condition. We mention in particular the result on denseness of C°-functions
in the Sobolev space W@ (R"™), see [21], and the breakthrough connected
with the study of maximal operators in [4], [5].

Because of applications, a reconsideration of the main theorems of har-
monic analysis is actual, with the aim to find out what theorems remain
valid for variable exponents, or to find their substituting analogs. Among
the challenging problems there were: the Sobolev type theorem for the Riesz
potential operator /* and boundedness of singular integral operators. The
Sobolev type theorem for bounded domains was proved in [19] conditionally,
under the assumption that the maximal operator is bounded in the spaces
LP0) which turns to be unconditional after the result of [4] - [5] on maximal
operators (we refer also to [3] for maximal operators on unbounded domains).

Singular operators within the framework of the spaces with variable ex-
ponents were treated in [16] and [6].

The main goal of the present paper is to establish the boundedness of
Calderon-Zygmund singular operators in weighted spaces Lg(’). In particular,
we obtain a weighted mapping theorem for finite Hilbert transform and apply
this result to the boundedness of Cauchy singular operators on curves in the
complex plane.

2 Preliminaries.

Let €2 be a bounded open subset of R™ and p(z) a measurable function on €2
such that
l<p<plx)<p<oo, z€ (2.1)



and

1

We denote by P = P(Q2) the set of functions p(z) satisfying conditions (2.1)-
(2.2). We refer to Appendix A for examples of non-holderian functions sat-
isfying condition (2.2). By L) we denote the space of functions f(z) on

such that
A(f) = / (@)@ < oo,
Q

This is a Banach function space with respect to the norm

Il =it {205, ($) <1} 23)

(see e.g. [5]). We denote

Under condition (2.1) the space LP() coincides with the space

o

up to the equivalence of the norms

| s@yeta) do

see [17], Theorem 2.3 or [20], Theorem 3.5.

Let p be a measurable almost everywhere positive integrable function.
Such functions usually are called weights. The weighted Lebesgue space Lﬁ(')
is defined as the set of all measurable functions for which

) dx

< oo forall ¢(z)e€ LQ(')(Q)} (2.4)

1fllocy ~ = sup (2.5)

llell () <1

~ sup

||f||L§(~) = ||/)fHLp<»> < 0.

The space Lﬁ(') is a Banach space.
We deal with the following integral operators:
Calderon-Zygmund singular operator

/ K(z,y)f(y) dy, (2.6)



(as treated in [6]), the maximal operator

1
M) = sup e / Wl (2.7)

r>0

the Riesz potential operator

Lo f(z) Z/L)_dy, a>0
lz =yl
and the Cauchy singular operator

f(r)dr

r T—t’

Srf(t) =

t=1t(s), 0<s</ (2.8)

along a finite rectifiable Jordan curve I' of the complex plane on which the
arc-length is chosen as a parameter starting from any fixed point.

In definition of the maximal function we assume that f(xz) = 0 when

In [5] the boundedness of the maximal operator in the space LP() was
proved. Later in [6] the analogous result for Calderon-Zygmund operator
(2.6) was obtained.

The boundedness of the maximal operator M in the weighted Lebesgue
space Lg(') with the power weight p(z) = |r — x¢|® was established by the
authors in [15], see also [13]. The main point of the result in [13], [15] is that
the exponent [ is related to the value of p(z) at the point xg. Recently we
established also the boundedness of various integral operators in particular,
Calderon-Zygmund operators, in weighted Lorentz type spaces with variable
exponent [15], see also [14]. However, the result of [15], [14] does not imply
the boundedness of singular operators in the Lebesgue spaces with variable
exponent.

3 Statements of the main results.

Let
1" f(z) = sup [T-f (z)]

e>0



be the maximal singular operator, where 7. f(z) is the usual truncation

T.f(x) = / K(z,9)f(y) dy

|[z—y|>e

and we assume that f(x) = 0 outside Q. In what follows,
p(@) = [ I — o™, (3.1)
k=1

where a, € Q, k=1,--- ,m.
Theorem 1. Let p(z) € P(Q2) and p(z) be weight function (3.1). Then
the operators Tand T™* are bounded in the space Lﬁ(')(Q) if

<m<5£5, k=1 ..m. (3.2)

Besides the operator (2.8), we also consider the corresponding maximal
singular operator

- plar)

flr (o)l (o)
S*f(t) =su —————do 3.3
ry=swp| [ LTI (3.3
s—o|>e
where it is supposed that f[t(c)] = 0 when s ¢ [0, {].
We remind that T is called Lyapunov curve if ¢'(s) € Lip 7,0 < v < 1
and that in this case
t'(s) 1 c

= h ith h <

(3.4)
see [12]; observe that

1 1
hs.o) = 7ty [ ) =t —s)lds (39)
t(o) —t(s) Jo
from which the bound for A(s, o) follows.

If ¢(s) is a function of bounded variation, I' is called a curve of bounded
rotation. When I is a curve of bounded rotation without cusps, I' satisfies

the chord-arc condition

‘t(s) —t(o)

S§— 0

>m > 0. (3.6)



Thus we have [t(s) — t(so)| = |s — so]-
When dealing with the operators S and S*, we assume the functions p(s)
and p(s) > 0 to be defined on [0, /] and put

= {f + lfTE(s)]p()l oy < 00}

In the next theorem we take

ﬁ ) — t(cp) P = H|3 — | (3.7)

k=1
where ¢, € [0,4], k=1,2,....m

Theorem 2. Let I" be a Lyapunov curve or a curve of bounded rotation
without cusps and let p(s) € P. The operators Sr and S* are bounded in the
space Lg(')(F) with the weight function (3.7) if and only if

1
< O < ——, k=1,2....,m. 3.8

-~ plen)
4 Auxiliary results.

In this section we present some basic results which we need to prove our main
statements. Let

— 0|8 d
MPf(z) = sup 20 / g(f’id?v (4.1)

z,r

where z, € Q.

Theorem A([15]). Let p(z) € P. The operator MP with zo € Q is
bounded in the space LP)(Q) if and only if

(o) <f< (@)’ (4.2)

When xo € OS2, condition (4.2) is sufficient in the case of any point xg
and necessary if the point xy satisfies the condition |S.(xg)| ~ r", where
Qp(zg) ={yeQ:r<l|y—xo <2r}.



Theorem B([15]). Let p(x) € P. The Riesz potential operator I, acts
boundedly from the space L’;(')(Q) with the weight p(z) = |z — z0|?, z € Q,
into itself, if condition (4.2) is satisfied.

Let F € Lj.(R') and

1
(v) = sup |B(z,r)| /B(m) W) = Foenl & 4

r>0

where

1
Frm = ——— dz.
B(z,r) |B(I7T)|/B(a:,r)f(Z) z

Proposition A [1]. Let T be a Calderon-Zygmund operator. Then for
arbitrary s, 0 < s < 1, there exists a constant cs > 0 such that

1
[(ITF1)(2)]* < e.Mf(2)
for all f € C°(R"), x € R".
The following statement holds (see [6], Lemma 3.5):

Proposition B. Let p(z) € P . Then for all f € LP)(Q) and g €
L1)(Q) there holds

/Q F(2)g() do

< c/ f(x)Mg(x) dx
Q
with a constant ¢ > 0 not depending on f.

Lemma 4.1. Let p(z) € P, w(z) = |[z—z0|", 29 € Q, —oty <7 < 7ty
Then
1 fwlloer < ell f#wl| oo

with a constant ¢ > 0 not depending on f.

Proof. By (2.5) we have

[fwll ey < e sup
llgll gy <1

/Q f(@)g()w(z) d] .



According to Proposition B,

/Q 1#(@)w (@) w(z)] " M(gw) dz|.

[ fw]lpe) < sup
llgll gy <1

Making use of the Holder inequality for LP®), we derive
| fwllzeey < e sup || fFwl| oo [|w™ M (guw)| pac -
lgll g0 <1

We observe that —@ < =y < Iﬁ. Therefore, we may apply Theorem A

for the space L") with 3 = ~ and conclude that

Ifwlee < sup || fFwl| o llgllie < FFwllmo.
lgll gy <1

O

Lemma 4.1 in the case of constant p(-) and w = 1 is well known [25]. For
variable exponent and w = 1 it was proved in [6].

Theorem 4.2. Let p(x) be a measurable function on R™ such that 1 <
p<plr)<p<oo, p(r) >0 and |{x € R": p(x) =0}| =0 and

w(@) = [p(2)P' € Li,o(R"). (4.4)
Then C§°(R™) is dense in the space Lﬁ(')(R”).

Proof. I. First we prove that the class Cy(R") of continuous functions
with compact support is dense in the space LZ,;(')(R").

Let f € LAY(R™). Since [{z € R" : p(x) = 0} = 0, the function f(z) is
a.e. finite.

1st step. The functions fy(x) = { fl@), el <N

0, |z|>N

Lg('), since A,(p|f — fn|) — 0 as N — oo. Therefore, there exists a function

approximate f in

g€ Lﬁ(') with compact support such that || f — gl| ») <e.
P

2nd step. The function g may be approximated in Lﬁ(') by the bounded

o@) . lo@ <N oy

functions with compact support gy(z) = { 0 lg(x)| > N

the passage to the limit

Ay(plg — ) = / w(@)g(@) — gn@P@ de -0 as n—oo (45)

n



is justified by the Lebesgue dominated convergence theorem, since w(x)|g(x)—
gy (2)|P® < 2w(x)|g(z)[P® and the integrand tends to zero a.e. (at any
point x at which f(x) is finite). So we choose gy such that ||g —§NHL5<‘> <e.

3rd step. To approximate the function gy by continuous bounded func-
tions, we choose & > 0 so that

/Ew(x) dr < e = ﬁ (4.6)

for any measurable set £ C supp g with |E| < §, which is possible by (4.4).
Then we choose a function ¢(z) € C(R™) with ||¢|lc < N which coincides
with gy (z) everywhere except for possibly the set A C supp g with |A| <,
by Luzin theorem. Then

Arlolaw — o) = |

w(z)|gn(z) — p(2)|P) do < (2N)p/ w(z) de < e .
A

A

4th step. It remains to approximate in Lz(') the function ¢ by a contin-
uous function with compact support, which is done in the standard way by
means of smooth truncation.

II. Approximation in Lﬁ(') of a continuous function with compact support
by C§°-functions may be already realized via identity approximation

1
Ktsa=—/ a@) px—y)dy, t>0
with a(z) € C5° and [, a(z) dz = 1. Obviously, Ko € Cg° for ¢ € Cy(R")
and |Kyp — | < e as t — 0 uniformly on any given compact set. Therefore,

A (pl Ko — o) = /B w(@)| Kup — (@) P@ dar < e /B w(z) d

for t small enough, B being a sufficiently large ball. O

Corollary. Let p(z) and p(x) satisfy the assumptions of Theorem 4.2 in
Q. Then the set C=(Q) is dense in the space Lﬁ(')(Q).

Indeed, it suffices to observe that functions from C*°(Q) may be continued
outside €2 as C§°(R")-functions, as well as p(z) and p(x) can be continued
with preservation of their properties.

The statement of Theorem 4.2 is well known in the case of constant
exponent, in the case of variable exponent and p(z) = 1 it was proved in [17].
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Denseness of C§°(R™) in non-weighted Sobolev spaces W™P() was proved in
21]-[22].

5 Proofs of the main results.

It suffices to deal with the weight of the form p(x) = |z — z¢|°, because the
general case (3.1) is easily reduced to this special case by separation of the
points a; by means of the partition of unity which provides the representation

HZLZI ‘I — ak|ﬁk _ ick(x y) |ZE — a/f|6k
I b=l 2= o
with bounded ”coefficients” ¢ (z,y).

Proof of Theorem 1. Let us consider the operator T. Let f € C*°(Q)
and 0 < s < 1. Obviously,

1
lpT fllocr = Hps\TfISH;m : (5.1)

s

Applying Lemma 4.1 with w(z) = [p(z)]® and p(-) replaced by 1@, we obtain

1
16T fllzoer < c||lp>(ITFI*)* ey
which is possible since the condition
n n
T <0< (oY
is satisfied. Thus we have
1
o7 fluwr < c||o [T, (52)
1 _
because || f||*,., = 1715 | oo Since a function f € C*°(Q) may be continued

outside 2 as a C{°(R™)-function, Proposition A is applicable. Therefore, by
Proposition A from estimate (5.2) we get

1T fll oy < cllpM ) oo -
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Now we apply Theorem A and conclude that

1T fll oy < c ”prLP(J

for all f € C(R™). Since C5°(R™) is dense in L) by Theorem 4.2, we
complete the proof of Theorem 1.

The boundedness of the operator T follows from the known estimate

T"f(z) < c[M(Tf)(x) + M f(z)],

from Theorem A and Theorem 1.

Corollary 1. Let Q = [a,b], p(z) = []i-, v — ar|®, ai € [a,b], k=
1,..m, and p(x) € P. Then the finite Hilbert transform and its mazximal
VErsion

b
H[a,b}f=/a% and  Hj,, =sup / fy) dy (5.3)

e>0

y—zx|>e

are bounded in the space Lp (a,b), if — ( 7 < Br < k=1,2,..m

ak)’

Proof of Theorem 2. We assume the function p(s) to be defined on
0,]. The function f(t(¢)) will be denoted by fo(o). In the case of Lyapunov
curve we use equality (3.4) and apply Corollary 1 and Theorem B, which
immediately gives the statement of Theorem 2.

Let I" be a curve of bounded rotation without cusps and let V' be the total
variation of #'(s) on [0,]. In this case the function h(s, o) may be estimated
" V(s) = V(o)

s—o
according to (3.5) and (3.6) (see [12], Chapter II, Subsection 2.3). Then we
may proceed as in the proof of Theorem 3.2 in [16]:

‘Aom ‘ﬁﬂx@J?TCAMXM(W()_V@M

g —S
/ f()d0+v ‘/ |fo(o)| do |d0 ’/ folo)[ V(o) .
|s—o|>e O — S |s—o|>e 0—35 |s—o|>e g—5
11

|h(s,0)| < ¢ (5.4)

g

<c




From here by Corollary 1 and boundedness of the function V' (s) we conclude
that the operator St is bounded in L’;(').

Let us prove the necessity part. From the boundedness of St in Lﬁ(s) it
follows that Srf(t) exists almost everywhere for arbitrary f € LE®). Thus
p should be such that f € LY(T') for arbitrary f € L2, The function
f = fpp~! belongs to L'(T) for arbitrary f € L™ if and only if p~! € L),
which follows from the equivalence (2.5). Then function p~1(s) = |s — so|7?,
s0 € [0,1], belongs to L¥®[0,1] if and only if 3 < —1~. Indeed, we have

q(s0)
|5 — 50| 7P1) = m(s)|s — so| PO,
where the function m(s) = |s — so| 7Ala(®)=a(s0)l gatisfies the condition
0<c<m(s) <C <0
in view of (1.2). On the other hand, from |s — so|7%4(*) € L) we have
p< q(io)'
1

The necessity of the condition — o) < [ follows from the duality argu-

ment.

6 Appendix.

The following is an example of a function which satisfies condition (2.2) but
is not a Holder function:

p(x) =a(r)+ ——=5, z€, (6.1)
(ln ﬁ)
where a(z) and b(z) are Holder functions, a(x) > 1, b(z) > 0, A > sup|z|
€
and v > 1. One may write a little bit more complicated example:
b H
p(x) = alx) + (—x)v (lnlnln~ - n Q) (6.2)
(ln %) |z

with an arbitrary sufficiently large C' > 1 and p > 0, and the same assump-
tions on a(z),b(x), and A, but v > 1. It is also possible to take different
powers of different logarithms as factors or superpositions in (6.2).
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To prove condition (2.2) for functions (6.1) or (6.2) or of similar type, we
are not obliged to check condition (2.2) directly. For this purpose we may
use properties of continuity moduli. It suffices to deal with the case where
a(x) =0 and b(z) = 1, since we consider differences p(x) — p(y).

We remind that a non-negative function f(t) on [0, ¢] is called a continuity
modulus if

w(f;h) ~ f(h),
where  w(f,h) = sup |f(t;) — f(t2)] .  There are known sufficient

[t1—t2|<h
t1,t9€[0,£]

conditions for a function f(z) to be continuity modulus, see, for example [2]
or [7]:

1) f(z) is continuous on [0, ¢],

2) f(0) =0 and f(z) > 0 for z > 0,

3) f(z) is non-decreasing and @ is non-increasing on a neighborhood of the
point = 0. It is easy to check that functions (6.1)-(6.2) satisfy the above
conditions 1)-4).
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