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Abstract

In the weighted Lebesgue space with variable exponent the boundedness
of Calderón-Zygmund operator is established. The variable exponent p(x)
is assumed to satisfy the logarithmic Dini condition and exponent β of the
power weight ρ(x) = |x−x0|β is related only to the value p(x0). The mapping
properties of Cauchy singular integrals defined on Lyapunov curve and on
curves of bounded rotation are also investigated within the framework of the
above- mentioned weighted space.
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1 Introduction

The generalized Lebesgue spaces Lp(·)(Ω) and the related Sobolev type spaces
Wm,p(x)(Rn) variable exponent proved to be an appropriate tool to study
models with with non-standard local growth (in elasticity theory, fluid me-
chanics, differential equations, see for example Ružička [18], [6] and references
therein).

These applications stimulate a quickly developing progress in the theory
of the spaces Lp(·)(Ω) and Wm,p(x)(Rn). We mention the papers Sharapudinov
[23] (1979), [24] (1996), Kováčik , Rákosňik [17] (1991), Edmunds, Rákosňik
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[10] (1992), Samko [19]-[20] (1998), [21] (1999), Edmunds, Lang, Nekvinda
[9] (1999), Cruz-Uribe, Fiorenza, Neugebauer [3] (2002), Diening [4] - [5]
(2002), Diening, Ružička [6] (2002), Edmunds, Nekvinda [8] (2002), Fiorenza
[11](2002), Kokilashvili, Samko [13] - [16] (2002), see also references therein.

Although the spaces Lp(·)(Ω) possess some undesirable properties (func-
tions from these spaces are not p(x)-mean continuous, the space Lp(·)(Ω) is
not translation invariant, convolution operators in general do not behave well
and so on), there is an evident progress in their study, stimulated by applica-
tions, first of all for continuous exponents p(x) satisfying the logarithmic Dini
condition. We mention in particular the result on denseness of C∞

0 -functions
in the Sobolev space Wm,p(x)(Rn), see [21], and the breakthrough connected
with the study of maximal operators in [4], [5].

Because of applications, a reconsideration of the main theorems of har-
monic analysis is actual, with the aim to find out what theorems remain
valid for variable exponents, or to find their substituting analogs. Among
the challenging problems there were: the Sobolev type theorem for the Riesz
potential operator Iα and boundedness of singular integral operators. The
Sobolev type theorem for bounded domains was proved in [19] conditionally,
under the assumption that the maximal operator is bounded in the spaces
Lp(·), which turns to be unconditional after the result of [4] - [5] on maximal
operators (we refer also to [3] for maximal operators on unbounded domains).

Singular operators within the framework of the spaces with variable ex-
ponents were treated in [16] and [6].

The main goal of the present paper is to establish the boundedness of
Calderon-Zygmund singular operators in weighted spaces L

p(·)
ρ . In particular,

we obtain a weighted mapping theorem for finite Hilbert transform and apply
this result to the boundedness of Cauchy singular operators on curves in the
complex plane.

2 Preliminaries.

Let Ω be a bounded open subset of Rn and p(x) a measurable function on Ω
such that

1 < p ≤ p(x) ≤ p < ∞, x ∈ Ω (2.1)
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and

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω. (2.2)

We denote by P = P(Ω) the set of functions p(x) satisfying conditions (2.1)-
(2.2). We refer to Appendix A for examples of non-holderian functions sat-
isfying condition (2.2). By Lp(·) we denote the space of functions f(x) on Ω
such that

Ap(f) =

∫

Ω

|f(x)|p(x)dx < ∞.

This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf

{
λ > 0 : Ap

(
f

λ

)
≤ 1

}
(2.3)

(see e.g. [5]). We denote
1

q(x)
= 1− 1

p(x)
.

Under condition (2.1) the space Lp(·) coincides with the space
{

f(x) :

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ < ∞ for all ϕ(x) ∈ Lq(·)(Ω)

}
(2.4)

up to the equivalence of the norms

‖f‖Lp(·) ∼ sup
‖ϕ‖

Lq(·)≤1

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ ∼ sup
Aq(ϕ)≤1

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ , (2.5)

see [17], Theorem 2.3 or [20], Theorem 3.5.
Let ρ be a measurable almost everywhere positive integrable function.

Such functions usually are called weights. The weighted Lebesgue space L
p(·)
ρ

is defined as the set of all measurable functions for which

‖f‖
L

p(·)
ρ

= ‖ρf‖Lp(·) < ∞.

The space L
p(·)
ρ is a Banach space.

We deal with the following integral operators:
Calderon-Zygmund singular operator

Tf(x) =

∫

Ω

K(x, y)f(y) dy, (2.6)
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(as treated in [6]), the maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|f(y)| dy, (2.7)

the Riesz potential operator

Iαf(x) =

∫

Ω

f(y)

|x− y|n−α
dy, α > 0

and the Cauchy singular operator

SΓf(t) =

∫

Γ

f(τ)dτ

τ − t
, t = t(s), 0 ≤ s ≤ ` (2.8)

along a finite rectifiable Jordan curve Γ of the complex plane on which the
arc-length is chosen as a parameter starting from any fixed point.

In definition of the maximal function we assume that f(x) = 0 when
x /∈ Ω.

In [5] the boundedness of the maximal operator in the space Lp(·) was
proved. Later in [6] the analogous result for Calderon-Zygmund operator
(2.6) was obtained.

The boundedness of the maximal operator M in the weighted Lebesgue
space L

p(·)
ρ with the power weight ρ(x) = |x − x0|β was established by the

authors in [15], see also [13]. The main point of the result in [13], [15] is that
the exponent β is related to the value of p(x) at the point x0. Recently we
established also the boundedness of various integral operators in particular,
Calderon-Zygmund operators, in weighted Lorentz type spaces with variable
exponent [15], see also [14]. However, the result of [15], [14] does not imply
the boundedness of singular operators in the Lebesgue spaces with variable
exponent.

3 Statements of the main results.

Let
T ∗f(x) = sup

ε>0
|Tεf(x)|
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be the maximal singular operator, where Tεf(x) is the usual truncation

Tεf(x) =

∫

|x−y|≥ε

K(x, y)f(y) dy

and we assume that f(x) = 0 outside Ω. In what follows,

ρ(x) =
m∏

k=1

|x− ak|βk , (3.1)

where ak ∈ Ω, k = 1, · · · ,m.
Theorem 1. Let p(x) ∈ P(Ω) and ρ(x) be weight function (3.1). Then

the operators Tand T ∗ are bounded in the space L
p(·)
ρ (Ω) if

− n

p(ak)
< βk <

n

q(ak)
, k = 1, ...m. (3.2)

Besides the operator (2.8), we also consider the corresponding maximal
singular operator

S∗f(t) = sup
ε>0

∣∣∣∣∣∣∣

∫

|s−σ|>ε

f [τ(σ)]τ ′(σ)

τ(σ)− τ(s)
dσ

∣∣∣∣∣∣∣
(3.3)

where it is supposed that f [t(σ)] = 0 when s /∈ [0, `].
We remind that Γ is called Lyapunov curve if t′(s) ∈ Lip γ, 0 < γ ≤ 1

and that in this case

t′(s)
t(σ)− t(s)

=
1

σ − s
+ h(s, σ), with |h(s, σ)| ≤ c

|σ − s|1−γ
(3.4)

see [12]; observe that

h(s, σ) =
1

t(σ)− t(s)

∫ 1

0

[t′(s)− t′(s + ξ(σ − s))] dξ (3.5)

from which the bound for h(s, σ) follows.
If t′(s) is a function of bounded variation, Γ is called a curve of bounded

rotation. When Γ is a curve of bounded rotation without cusps, Γ satisfies
the chord-arc condition ∣∣∣∣

t(s)− t(σ)

s− σ

∣∣∣∣ ≥ m > 0. (3.6)
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Thus we have |t(s)− t(s0)| ≈ |s− s0|.
When dealing with the operators S and S∗, we assume the functions p(s)

and ρ(s) ≥ 0 to be defined on [0, `] and put

Lp(·)
ρ = {f : ‖f [t(s)]ρ(s)‖Lp(s) < ∞} .

In the next theorem we take

ρ(s) =
m∏

k=1

|t(s)− t(ck)|βk ≈
m∏

k=1

|s− ck|βk (3.7)

where ck ∈ [0, `], k = 1, 2, ..., m.
Theorem 2. Let Γ be a Lyapunov curve or a curve of bounded rotation

without cusps and let p(s) ∈ P. The operators SΓ and S∗ are bounded in the

space L
p(·)
ρ (Γ) with the weight function (3.7) if and only if

− 1

p(ck)
< βk <

1

q(ck)
, k = 1, 2, ...,m. (3.8)

4 Auxiliary results.

In this section we present some basic results which we need to prove our main
statements. Let

Mβf(x) = sup
r>0

|x− x0|β
|B(x, r)|

∫

B(x,r)

|f(y)| dy

|y − x0|β , (4.1)

where x0 ∈ Ω.

Theorem A([15]). Let p(x) ∈ P. The operator Mβ with x0 ∈ Ω is
bounded in the space Lp(·)(Ω) if and only if

− n

p(x0)
< β <

n

q(x0)
. (4.2)

When x0 ∈ ∂Ω, condition (4.2) is sufficient in the case of any point x0

and necessary if the point x0 satisfies the condition |Ωr(x0)| ∼ rn, where
Ωr(x0) = {y ∈ Ω : r < |y − x0| < 2r}.
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Theorem B([15]). Let p(x) ∈ P. The Riesz potential operator Iα acts

boundedly from the space L
p(·)
ρ (Ω) with the weight ρ(x) = |x− x0|β, x0 ∈ Ω,

into itself, if condition (4.2) is satisfied.

Let F ∈ Lloc(R1) and

F#(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|F (y)− FB(x,r)| dy, (4.3)

where

FB(x,r) =
1

|B(x, r)|
∫

B(x,r)

f(z) dz.

Proposition A [1]. Let T be a Calderon-Zygmund operator. Then for
arbitrary s, 0 < s < 1, there exists a constant cs > 0 such that

[
(|Tf |s)#(x)

] 1
s ≤ csMf(x)

for all f ∈ C∞
0 (Rn), x ∈ Rn.

The following statement holds (see [6], Lemma 3.5):

Proposition B. Let p(x) ∈ P . Then for all f ∈ Lp(·)(Ω) and g ∈
Lq(·)(Ω) there holds

∣∣∣∣
∫

Ω

f(x)g(x) dx

∣∣∣∣ ≤ c

∫

Ω

f#(x)Mg(x) dx

with a constant c > 0 not depending on f .

Lemma 4.1. Let p(x) ∈ P, w(x) = |x−x0|γ, x0 ∈ Ω, − n
p(x0)

< γ < n
q(x0)

.
Then

‖fw‖Lp(·) ≤ c‖f#w‖Lp(·)

with a constant c > 0 not depending on f .

Proof. By (2.5) we have

‖fw‖Lp(·) ≤ c sup
‖g‖

Lq(·)≤1

∣∣∣∣
∫

Ω

f(x)g(x)w(x) dx

∣∣∣∣ .
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According to Proposition B,

‖fw‖Lp(·) ≤ c sup
‖g‖

Lq(·)≤1

∣∣∣∣
∫

Ω

f#(x)w(x)[w(x)]−1M(gw) dx

∣∣∣∣ .

Making use of the Hölder inequality for Lp(·), we derive

‖fw‖Lp(·) ≤ c sup
‖g‖

Lq(·)≤1

‖f#w‖Lp(·)‖w−1M(gw)‖Lq(·) .

We observe that − 1
q(x0)

< −γ < 1
p(x0)

. Therefore, we may apply Theorem A

for the space Lq(·) with β = γ and conclude that

‖fw‖Lp(·) ≤ sup
‖g‖

Lq(·)≤1

‖f#w‖Lp(·)‖g‖Lq(·) ≤ ‖f#w‖Lp(·) .

2

Lemma 4.1 in the case of constant p(·) and w ≡ 1 is well known [25]. For
variable exponent and w ≡ 1 it was proved in [6].

Theorem 4.2. Let p(x) be a measurable function on Rn such that 1 ≤
p ≤ p(x) < p < ∞, ρ(x) ≥ 0 and |{x ∈ Rn : ρ(x) = 0}| = 0 and

w(x) = [ρ(x)]p(x) ∈ L1
loc(Rn). (4.4)

Then C∞
0 (Rn) is dense in the space L

p(·)
ρ (Rn).

Proof. I. First we prove that the class C0(Rn) of continuous functions

with compact support is dense in the space L
p(·)
ρ (Rn).

Let f ∈ L
p(·)
ρ (Rn). Since |{x ∈ Rn : ρ(x) = 0}| = 0, the function f(x) is

a.e. finite.

1st step. The functions fN(x) =

{
f(x) , |x| < N

0 , |x| > N
approximate f in

L
p(·)
ρ , since Ap(ρ|f − fN |) → 0 as N →∞. Therefore, there exists a function

g ∈ L
p(·)
ρ with compact support such that ‖f − g‖

L
p(·)
ρ

< ε.

2nd step. The function g may be approximated in L
p(·)
ρ by the bounded

functions with compact support g̃N(x) =

{
g(x) , |g(x)| < N

0 , |g(x)| > N
. Indeed,

the passage to the limit

Ap(ρ|g − g̃N |) =

∫

Rn

w(x)|g(x)− g̃N(x)|p(x) dx → 0 as n →∞ (4.5)
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is justified by the Lebesgue dominated convergence theorem, since w(x)|g(x)−
gN(x)|p(x) ≤ 2w(x)|g(x)|p(x) and the integrand tends to zero a.e. (at any
point x at which f(x) is finite). So we choose g̃N such that ‖g− g̃N‖L

p(·)
ρ

< ε.

3rd step. To approximate the function g̃N by continuous bounded func-
tions, we choose δ > 0 so that

∫

E

w(x) dx < ε1 =
ε

(2N)p
(4.6)

for any measurable set E ⊂ supp g with |E| < δ, which is possible by (4.4).
Then we choose a function ϕ(x) ∈ C(Rn) with ‖ϕ‖C ≤ N which coincides
with g̃N(x) everywhere except for possibly the set A ⊂ supp g with |A| < δ,
by Luzin theorem. Then

Ap(ρ|g̃N − ϕ|) =

∫

A

w(x)|g̃N(x)− ϕ(x)|p(x) dx ≤ (2N)p

∫

A

w(x) dx < ε .

4th step. It remains to approximate in L
p(·)
ρ the function ϕ by a contin-

uous function with compact support, which is done in the standard way by
means of smooth truncation.

II. Approximation in L
p(·)
ρ of a continuous function with compact support

by C∞
0 -functions may be already realized via identity approximation

Ktϕ =
1

tn

∫

Rn

a
(y

t

)
ϕ(x− y) dy, t > 0

with a(x) ∈ C∞
0 and

∫
Rn a(x) dx = 1. Obviously, Ktϕ ∈ C∞

0 for ϕ ∈ C0(Rn)
and |Ktϕ− ϕ| < ε as t → 0 uniformly on any given compact set. Therefore,

Ap(ρ|Ktϕ− ϕ|) =

∫

B

w(x)|Ktϕ− ϕ(x)|p(x) dx ≤ εp

∫

B

w(x) dx

for t small enough, B being a sufficiently large ball. 2

Corollary. Let p(x) and ρ(x) satisfy the assumptions of Theorem 4.2 in

Ω. Then the set C∞(Ω) is dense in the space L
p(·)
ρ (Ω).

Indeed, it suffices to observe that functions from C∞(Ω) may be continued
outside Ω as C∞

0 (Rn)-functions, as well as p(x) and ρ(x) can be continued
with preservation of their properties.

The statement of Theorem 4.2 is well known in the case of constant
exponent, in the case of variable exponent and ρ(x) ≡ 1 it was proved in [17].
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Denseness of C∞
0 (Rn) in non-weighted Sobolev spaces Wm,p(·) was proved in

[21]-[22].

5 Proofs of the main results.

It suffices to deal with the weight of the form ρ(x) = |x− x0|β, because the
general case (3.1) is easily reduced to this special case by separation of the
points ak by means of the partition of unity which provides the representation

∏m
k=1 |x− ak|βk

∏m
k=1 |y − ak|βk

=
m∑

k=1

ck(x, y)
|x− ak|βk

|y − ak|βk

with bounded ”coefficients” ck(x, y).

Proof of Theorem 1. Let us consider the operator T . Let f ∈ C∞(Ω)
and 0 < s < 1. Obviously,

‖ρTf‖Lp(·) = ‖ρs|Tf |s‖
1
s

L
p(·)

s

. (5.1)

Applying Lemma 4.1 with w(x) = [ρ(x)]s and p(·) replaced by p(·)
s

, we obtain

‖ρTf‖Lp(·) ≤ c
∥∥ρs(|Tf |s)#

∥∥ 1
s

L
p(·)

s

,

which is possible since the condition

− n
p(x0)

s

< sβ <
n(

p(x0)
s

)′

is satisfied. Thus we have

‖ρTf‖Lp(·) ≤ c
∥∥∥ρ

[
(|Tf |s)#

] 1
s

∥∥∥
Lp(·)

(5.2)

because ‖f‖
1
s

L
p(·)

s

= ‖|f | 1s‖Lp(·) . Since a function f ∈ C∞(Ω) may be continued

outside Ω as a C∞
0 (Rn)-function, Proposition A is applicable. Therefore, by

Proposition A from estimate (5.2) we get

‖ρTf‖Lp(·) ≤ c ‖ρ(Mf)‖Lp(·) .
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Now we apply Theorem A and conclude that

‖ρTf‖Lp(·) ≤ c ‖ρf‖Lp(·)

for all f ∈ C∞
0 (Rn). Since C∞

0 (Rn) is dense in L
p(·)
ρ by Theorem 4.2, we

complete the proof of Theorem 1.

The boundedness of the operator T ∗ follows from the known estimate

T ∗f(x) ≤ c[M(Tf)(x) + Mf(x)],

from Theorem A and Theorem 1.

Corollary 1. Let Ω = [a, b], ρ(x) =
∏m

k=1 |x − ak|βk , ak ∈ [a, b], k =
1, ...m, and p(x) ∈ P. Then the finite Hilbert transform and its maximal
version

H[a,b]f =

∫ b

a

f(y) dy

y − x
and H∗

[a,b] = sup
ε>0

∣∣∣∣∣∣∣

∫

|y−x|>ε

f(y) dy

y − x

∣∣∣∣∣∣∣
(5.3)

are bounded in the space L
p(·)
ρ (a, b), if − 1

p(ak)
< βk < 1

q(ak)
, k = 1, 2, ...m.

Proof of Theorem 2. We assume the function p(s) to be defined on
[0, l]. The function f(t(σ)) will be denoted by f0(σ). In the case of Lyapunov
curve we use equality (3.4) and apply Corollary 1 and Theorem B, which
immediately gives the statement of Theorem 2.

Let Γ be a curve of bounded rotation without cusps and let V be the total
variation of t′(s) on [0, l]. In this case the function h(s, σ) may be estimated
as

|h(s, σ)| ≤ c
V (s)− V (σ)

s− σ
(5.4)

according to (3.5) and (3.6) (see [12], Chapter II, Subsection 2.3). Then we
may proceed as in the proof of Theorem 3.2 in [16]:
∣∣∣∣
∫

|s−σ|>ε

f0(σ) dσ

t(σ)− t(s)

∣∣∣∣ ≤ c

∣∣∣∣
∫

|s−σ|>ε

f0(σ) dσ

σ − s

∣∣∣∣+c

∫

|s−σ|>ε

|f0(σ)| (V (σ)− V (s))

σ − s
dσ

≤ c

∣∣∣∣
∫

|s−σ|>ε

f0(σ) dσ

σ − s

∣∣∣∣+cV (s)

∣∣∣∣
∫

|s−σ|>ε

|f0(σ)| dσ

σ − s

∣∣∣∣+c

∣∣∣∣
∫

|s−σ|>ε

|f0(σ)|V (σ)

σ − s
dσ

∣∣∣∣ .
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From here by Corollary 1 and boundedness of the function V (s) we conclude

that the operator S∗Γ is bounded in L
p(·)
ρ .

Let us prove the necessity part. From the boundedness of SΓ in L
p(s)
ρ it

follows that SΓf(t) exists almost everywhere for arbitrary f ∈ L
p(s)
ρ . Thus

ρ should be such that f ∈ L1(Γ) for arbitrary f ∈ L
p(s)
ρ . The function

f = fρρ−1 belongs to L1(Γ) for arbitrary f ∈ L
p(s)
ρ if and only if ρ−1 ∈ Lq(s),

which follows from the equivalence (2.5). Then function ρ−1(s) = |s− s0|−β,
s0 ∈ [0, l], belongs to Lq(s)[0, l] if and only if β < 1

q(s0)
. Indeed, we have

|s− s0|−βq(s) = m(s)|s− s0|−βq(s0),

where the function m(s) = |s− s0|−β|q(s)−q(s0)| satisfies the condition

0 < c ≤ m(s) ≤ C < ∞
in view of (1.2). On the other hand, from |s − s0|−βq(s0) ∈ Lq(s) we have
β < 1

q(s0)
.

The necessity of the condition − 1
p(s0)

< β follows from the duality argu-
ment.

6 Appendix.

The following is an example of a function which satisfies condition (2.2) but
is not a Hölder function:

p(x) = a(x) +
b(x)(

ln A
|x|

)γ , x ∈ Ω, (6.1)

where a(x) and b(x) are Hölder functions, a(x) ≥ 1, b(x) ≥ 0, A > sup
x∈Ω

|x|
and γ ≥ 1. One may write a little bit more complicated example:

p(x) = a(x) +
b(x)(

ln A
|x|

)γ

(
lnlnln · · · ln C

|x|
)µ

(6.2)

with an arbitrary sufficiently large C > 1 and µ > 0, and the same assump-
tions on a(x), b(x), and A, but γ > 1. It is also possible to take different
powers of different logarithms as factors or superpositions in (6.2).
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To prove condition (2.2) for functions (6.1) or (6.2) or of similar type, we
are not obliged to check condition (2.2) directly. For this purpose we may
use properties of continuity moduli. It suffices to deal with the case where
a(x) ≡ 0 and b(x) = 1, since we consider differences p(x)− p(y).

We remind that a non-negative function f(t) on [0, `] is called a continuity
modulus if

ω(f, h) ∼ f(h),

where ω(f, h) = sup
|t1−t2|≤h
t1,t2∈[0,`]

|f(t1) − f(t2)| . There are known sufficient

conditions for a function f(x) to be continuity modulus, see, for example [2]
or [7]:
1) f(x) is continuous on [0, `],
2) f(0) = 0 and f(x) > 0 for x > 0,

3) f(x) is non-decreasing and f(x)
x

is non-increasing on a neighborhood of the
point x = 0. It is easy to check that functions (6.1)-(6.2) satisfy the above
conditions 1)-4).
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