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Fractional Weyl-Riesz Integrodifferentiation

of Periodic Functions of Two Variables
via the Periodization of the Riesz Kernel
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Abstract

We consider the periodization of the Riesz fractional integrals (Riesz potentials) of two
variables and show that already in this case we come across different effects, depending on
whether we use the repeated periodization, first in one variable, and afterwards in another
one, or the so called double periodization. We show that the naturally introduced doubly-
periodic Weyl-Riesz kernel of order 0 < a < 2 in general coincides with the periodization
of the Riesz kernel, the repeated periodization being possible for all 0 < « < 2, while the
double one is applicable only for 0 < o < 1. This is obtained as a realization of a certain
general scheme of periodization, both repeated and double versions. We prove statements
on coincidence of the corresponding periodic and non-periodic convolutions and give an
application to the case of the Riesz kernel.
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1. Introduction

In the theory of one-dimensional fractional integration it is well known that the periodic
fractional integral (Weyl integral) of a 2m-periodic function f(x), generally speaking,
coincides with the properly interpreted Liouville fractional integral of f, see [18], Lemma,
19.3. In faclt, this is nothing else but the statement that the periodic Weyl fractional
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kernel Y. <= is the periodization of the Liouville kernel =
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The notion of periodization, at least for fractional integration, appears in the paper
H. Weyl [19]. A general idea of the periodization of a function given on a real line, is well
exposed in the book A.Zygmund [21]. The periodization of functions is well known in
harmonic analysis (in particular, in application to sampling of signals), its central point
being the Poisson summation formula, see e.g. the books [4] or [2], p. 248-257, on the
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Poisson summation formula, or the papers [3], [5] on relations between this formula and
sampling theorems. We mention also the paper [1] devoted to periodization of singular
integrals.

In the case of many variables, it is easy to write down the periodization of the mixed
(repeated) fractional integration in each variable, when we easily separate variables. For
completeness we dwell briefly on this easy case in Subsection 4.6, item a). More difficult
is the case of a "real” multidimensional fractional integration, when we cannot separate
variables.

There exist many forms of multidimensional fractional integro-differentiation, the
reader may be referred to [17], Ch. 9 and [18], Ch.5. In this paper we dwell on the
case of the Riesz fractional integrals (Riesz potentials) of two variables and show that
already in this case we come across different effects, depending on whether we use the re-
peated periodization, first in one variable, and afterwards in another one, or the so called
double periodization. We show that the naturally introduced doubly-periodic Weyl-Riesz
kernel of order 0 < o < 2 in general coincides with the periodization of the Riesz kernel,
the repeated periodization being possible for all 0 < @ < 2, while the double one is appli-
cable only for 0 < o < 1, see Theorems 4.20 and 4.21. This is obtained as a realization
of a certain general scheme of periodization, both repeated or double which is developed
in Section 4.

Our interest to the periodization of fractional integrals is stirred up, in particular,
by the growing number of applications of fractional calculus, see for example the recent
book [8], the survey [11], the papers [6], [9] and [15] and references therein. We mention
also the paper [10] in which the Feller semigroups generated by periodic fractional Weyl
derivatives were studied.

The presentation is as follows. In Section 2 we give some one-dimensional background
on fractional integrals of periodic functions. Section 3 contains a general approach to the
periodization of functions of one variable, mainly based on [21], but with some modifi-
cations and specifications, and show how it works in case of the one-dimensional Riesz
kernel.

The main Section 4 is purely two-dimensional. In Subsections 4.2-4.4 we develop a
general approach to the periodic and double periodization itself, keeping in mind appli-
cations of this approach to the fractional integration operators. In Subsection 4.5 we
prove the main statements on coincidence of the corresponding periodic and non-periodic
convolutions. Section 4.6 contains an application of those results to the case of the Riesz
kernel.

Section 5 contains some final remarks on possible generalizations.

2. The one-dimensional background: Weyl and Weyl-
Riesz periodic fractional integration.

For a 2m-periodic function f(z),r € R! we write

1
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The Riemann-Liouville fractional integrodifferentiation does not preserve periodicity of
functions, as is well known. To keep a function periodic, one should introduce the frac-
tional integration as a periodic convolution

1 2w
— W(x —t)f(t)dt 2.1
e AR CEDNO (21)
a—1
with a suitable periodic kernel W(x) playing the same role as the power function ?Ea)

does in the non-periodic case. This was an original idea of Weyl [19] who introduced the
fractional integration keeping periodicity via the Fourier series representation

Wef(z)~ > (i%a eine (2.2)

the dash indicating that the term n = 0 is omitted. This definition leads to convolution
(2.1) of the form

1 2
Wef(z) = %/0 U (z —t)f(¢t)dt, a>0 (2.3)
where
¥ (1) = i, eine _2°°cos(nx:|:"‘2—“) (2.4)
)= = (£in)> — ne ’

the signs 4+ corresponding to the left- and right-hand side forms of fractional integration,
see details on both forms in [18], Section 19. Starting from (2.2)-(2.3), Weyl showed that
in the case of "nice” functions f(¢) this definition coincides with

Wef(e) = o [t T o (25)

which was introduced by J. Liouville [12], p. 8, see also [13] and [14]. However, the
integral in (2.5) is not absolutely convergent in case of periodic functions and it is in
reality treated as conventionally convergent in a special way:

1 2mn
Wef(zr) = =—— lim t f(x F t)dt (2.6)
[(e) na Jo

and under the condition that fo% f(z) de =0, see details in [18], Subsection 19.2.
It is worth noticing that the non-absolutely convergent Weyl integral (2.5) of a periodic
function may be transformed to the following absolutely convergent form

We f(a) = ﬁ/gm Fla—1) {tal - (27r [%DM} dt 2.7)

where [E] stands for the entire part of ;=, which was observed by M.Mikolas [16], see

18], p. 353.



By the Hurwitz formula [20] for the generalized Riemann function ((s,a), kernel (2.4)
may be written in terms of the function ((s,a):

W9 () = (132;@“ (1 —a, i%) , 0<t<2m (2.8)

It is known that
Loy = B
or = T(a)

+ 74(t) (2.9)

where the function

o (t) = ﬁ Tim [Z(szm)zl Il na] (2.10)

m=1
is infinitely differentiable for ¢ € (=27, 27| (see [18], p. 349).

The one-dimensional Weyl-Riesz fractional integration of periodic functions is intro-
duced via

Wef(x) ~ > %em (2.11)
so that )
W f($):m[w+f+w—f]:%/o Ut f(x —t) dt (2.12)
with N
o) W (t) + U (t) _y Z cosnt’ (2.13)

2 cos "“—2” ne

n=1
see [18], Subsection 19.3. By relation (2.8), the function W(¢) may be also written in the
form

vion t t
U (t) = l1—o,— l—oa,——— 0<t<2m.
®) 21=eT' () cos &F [C ( @ 27r) e ( @ 27r)} ’ stsem

3. Periodization in the one-dimensional case.

For a function k(z) defined on z € R! by E(f ) and k(&) we denote the direct and inverse
Fourier transforms:

i) = /_ T b dr, (E) = % /_ k(@) da

Xm () will stand for the characteristic function of the interval [27m, 27 (m + 1)]:

1, z€2mm,2(m+1)|m,
Xm(2) = ;
0, z¢ [2mm,2(m+ 1)7]
the means of a function k(z),x € R over the interval [27rm, 27(m + 1)] will be denoted
as

1 27 (m—+1)
M,, = M, (k) / k(z) dr,  mo=0,41,42, . (3.1)
2
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3.1 The general scheme.

a). Definitions. Given a function k(z) locally integrable on R', by its periodization
usually one means a construction of a periodic function K(x) : K(z+27) = K(z), x € R,
related to the function k(x) by the following properties:

A) its Fourier coefficients IC,,, coincide with the values of the Fourier transform of the
function k at the points £ =m = 0,41, +2, ...

K = k(m), (3.2)

(with the convergence of the Fourier integral at infinity specially discussed),
B) there holds the following coincidence of convolutions:

/O KW — 1) di = /Oo k() f(z —t) dt (3.3)

e}

for all 2m-periodic functions f(x).
To this end, we need to say more about the function k(x) than just that it is locally
integrable.

Definition 3.1. We say that a locally integrable function k(x) is admissible if the
function k. (x) defined by k.(z) = k(x)—M,,, x € [2rm,27(m+1)], that is, the function

ko(z) = k() = Y My xm(x), z € R! (3.4)

belongs to L!'(R'). The periodic function

oo

K(z)= Y klz+2mm)= Y [k(z+2rm) — M,] (3.5)

will be referred to as the periodization of the function k.(z) (or of the function k(x).)

In the case of symmetric convergence of the series in (3.5), formula (3.5) is equivalent
to

n—oo
m=—n

K(z) = lim { 2": k(x +2mm) — An} (3.6)

where

1 [t K(2 o) — K(—2
-~ k(t) dt — K2+ 2m) = K(=2mn) (3.7)
s

2m
—2mn
K(x) being a primitive of the function k(z) (compare with (2.9)-(2.10)).

Ay

a) Convergence of series (3.5).

Lemma 3.2. [f the kernel k(x) is admissible, then the series defining its periodization
K(x) converges absolutely for almost all x and in the norm of L'(0,2n), and

[e.e]

/D%UC(a:)Id:cg i /02W|k:*(x—|—27rm)|dx:/ |k ()] . (3.8)
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Proof. The equality in (3.8) is obvious. It is known that convergence of the series
> f | fm(t)| dt implies convergence of the series > |f,(t)| dt for almost all ¢ € [a,?],
see [21]. Therefore, from equality in (3.8) there follows the absolute convergence of the
series defining the function K(z). As for the inequality in (3.8), it follows from the Fatou
theorem for integrals. From this inequality convergence in L'-norm is also derived. a

In the following lemma we give a sufficient condition for a function k(x) to be admissi-
ble. To this end, we assume that k(z) is differentiable in every interval 2rm < x < 2w(m + 1)
for large |m| > N, with possible jumps at the points x = 2wm. Let

Bu= max |K(z)], [|m|>N. (3.9)

2rm<z<2m(m+1)

Lemma 3.3. Let the series Y. [, converge. Then the function k.(x) is admiisible
Im|>=N

2w N
el <2 [ @)l det 55 g (310)

—2rN |m|>N

and

Proof. We have

T m+1) 2m(m+1)
/_ \dx—Z/ ]dx—QFZ/

m=—00

/ mH)[k(x) — k(t)] dt| da.

Representing the difference k(z) — k(t) as k(z) — k(t) = [;" k'(s) ds, we arrive at (3.10)

after easy evaluation. a

The following lemma provides an exactification of the convergence statement of Lemma
3.2.
Lemma 3.4. Under the assumptions of Lemma 3.3

2n N

Z |k (z0+2mm)| < 2i ]k(a:o+27rm)]+%/ k()| dz+27 Y B (3.11)

m=—o00 Im|<N-1 —2nN Im|>N

so that series (3.5) defining the periodization of k(x) converges absolutely at any point
xo € [0,27] such that the values k(xo + 27m), m = 0,£1,4+2, .., £(N — 1), are finite.

Besides this,
2m o0
/ |K(z)| do < / |k ()| d. (3.12)
0 0

Proof. For zj € [0, 27| we have

Z |k (2o 4+ 2mm)| < 2i Z

m=—0oQ m=—0o0

(m+1)
/ [k(xo + 2mm) — k(t)] dt

from which the inequality (3.11) easily follows. The proof of (3.12) is also direct. O



c). Achieving goals A) and B)

Theorem 3.5. Let k() be an admissible kernel. The Fourier coefficients IC,, coincide
with the values of the Fourier transform k, at integer points:

K = ku(m), m=0,=+1,+2, ... (3.13)
and Ko = k,(0) = 0.
Proof. Indeed,
1 o —imt - -
Km = o e Z k. (t+2mj) dt.
j=-—00

By Lemma 3.2, the series converges absolutely and we may integrate it term by term after
which we easily obtain (3.13). The equality Ky = k.(0) = 0 is obvious. O

Theorem 3.6. If k.(z) € L1(RY), then the Fourier transform %(f) of the kernel k(x)
exists at the least at integer points £ = +1,£2, ... in the following sense:

5 1 2mng )
k(m)= - _lim / e " E(t) dt (3.14)
27T 1n1,né €2Z+ —2mny
and 3 .
k(m) = k.(m), m=+1,+2 43, ... (3.15)

Proof. Indeed, for m # 0 we have

27 ‘ na—1 2mj+2m } 27no }
/ k(e dt = ) / [k(t) — Mjle™ dt = / ky (t)e™" dt.

—2mny j=—n1 21y —27mn

It suffices to refer to the fact that the Fourier transform k,(€) exists in the usual sense. O

Corollary. From Theorems 3.5 and 3.6 it follows that the periodization K(x) of the
kernel k(x) may be represented as

K(z)= > k(m)e™

at least in the case when k,(z) € L;(R"), the Fourier integrals k(m) being treated in the
sense of (3.14).

The following theorem shows that convolution on real line with the kernel k(x) coin-
cides with the periodic convolution with the kernel K(x), but the former must be treated
as a conventionally convergent at infinity in a special way.

Theorem 3.7. Let k(x),z € R' be an admissible kernel. Then for almost all x

/0 KW - 1) di = /Oo k() f(a —t) dt (3.16)

e}
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for any 2m-periodic function f(x) € L'(0,27) with fo = 0, provided that the integral on
the right-hand side is interpreted as conventionally convergent at infinity in the following
sense:

/mk®ﬂx—ﬂﬁ: lim /%Mk®ﬂx—wﬁ. (3.17)

min(Ny,Ng)—oo
o0 N1,No€Zy —2mN1

The representation by an absolutely convergent integral

‘AWK@f@—ﬂd#:[%WG%mM@ﬂﬂx—ﬂdt (3.18)

o0

12T =+
o Jarl )

.—|

k(s) ds.

is also valid, where M(t) is a piece-wise constant function: M(t) =

Proof. The series defining K () converges in L'-norm, by Lemma 3.2. Therefore, when
substituting (3.5) into the left-hand side of (3.16), we may interchange the integration and
summation, by Young theorem for convolutions. As a result, we have

N2

A%Kwﬂx—ﬂd lim /'fx—t e(t + 2mm) — M, dt. (3.19)

n(N1,N2)
min(Np,Ng)—o0 N

Since fo% f(x)dx = 0, we obtain
27 27N,
0 K@ﬂx—ﬂﬁ:mmﬁﬁme%Mf@—ﬂMﬂﬁ
from which (3.16) follows with the interpretation (3.17) of the integral. To obtain (3.18)
from (3.19), it suffices to choose N; = Ny = n and note that Mm’ = M(t). O

el

3.2 The case of the Riesz kernel k(x) = fj((x;) .

As is well known (see, for instance, [17], p.37), the kernel of the multidimensional Riesz
potential operator is given by

’x‘a—n
ko(z) = , O0<a<n, r=(x1,....,2,) € R", 3.20
@)= (1, 20) (320)
: . 29721 (g)
with the normalizing constant ~, () = T
Let n =1 and let
1 - am
K z) = x4 2mm|*t —¢,), a) = 2I'(«) cos —, 3.21
W= 2 (et —a), =@, @21

be the periodization of the kernel k,(x) = |f”ﬂ|o(‘;)l with 0 < a < 1, where

_ 1)* —m* m >0
1 2mm—+42m 2 a—1 (m + ) -
Cm = — et gp = GO

o (3.22)

2mm «



Periodization (3.21) coincides with the function U*(z) defined in (2.13), see Theorem
3.9 below.

Lemma 3.8. The kernel ky(z), 0 < a < 1, is admissible (in the sense of Definition
3.1).

2ylel®™? sign @, we have 3, < = with ¢ > 0

not depending on m. Therefore, the series > [, converges and k,(x) is admissible by
ml<1
Lemma 3.3. O

Proof. Indeed, since Lk,(z) =

Theorem 3.9. Let 0 < a < 1. The Riesz-Weyl kernel (2.13) coincides with peri-
odization (3.21) of the Riesz kernel up to the constant factor 2m:

U (x) = 20K(x) (3.23)
and it may be also represented as
70 (z) L im |2 Z &+ 2mr|*! — 2 (27n) (3.24)
r)=———— lim |27 T+ 2mm ™) . .
2l () cos & n—oo = a

Proof. From (3.22) we have > ¢, = (2m)*! w so that formula (3.24)

follows directly from (3.21), if (3.23) is proved.
To obtain (3.23), we notice that the Fourier coefficients K¢, of the function K¢, coincide

with ,
~ 1 1 oo gmm 1 1
fa(m) = — / = ——  m=+142, ..
2m i) J oo |27 2 |m|
in view of Theorems 3.5 and 3.6, these theorems being applicable since the Riesz kernel
ko (x) is admissible by Lemma 3.8. Then (3.23) follows directly from the definition given
n (2.11).

O

Corollary. The Riesz-Weyl kernel U*(x) and the Riesz kernel k% (z) differ in (—27, 27)
by an infinitely differentiable term.

The following theorem is a corollary to Theorem 3.7 for the case of the Riesz kernel,
see an analogous version for the Liouville kernel in [18], p. 353.

Theorem 3.10. Let f(x) be a 2m-periodic function, f(x) € L'Y(0,27) and
0% f(z) de = 0. Then the Weyl-Riesz fractional integral (2.12) of the function f co-
incides with the Riesz fractional integral:

1 [ * flzx—1t)

% \Ija( )f(f]? - t) dt = /71 ‘ﬂl o >

0<a<l, (3.25)

provided that the integral on the right-hand side is interpreted as conventionally convergent
at infinity as in (3.17). The representation by an absolutely convergent integral

9



= [Cwese-na=-— [ Zf(r—t){\ﬂ‘”— (2 {g})} @t (320

18 also valid.

Proof. It suffices to choose k(t) = wéa) [t|>~! in the statements of Theorem 3.7. To

prove (3.26), the easiest way is to make use of the relation

1 2w

— U(t) f(x —t) dt = W3 f +Waf,

2 Jo
(see (2.12)), take into account that W f = QW2Qf, where Qf(z) = f(—z) and make
use of representation (2.7) for W¢ f. O

4. Periodization of functions of two variables.

Let f(x,y) be a doubly 27m-periodic function on R? :  f(x + 2m,y) = f(z,y + 27) =
flx,y), (z,y) e R% Let S={(z,y): 0 <z <2m,0<y<2r} and

F@y) ~ " frne' et (4.1)

where Y = > and f, = #ffs f(z,y)em=+m) dady .

m,n (m,n)€Z?

For a function k(z,y) defined on R* we use the notation

k . ! 1 —i(&x
k(&n)z//w k() &) day, k(€)= L //RZk(x,y)e (@ tm) gy

by S,.. we denote the square
Sem ={(z,y) : 2rm <z <2n(m+1),2rn <y <2m(n+1)}, m,n=0,+1,42, ..

so that S = Spo; by Xomn(Z,y) = Xm(z)xn(y) we designate the characteristic function of
the square 5,,,; we shall also need the notation

M2 (k) = ﬁ //mn k(z,y) dxdy (4.2)

for the means of the function k(x,y) over S,,,, and

27 (m—+1) 2m(n+1)
1 1
Wby =5 [ Mewds  Mkn=o- [ Kend @)
2mm 2mn

for the one-dimensional means over the corresponding intervals.

10



4.1 Weyl-Riesz fractional integration of periodic functions of
two variables.

The Weyl-Riesz fractional integration of periodic functions of two variables may be intro-
duced in a natural way as

flry)= Y _Smn ey (4.4)

2 2\ <
i (M7 1%)2

This operator has the form

1°f(z,y) “(&n)f(x—&y—mn)dédn (4.5)
where ima-n)
v(&,n) = |m|+z|r;|3£0 RO (4.6)
Obviously,
(€, n) = W& + T (n) + mzl ; CO;T?:QS o

in notation (2.13).

We will show that operator (4.5) may be obtained as a result of the periodization of
the Riesz potential over R? of order o. Therefore, we have to study the periodization of
the two-dimensional Riesz kernel as defined in (3.20), that is,

(22 + 2

, 0O<a<?, z,y) € R? 4.7
@) (,9) (4.7)

kal(w,y) =

: 207
with 72 () = F(l—(‘;)

[N]1)
N—

=2°T2 (2) sin &F. As is well known (see e.g. [17], p. 38),

1 1

@R @t )E (48)

ka(&m) =

4.2 On double and repeated periodization of functions of two
variables.

Similarly to the case of one variable, by a given function k(x, y) one can organize a doubly
periodic function in the form

i i k(x + 2mm,y + 2mn) (4.9)

but before one has to modify k(z,y) in such a way that it would have zero mean value
over every square S,,,. There are two natural ways to realize this procedure:

11



i) to subtract directly the mean over S,,, from k(x,y) when considered on S,,,,
ii) to arrange a similar process first with respect to x and afterwards with respect to y.
The approach based on the former way will be referred to as the double periodization
and in the latter case we shall speak about the repeated periodization. Both the approaches
have their advantages and disadvantages:
1) In the case of the double periodization, the obtained construction will have mean value
zero over the square Sy, while in the case of the repeated periodization partial mean val-
ues in each variable over [0, 27] will be identically equal to zero.
2) In applications to kernels k(z,y) with singularities, in particular to the Riesz kernel
(4.7), the double periodization proves to be more restrictive; thus the repeated periodiza-
tion allows us to consider all the orders 0 < a < 2, while the double periodization is
possible only for 0 < a < 1: when 1 < o < 2, the corresponding series (4.9) diverges for
the Riesz kernel in the case of the double periodization.
3) In the case when the kernel k(z,y) has singularities at the lines x = 0 and y = 0 (for
example, in the case of the mixed fractional order integration of order « in x and of order
B in y), the double periodization is not applicable at all.
4) The above arguments are in favor of the repeated periodization. However, there appear
arguments in favor of the double periodization when we wish to show that the periodic
convolution whose kernel is the corresponding periodization of a kernel k(x, y), is the same
as the non-periodic convolution on R? with the kernel k(z,y) itself. This coincidence is
valid for all periodic functions f(z,y) with foo = 0 in the case of the double periodization,
while in the case of the repeated factorization such a coincidence takes place on functions
f(z,y) with a stronger restriction on the Fourier coefficients:

fro=fon=0,  m=0,+1,42, .., n=0,+1+2, . (4.10)

see Theorem 4.9.

Obviously, to single out the subspace of functions f(x,y) € L(Sy) which satisfy
condition (4.10), means to organize the factor space L!(Sgy)/A modulo the class A of
functions of the form a(z) + b(y).

Lemma 4.1. Let f € Li(So0). The condition f,o =0 for all m € Z is equivalent to

the condition
27

flz,y)dy =0  for almost all x € [0, 27].
0

Similarly,
2m
Jon=0, neZ & f(z,y)de =0 for almost all y € [0,2m].
0
Proof. It suffices to observe that f,,0 = ﬁfo% emeg(x) dx with  g(z) =
fo% f(z,y) dy and similarly for f,. O

4.3 The double periodization of functions of two variables.

12



a) The function k,.(r,y) and its integrability on R?  Let k(z,y) be a locally
integrable function on R?. Similarly to (3.4) we introduce the function k..(x,y) on the
plane R? by the formula

]{Z**<CL’ y - k ZL’ y ZMIQ an z y) (xay) < R27 (411>

where X, (2, y) is the characteristic function of the square S,,,. Evidently,

mn

The obvious formula is valid:

Z Z ks (z + 2§,y + 201) = Z Z k(x4 2jm,y + 201) — Cpon, (4.13)

ljl<m ||<n lil<m [¢|<n

where (z,y) € Spp and

2m(m+1) 2m(n+1)
Con = 2 / / k(x,y) dedy.
7T 2mm 21mn

It is clear that k..(z,y) € L1(R?) if kx,y) € Li(R?) and
K|y e2) < 201K Ly @2), (4.14)

which can be checked directly. However, we are interested in the cases where k..(x,y) €
L;(R?), but a locally integrable function k(z,y) is not necessarily in L;(R?). The pos-
sibility for a function k..(z,y) to be integrable over R? can be obtained due to local
smoothness of the function k(z,y), see Lemma 4.2.

Below we give some conditions on the function k(z,y) sufficient for the function
k.(z,y) to be in L'(R?). In those conditions it will be assumed that the function k(z, )
satisfies the following conditions:

1) k(x,y) is integrable on Spo;

2) k(x,y) is bounded on every square S,,, with |m|+ |n| # 0.

Let

Bmn = sup |k(z,y) — k(s,t)] for |m| + |n| # 0. (4.15)

(z,9)ESmn
(s,t)ESmn

In the case where the function k(z,y) is differentiable in every square S,,,, |m| + |n| # 0,
one may take

B — 2 (sup K. 2, )] + sup |k;<x,y>|) . (4.16)

mn mn

We do not assume the function k(z,y) to be bounded on the square Spo in order to
be able to admit functions with singularity at the origin (like the Riesz kernel).

Lemma 4.2. Suppose that the series

Bi= Y B (4.17)



converges. Then k..(z,y) € LY(R?) and

ksl 2y < KLy (500) + (27)%8. (4.18)

Proof. We have

llegeey = 3 [ [ Ikt = Mo oy

“ar 2L

Passing to constants (4.15) in every term with |m| + |n| # 0, after easy calculations we
arrive at (4.18). O

// |k(z,y) — k(s,t)| dsdt| dxdy.

b) Convergence of the series defining the double periodization. Now by
means of the function k..(x,y) we construct the following doubly 27-periodic function

K(z,y) = Z kui(x + 2mm, y + 27n). (4.19)

mn

According to (4.13) we may rewrite this series as the limit

K(z,y) = lim Z Z k(x +2mj,y + 21l) — Cpn | - (4.20)

min(m,n)—oo | 4
lil<m [e]<n

Lemma 4.3. Suppose that k..(z,y) € L*(R?). Then series (4.19) converges absolutely
for almost all (z,y) € R* and may be also represented by (4.20). In the case where k(z,y)
satisfies the assumptions 1) and 2) and numerical series (4.17) converges, series (4.19)
converges absolutely for any point (xo,yo) € Soo at which the function k(x,y) is finite and

Z |kss (o 4 27rm, yo + 27n)| < [k (20, Yo) — Moo| + f- (4.21)

mn

Proof. The almost everywhere convergence is derived by the same arguments as in
the proof of Lemma 3.2. Let 0 < zy < 27, 0 < yo < 27. Denote |k(zq,yo) — Moo| = a for
brevity. We have

Z s (20 + 2mm, Yo + 270)| = a + Z |k(z + 2mm,y + 2mn) — Mp,|
mn jml+Inl£0

1
Sat o 2

[m|[+|n|#0

//mn [k(z + 2mm, y + 27n) — k(s, 1)) dsdt' <a+ > B

mn

14



4.4 The repeated periodization of functions of two variables.

a) The function k}(z,y). Now for a that function k(z,y) locally integrable on R?, we
construct a function k}(z,y) with mean value zero in each variable, first by introducing
the function

ko(z,y) = k(x,y) — ML (k,y), 2rm < x < 2n(m+1), yeR, (4.22)
and then the function
E:(x,y) = ko(z,y) — M2(k,, x), 2mn <y <2r(n+1), z€R! (4.23)

where M} (k,y) and M?(k,,x) are the one-dimensional means, see (4.3). From (4.22) and
(4.23) it follows that the function k}(z,y) has the following representation on the whole

plane :

Fi(x,y) = k(z,y) — > xm(@) M) (k,y) (4.24)
— Y Xa@M2E, )+ X (@)X (y) M2, (R), (z,y) € R,

compare with (3.4) and (4.11). It is not hard to see that
k(@) (2m)2 // (z,y) — k(s,y) — k(z,t) + k(s,t)] dsdt,  (z,y) € Spn.  (4.25)
)2

The mixed difference obtained in (4.25) has the representation

k(x,y) — k(s,y) — k(x,t) + k(s,t) / / oEan (4.26)
under the assumption that the mixed derivative of k(z,y) exists. Therefore,
|kX(z,y)] < ma Ok (2m)? (x,y) €85 (4.27)
X - .
y (z,y)ESmn &L’@y ’ Y

Similarly to (4.14) we have the following statement.

Lemma 4.4. Let k(z,y) € Li(R?). Then ki(z,y) € Li(R?) and ||k}]|1, ) <
AL, 2)-

Proof. We have

1B )| 21 r2) = Z//S ki(w,y) dvdy.

Making use of representation (4.25), we obtain

. 1
I e < oy ; / / - day / / (k)] Do) kG ) Dk, D) s

15



from which lemma’s statement easily follows. a

However, of more importance is derivation of integrability of k}(x, y) from local smooth-
ness of the function k(x,y) in the situation when k(z, y) may be not integrable at infinity.
To this end, we introduce the series

(4.28)

0k ‘

= Z mn  With i, = max 920y

b ESmn
| |0 (@)

Lemma 4.5. Let k(z,y) € L'(Sp) and suppose that series (4.28) converges. Then
ki (z,y) € L'(R?) and
155 ([ 2 rzy < 4B 2 s00) + (27) . (4.29)

Proof. We have
K2 ey = // k)| dady + Y // 1k (2, )| dady.
SOO mn

Iml|+|n|#0
By (4.27) we arrive at (4.29). O
Finally we introduce the repeated periodization of the function k(z,y) as
K(z,y) = Z ki (x + 2mm,y + 2mn). (4.30)
As it follows from (4.24), a relation of type (4.13) in this case has the form

Z Z ki (z + 2mj,y + 27l)

l7I<m [€]<n
= > [k(a+2mj,y + 2ml) — M (k,y + 270) — M7 (k, 2 + 27j) + M7 (k)]
[7]<m [€]<n

for (z,y) € Spo, so that the corresponding analogue of (4.20) is

K(z,y) = lim > k(z+ 2wy +210) — Ap(y) = Bu(x) + Co | (4.31)

min(m,n)—0

|7|<m [£]<n
for (z,y) € Spo, where
2m(m+1) 2m(n+1)
A (y) = % / k(s.y)ds  By(z) = % / k(zt) dt
—2mm —27mn

and C,,, is the same as in (4.13).

b) Convergence of the series defining the repeated periodization.

16



Lemma 4.6. Let k(x,y) satisfy the assumptions of Lemma 4.5. Then series (4.30)
converges absolutely at any point (xg,yo) € Seo for which the following values are finite:

2 21
ko, 10). / k(xo, )dt and / ks, yo)ds
0 0

and
> [k (o + 2mm, yo + 2mn)| < |A(o, yo)| + (27)%p, (4.32)

mn

where A(xo,y0) = k(xo,vy0) — fo% k(xo,t)dt — fozﬂ k(s,yo)ds + Myo.
Proof. Indeed,

Z |k (z + 2mm, y + 2mn)| = |kX (z,y)| + Z kX (x + 2rm, y + 2mn)|
mn ]+ |0

1
= Aol + g 2 [ ) = Ks,) — b t) 4 ks 1) s

[m[+|n|7#0

in view of (4.25), whence (4.32) follows according to (4.27). O

4.5 Fourier coefficients of the periodizations K(z,y) and K(z,y)
and coincidence between the corresponding periodic and
non-periodic convolutions.

For a doubly 27-periodic function f(x,y) we consider the periodic convolutions
Kf(z,y) = // K(s,t)f(x — s,y —t) dsdt ~ Z K frmet M) (4.33)
Soo mn
and
Soo

mn

whose kernels are the double and repeated periodizations of a given locally integrable
kernel k(z,y), as defined in (4.19), (4.30). Theorem 4.8 below shows that they coincide,
generally speaking, with the non-periodic convolution on R? with the kernel k(z,y).

Lemma 4.7. Let k.. € Li(R?). The double periodization K(z,y) has mean value

zero:
// K(z,y) dedy = 0. (4.35)
Soo

Similarly, when kX € Li(R?), the repeated periodization K(z,y) has partial mean values

equal to zero:
2 2m

K(s,y) ds = K(z,t)dt =0 (4.36)
0 0

17



for almost all x,y € [0, 27].

Proof. Statement (4.35) follows directly from the definition of the function KC(x,y).
In fact, (4.36) also is a consequence of the definition of K(z,y), but may be also checked
directly via representation (4.25). O

Theorem 4.8. Suppose that k..(z,y) € L*(R?). The Fourier coefficients K, of the
periodization (4.19) coincide with the values of the Fourier transforms of the functions
k.o at the points (m,n):

—~

K = kw(m,n), m,n€Z, |m|+|n|#0, (4.37)
and similarly
Kmn:l%;(m,n), m,n €7 , m#0, n#0, (4.38)
in the case where k¥(x,y) € L'(R?).
Also _
Ko = k(m,n), |m| + |n| #0 (4.39)
and B
Ky = k(m,n), m#0, n#D0, (4.40)

where the Fourier transform of the locally integrable function k(x,y) on the right-hand
sides of (4.39) and (4.40) exists at the least at integer points (m,n) in the following
sense:

~ 2mwma 27Tng ‘
k(m,n) = lim lim k(z,y)emetny) dady,
min(my,mg)—oc min(ny,ng)—oc0 —2rm —omn
my1,mo€Z ny,no€Z 1 1
In the excluded cases we have
,COO = 0, KmO = KOn = 0 (441)

Theorem 4.8 is similar to statements of Theorem 3.5 and Lemma 3.6 and is proved in
the same way. Relations (4.40) follow also from (4.35) and (4.36).

Corollary. The double and repeated periodization of the kernel k(z,y) are nothing
else but

’C(.’L‘, y) — Z,ii"(m, n>ei(mx+ny) and K(Q?, y) _ Z//]:;(m, n)ei(mm+ny),

where the dash ' as usual means omission of the term with m = n = 0, while the double
dash ” means that all the terms with m = 0 or n = 0 are omitted.

The next theorem generalizes Theorem 3.7.

Theorem 4.9. I. Suppose that k..(z,y) € L'(R?). Then a.e. on R?
// K(s,t)f(x — s,y —t) dsdt = // k(s,t)f(x — s,y —t) dsdt (4.42)
Soo R2

18



for any (27)-periodic function f(x,y) € L'(Soo) with foo = 0 provided that the integral on
the right hand side of (4.42) is interpreted as

2Tmeo 27rn2
lim lim (x — s,y —t) dsdt. (4.43)
min(m1{,mg)—oc min(ny,ng)—o0 _9 _9
my,mo€ZLy ny,no €L Tm 1

II. Let kX(z,y) € L'Y(R?). Then a.e. on R?

/ K(s,t)f(x — s,y —t) dsdt = // (s,t)f(x — s,y —t) dsdt (4.44)
Soo R2

for any (27)-periodic function f(x,y) € L'(Se) satisfying conditions (4.10) under the
same interpretation (4.43) of the integral on the right-hand side.

Proof. The proof is similar to that of Theorem 3.7. For example, representation (4.44)
is obtained from the relation

/ K(s,t)f(x — s,y —t) dsdt (4.45)

o 71;13 N > // (s.t) — M} (k,t) — MP(k,s) + Mj2(k)] f(z — s,y — t) dsdt
jI<m |0<n

if one notices that the terms with M (k,t), M7 (k,t) and M7 (k) disappear since the func-

tion f(x,y) satisfies conditions (4.10) and, therefore, the corresponding repeated integrals

are equal to zero by Lemma 4.1. a

4.6 Periodization of kernels of two-dimensional fractional inte-
gration operators.

a) Periodization of the kernel of the mixed fractional integration. This case is
not in fact two-dimensional being easily reduced to repeated one-dimensional application
of operations. Of much more interest is the periodization of the Riesz kernel to which we
pass in the next item, after we dwell briefly on the main points for the mixed fractional
integration. A natural definition of the mixed fractional integration of order o in z and
of order 3 in y of doubly periodic functions (4.1) is

(e} fmn i(max—+n
WP f(x,y) = ; We( ) a>0, 3>0. (4.46)

m#0,n#0

It may be written as a periodic convolution

WL f(z,y) \I/f‘rf (s,t)f(x — s,y —t) dsdt (4.47)

with the kernel

i(mx+ny) >
a8 . e . cosmxcosny ., 8
\I[++(:L‘7y) - §mn (zm)a(zn)ﬁ =4 E E : menpB - \II+(x)\I!+(y) (448)

m#0,n#0 m=1n=1
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where W9 () was defined in (2.4). The kernel W37 (x,y) may be obtained as a periodiza-

20Tt At .. . . . . .
tion of the kernel k(z,y) = % y;(—m The double periodization is not applicable in this
case (one cannot obtain the convergent series (4.19) just by subtracting only the means
over squares as in (4.11)). Under the repeated periodization (4.30), the corresponding

one-dimensional means are equal to

1 _ yﬂ_l 2 _ zo !
M, (k,y) = am(a)m and M:(k,x) = an(ﬁ)m
with ap (@) = £20% [(m+1)3 — mg] and M2, (k) = am(a)an(B).
The terms A,,(y), Bn(x), and Cmn from (4.31) are equal to
ot IR CL
) = fog m+ 1) e Bula) = p B ) R ()
and
B (Qﬂ)oz+ﬁ—2 N p
Cmn_F(ﬂ+1)I‘(ﬁ+1) (m+1)%n+1) (4.50)

for all m > 0,n > 0, being each equal to zero if m < 0 or n < 0.

Theorem 4.10. The series defining the repeated periodization K(z,y) of the kernel

ma—l

61
k(xz,y) = Ta) ?(—ﬁ) in the case 0 < o < 1 and B > 1 converges for all (z,y) € R?
except for the lines x = 2mm and y = 2mn, m,n € Z (and uniformly in any square
{2rm4+e<z<2r(m+1)—e2mn+e<y<2r(n+1)—¢c}) and

1

K(x,y) = (271')2 +’+(l’,y). (451)
The formula
1 o 1 m—1n—1 a 1 ﬁ )
min( = K:O
2m)et N 27)8-1 2 )oth-2
— —( (1 mayf b —( ; O Ty b+ —( Exﬁ mo‘nﬁ}, (w,y) € Soo,

also holds, and for all doubly 27-periodic functions f(x,y) € L*(So) satisfying condition
(4.10), the coincidence

a f r—S5Y—- t)
WP fz,y) / T dsdt (4.53)

is valid (under the corresponding interpretation of the integral on the right-hand side).

a—1 _f
+ Y+
I(e) T(8)
and series (4.28) converges. The coincidence (4.51) is a

Proof. The convergence of series (4.30) for the kernel k(z,y) = = _ follows from

const

Lemma 4.6 since pimn = —%55—5
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consequence of Theorem 4.8, while (4.53) follows from Theorem 4.9. To obtain (4.52), it

suffices to refer to (4.31) and (4.49)-(4.50).
O

b) Periodization of the Riesz kernel k,(z,y); convergence of the series. First
we observe that the means M2 (k,) of the Riesz kernel (4.7) over the square S,,, have
the following asymptotics

M2 (ko) = ku(27m, 27m) + 0 ( : ! a) -t {QW)M +0(1)}

m| +[n])>~ (m? +n?)'—2

as |m| + |n| — oc.
Indeed, we have

m+1 n+1
M2 (k / / ) dady = / d /
mn 27'(' S .Z‘ y ray = 27T 9 \2—an~ () oc s 82+t2
a1

and taking into account that m < s < m-+1,n <t < n+1, obtain [(m + 1)* + (n + 1)?]27 <
(27)2 () M2 (k) < (m? + nQ)%_l, from which (4.54) follows.
Let
Seo = {(2,y) € Soo, 2> +y* > €%}, 0<e<2m.
In Lemmas 4.11 and 4.12, by V., € > 0 we denote the union of arbitrarily small
neighborhoods of the vertices (0, 0), (0, 27), (27,0), (27, 27) lying inside the square Syo.

Lemma 4.11. Let 0 < a < 1. Series (4.19) defining the double periodization of
the Riesz kernel ko (x,y) converges absolutely for all (x,y) € Spo and uniformly on any
truncated square Spo\Vs.

Proof. The Riesz kernel is integrable on Sy, and infinitely differentiable outside the
origin. Therefore, by Lemma 4.3 it suffices to check that 5 < oo, that is, series (4.17)
converges. To make use of (4.16), we observe that 2ks(z,y) = gzj)x(ﬁ +4?)572 and

similarly for a%k;a(m,y). Consequently,

B < ; max(m,n) < c
o, < CcONSt - = < —
(m?4+n2)*>"2 = (m2 4+ n2)%*
Hence 1
2. Bm<e D,
I+ nl£0 mispio (P T)
=4c _— c c
n3—a (m+n)3—o | = 1
n=1 m=1 n=1 m=1n=m+1

and it remains to note that Zn mil < m;,a. O

Lemma 4.12. Let 0 < a < 2. Series (4.30) defining the repeated periodization of
the Riesz kernel ko (x,y) converges absolutely for all (x,y) € Sopo and uniformly on any
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subsquare {(z,y) : € < & < 2 —e,e < y < 27w — €}; in the case a > 1 it converges
uniformly on the larger set Spo/V-.

Proof. The absolute convergence in Sy, follows from Lemma 4.6. The uniform con-
vergence is easily derived from estimate (4.32) if one shows that u < oo. To prove this,
0%ka(x,y)

) — Ty .
we note that om0y = const @5 O that for series (4.28) we have

pe Y m2+n2

mlnl

which converges for all 0 < a < 2. Indeed,

m=1n=1 m=1 n=1
) ) (9]
<2373 "<
< 2°72 m < < 00
n5—a 3—a
m=1 n=m-+1 m=1

In the case o > 1 it suffices to observe that the function A(x,y) from (4.32) is uniformly
bounded on Spo\V-. O

Let Ku(z,y) and K,(z,y) be the double and repeated periodizations of the Riesz
kernel k,(z,y). According to (4.19) and (4.31), for (x,y) € Spo we have

1 1
Kalz,y) = li = — Cmn 4.55
(z.9) ng? —00 Z Z [(z +27)2 + (y + 270)2]) 2 ¢ (4.55)

(8% mln
72(a) lj|<m [¢|<n

in the case 0 < o < 1 and
Kao(z,y) = (4.56)

i[5 1 =~ () — @l@) +

min mn 2 1
V2(@) min( T (612 [(z+27))% + (y + 270)?]

in the case 0 < a < 2, with

1 2m(m+1) ds
an(y) = —/ T onl_o

27T —21m (82 + y2>1 2

2w(m+1) p2m(n+1) dsdt

—2mn 82 + t2)
(4. 57)

—2m™m

Below we study the behavior of the terms a,,(y) and ¢,,,, when m,n — oo.

c) Periodization of the Riesz kernel k,(z,y); asymptotics of the terms ¢,
and a,,(y) as m,n — oo .
For the term ¢, from (4.57)we start from the following relation
20!

o = gl ) + M2 (k) (4.58)
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where

dsdt
4.59
(m, n) / / 52 +t2)! ( )

and 1im | 4{nj—oo My (ko) = 0. The relation (4.58) is obtained directly with M2, (k)
equal to the mean (4.2) corresponding to the kernel vo(a)kq(z,y). Its tendency to zero
follows from (4.54).

So we have to study the behavior of g,(m,n) as |m| + |n| — oo. Obviously, g,(m,n)
is a homogeneous function of m and n of degree «a:

m n

2 | o 2e 2 | 2
m,n) = (m* +n”)2 V), = V= —, +ve=1.
ga(m,m) = ( )2 ga (11, V) = s N
(4.60)
Lemma 4.13. g,(u,v) satisfies the estimates
S fmin(p, )] < ga(pv) < 5= (4.61)

and takes its maximal value when p=v = \/75

Proof. Obviously,

dxdy dxdy
< go(m,n) -_—
(22 + 1-3 pp (22 + 2

where D, and Dp are the quarters of the circles:
D, ={(z,y): ©>0,y>0, 2> +¢y*<r}

of the radii r = min(m,n) and R = vm? + n?. Passing to polar coordinates we easily
obtain (4.61).
To find the maximum value, we represent g, (u, ) as the function of A\ = u%:

-/ ' / 7 flay)dady = h(Y)

with f(z,y) = m. Then easy calculations yield

1-X

h'(\) = f(\ ) dx—i—/o f(l =X\ x)de.

0

We have h'(3) = 0 and

A 1-2
h'()\):/O [fONz) — f(1— A )] dx+/}\ f(\ ) dx, 0<)\<%,

1-X A
WO\ = /0 FOuz) — F(1— A 2)] dx+/1Af(>\,m) iz, % cA<l,
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so that h/(A) > 0 for 0 < A < £ and //(A) < 0 for < A <1, which ends the proof. O

The following lemma gives a precise expression for g,(u,v) in terms of the Gauss
hypergeometric function

F(a,b;c;z) = Z <C<L2;€:Z)'kzk = %/@ PN — 8) N1 — s2)"%ds. (4.62)

n=0

Lemma 4.14. ¢,(u,v) may be calculated by the formula

v l+a . 3 V2 1 l+a 3 2
W, v) = —F | ——, 1, = —— —F === . 4.63
galpv) afL (2 2 u2)+a1/ (2 20 2 (4.63)
In particular,
1 1
g1(p,v) = pln (1 + —) +vin (1 + —) (4.64)
1 v

in the case o = 1.

Proof. Passing to polar coordinates we have

4 oy . bl ETER
G, v) = dp ro " dr + dp re " dr
0 0 0 0

with 6 = arctgﬁ. Hence

Lo de [ dy
ga(M7V>:_<M/ o +V/ o )
Q o COs® g SN~

The changes cos ¢ = v/t and sin ¢ = v/t in these integrals yield

(1) 1 <a/1 dt Lo ! dt )
ga M?V = 5 /"L 1+ v 1+
20 2t/ —t 2ttt

which is transformed to (4.63) via the substitutions ¢ = p? + v%s in the first integral and
t = 2 + s in the second one.
Formula (4.64) for a = 1 follows from the known relation

F(1.1: §,z) _ arcsin \/z |
2 2(1—2)
O
Remark 4.15. Making use of the formula
Le)r'(b—a) _ 1
F(a,bjc;—2) = ——————<2"F 1— i 1—b+a;—— 4.
(a,b;c;—2) F(b)F(c—a)Z a, c+a; +a; . (4.65)
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L(c)T'(a—10)

L(a)T'(c—0)
for hypergeometric functions (see [7], formula 9.132.2), we may represent g,(u,v) in the
case a # 1 also in the form

1
2F (b,l—c+b;1—a—|—b;—;>

(4.66)

7 l+a . 3 P 1 1 3—a p?
— |F | —, 1= —= —F |1, == 1.
+au{ < 2 772 V2> M 202 7 2

Now we pass to the study of the asymptotics of the term a,,(y) defined in (4.57). First
we note that it has the form

am(y) = ha(m;y) + o(1) (4.67)
as m — 00, where
1 2mm ds
ho(m;y) = — —_— 4.68
(m y) ﬂ_/(; (32—}-y2)1_5 ( )

and o(1) is uniform in y.

Lemma 4.16. Let 0 < oo < 2. The integral ho(m;y) admits the following representa-
tion in terms of the Gauss hypergeometric function

2—a 1 3 2mrm\
ha(m;y) = 2mly|* *F e el N E 4.69
(msy) = 2mly) ( e -(E )) (4.69)
wm particular,
1 2 v/ (2 2492
hi(m;y) = — In ( Tt |( rm) Ty > (4.70)
m Y

~—

when o« = 1. The function ho(m;y) has the following asymptotics

ha(m;y):i{ A BH +0< v >] (4.71)

27 | |yt (2mm) m3-«

as m — 0o, with A = % and B = EEL; in the case a # 1 and

2

[N

b (m: y) :% {mﬁ b In (dmm) + O (%)} (4.72)

i the case o = 1.

Proof. Representation (4.69) follows directly from the integral representation of the

hypergeometric function, see (4.62). The particular case (4.70) is obtained from (4.69) by

S In(z4ve241)
272020 T z

the known formula F' (
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To obtain the asymptotics (4.71), we make use of formula (4.65) and in the case where
a # 1, obtain

p(2=0 13
2 2

£+§zo‘_2F 2—al-a 3—-a _i '
2z 2

|
N
o}
~_
I

2 Y 2 ? 2 I 2 b Z2

Since F(a,b;c; 1) =1 + M@ where M(z) is bounded for |z| > 2, we obtain

—a 13 9 A B C(z)
.2 = — 4.
( PPl 2) 2z T 22 T ia (4.73)
where sup |C(z)| < co. Then (4.71) follows from (4.69) and (4.73).
|2]>2

Finally, (4.72) is a direct consequence of (4.70) since In (1 +4/1+ (ﬁy) =

ln2+0(%) as m — 0o.

d) Periodization of the Riesz kernel k,(z,y); the final statements.

Making use of the asymptotics obtained above for the terms ¢, and a,,(-) involved
n (4.55) and (4.56), we provide an exactification of relations (4.55)-(4.56) in Theorems
4.17 and 4.19 below.

Theorem 4.17. Let 0 < o < 1. Then

1 a
Kaolz,y) = li E E = — (m*+n?)2Q(—
(z.9) 17117111 —o0 [(z +27)2 + (y + 270)2]) 2 (m”+n7) ( n

Q Imn
72(@) lj|<m |e|<n

(4.74)
where (x,y) € Sog and the "angular coefficient”

2 1 2 1 4
o(2) = {@F( ol —ﬁ>+3F( U4 —"—)} (4.75)

n am?~e | n 2 2" n?

satisfies the estimates

204—1 o 2a—1
min L <Q <T> <. (4.76)
art=e Vvm?2 +n? Vm? +n? n aml=e
the limit in (4.74) exists for any (x,y) € Soo. Under the symmetrical (m = n) passage to
the limit one has

1
Koz, lim = — Ma)m® 4.77
(z,y) = m—o0 Z Z [(z +277)2 + (y + 2w0)2] 2 (a) (4.77)
[71<m |£|<m
with
o o1+ 1+a

")



Proof. Relation (4.74)-(4.75) follows from (4.55) in view of (4.58), (4.60) and (4.63)
I % = ﬂ-g agOé(:u’ V)'
$Fdr <A <3

The estimates (4.76) are obtained from (4.61), since € (2)

Remark 4.18. The number f(a) from (4.78) satisfies the estimates
(2m)e L 2%,

QI»—‘

which follows from (4.76), so that
1 -1
(2m)*7" < Aa) <

— Vm? + n?Q (%)
(4.79)

Corollary to Theorem 4.17. For aw = 1, from (4.74) and (4.82) we have

Z Z V (x +2mj)? —I—(y+27r€)
Am

1
llm
27T min(m,n)—oo
[71<m [£|<n
1

Ki(z,y) =
(4.80)

Z Z V(@ +275)2 + (y + 270)
i In (1+V2).

= — lim
271' m—oo

[7]1<m [£|<m

A==

(14+t)in (1+vV1+12)—tint

V1+t?
Similarly, in the case of the repeated periodization, we make use also the asymptotics

2
Qt) ==
(t) =~
(4.56), (4.71)-(4.72) for a,,(y) and from (4.56) derive the following statement

and

with

(4.81)

Theorem 4.19. Let 0 < a < 2 and (z,y) € Sog. Then for a # 1
1
+ (y +2m0)2' 2

IS Y
o ()

1
hm
m<m\€\<n
(m® 1+n0‘_1)+(m2+n)%9<

Kylz,y) =
( y) ’72(0./ min(
B

o (27)1-@
where Q( ) is the same as in (4.74), A and B are the constants from (4.71) and the
(4.82)

A a— (63
2 (el + Iyl
terms with B may be omitted in the case o < 1. In the case a =1 one has

1
+ (y + 2nl)

22 V(@ +2m))? +
()]

1

K (I y) 27'(' min( 71711/7111—@0
|7]1<m [£|<n
—— ln — + —ln [(47)*mn] + Vm?2 + n? Q

m
1 1 2
— —In — + —=In (47mm) + Im
m

Yy
ry

™
1
2 ™

Z Z V(z +2m5)2 + (y + 270)
27

— lim
[7]1<m [£|<m




with Q(t) and X given in (4.80).

Theorem 4.20. The Weyl-Riesz kernel V*(x,y) is related to the periodizations
K*(z,y) and K*(z,y) of the Riesz kernel by the formulas

U, (z,y) = (27)*K*(z, y), 0<a<l, (4.83)
Wo(2,y) = Vo) + Wa(y) + (20K (z,y), 0<a<2  (484)
where V() is the one-dimensional Weyl-Riesz kernel (2.13).

Proof. Relations (4.83)-(4.84) follow from the general Theorem 4.8, see also its Corol-
lary, under the choice k(z,y) = kqo(x,y). In the case 1 < a < 2, when considering (4.84),
one should take into account that periodic convolutions of f(x,y) with the one-dimensional
terms W(x) and U*(y) are identical zeroes by Lemma 4.1. O

Theorem 4.21. Let 0 < a < 1. Then the Weyl-Riesz fractional integral (4.5)
coincides with the Riesz potential:

(27)? //gooqfa(ﬁ,n)f( &y —n) dédn 72(04)/]1{2 CEOEE dédn,  (4.85)

for all doubly periodic functions f(x,y) € Li(Soo) with foo = 0, the convergence of the
integral on the right-hand side being interpreted as in (4.43). Relation (4.85) is also valid
for1 < a <2, if f(z,y) satisfies additionally conditions (4.10).

Proof. Relation (4.85) is a consequence of general Theorem 4.9 and Theorem 4.20. O

5. Final remarks.

Remark 5.1. All the results for the Riesz kernel remain valid for complex values of «
(0 < Ra < 2 for the repeated periodization and 0 < Ra < 1 for the double one) with
a replaced by Ra when we write estimating inequalities in Subsection 4.6. For example,

_m_

the estimation in (4.61) should run as z7—[min(u, v)]* < |ga(p, v)| < 55 and so on.

Remark 5.2. Instead of 2m-periodicity in each variable, we could deal with the
different periodicity in each variable, say with the period 77 in x and 75 in y, working with
the net of the corresponding rectangles instead of squares. Such a slight generalization is
just a matter of easy recalculations.

Remark 5.3. Similar results may be developed for the periodization of two-
dimensional Riesz differentiation, formally corresponding to the case of negative a in
kernel (4.7). In this case the kernel k_,(x,y),0 < a < 2, has a non-integrable singularity
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at the origin, so the general approach presented in Subsections 4.2-4.5 for locally inte-
grable kernels, is not applicable. However, we can arrange a similar process within the
framework of distributions and it is always possible to consider the pointwise convergence
of the series defining the periodization beyond the points (27wm,27n), m,n € Z. When
(x,y) lies far away from those points, this series converges faster for « < 0 than for o > 0
because of nicer behavior of the kernel at infinity. But, of course we have troubles with
the behavior of the series when (x,y) may reach those points.

Remark 5.4. Of a special interest is to consider periodization of other forms of frac-
tional integration of many variables. We dealt with the fractional power of the Laplace
operators. One could proceed in the same way for fractional powers of other differen-
tial operators in partial derivatives, for example, wave or heat operators, Schrodinger
operators and others, see [17], Ch. 9, for the space versions of these fractional powers.
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