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Fractional Weyl-Riesz Integrodifferentiation
of Periodic Functions of Two Variables

via the Periodization of the Riesz Kernel
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Abstract

We consider the periodization of the Riesz fractional integrals (Riesz potentials) of two
variables and show that already in this case we come across different effects, depending on
whether we use the repeated periodization, first in one variable, and afterwards in another
one, or the so called double periodization. We show that the naturally introduced doubly-
periodic Weyl-Riesz kernel of order 0 < α < 2 in general coincides with the periodization
of the Riesz kernel, the repeated periodization being possible for all 0 < α < 2, while the
double one is applicable only for 0 < α < 1. This is obtained as a realization of a certain
general scheme of periodization, both repeated and double versions. We prove statements
on coincidence of the corresponding periodic and non-periodic convolutions and give an
application to the case of the Riesz kernel.
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1. Introduction

In the theory of one-dimensional fractional integration it is well known that the periodic
fractional integral (Weyl integral) of a 2π-periodic function f(x), generally speaking,
coincides with the properly interpreted Liouville fractional integral of f , see [18], Lemma
19.3. In fact, this is nothing else but the statement that the periodic Weyl fractional

kernel
∞∑

n=−∞

′
einx

(in)α is the periodization of the Liouville kernel
xα−1
+

Γα
.

The notion of periodization, at least for fractional integration, appears in the paper
H. Weyl [19]. A general idea of the periodization of a function given on a real line, is well
exposed in the book A.Zygmund [21]. The periodization of functions is well known in
harmonic analysis (in particular, in application to sampling of signals), its central point
being the Poisson summation formula, see e.g. the books [4] or [2], p. 248-257, on the
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Poisson summation formula, or the papers [3], [5] on relations between this formula and
sampling theorems. We mention also the paper [1] devoted to periodization of singular
integrals.

In the case of many variables, it is easy to write down the periodization of the mixed
(repeated) fractional integration in each variable, when we easily separate variables. For
completeness we dwell briefly on this easy case in Subsection 4.6, item a). More difficult
is the case of a ”real” multidimensional fractional integration, when we cannot separate
variables.

There exist many forms of multidimensional fractional integro-differentiation, the
reader may be referred to [17], Ch. 9 and [18], Ch.5. In this paper we dwell on the
case of the Riesz fractional integrals (Riesz potentials) of two variables and show that
already in this case we come across different effects, depending on whether we use the re-
peated periodization, first in one variable, and afterwards in another one, or the so called
double periodization. We show that the naturally introduced doubly-periodic Weyl-Riesz
kernel of order 0 < α < 2 in general coincides with the periodization of the Riesz kernel,
the repeated periodization being possible for all 0 < α < 2, while the double one is appli-
cable only for 0 < α < 1, see Theorems 4.20 and 4.21. This is obtained as a realization
of a certain general scheme of periodization, both repeated or double which is developed
in Section 4.

Our interest to the periodization of fractional integrals is stirred up, in particular,
by the growing number of applications of fractional calculus, see for example the recent
book [8], the survey [11], the papers [6], [9] and [15] and references therein. We mention
also the paper [10] in which the Feller semigroups generated by periodic fractional Weyl
derivatives were studied.

The presentation is as follows. In Section 2 we give some one-dimensional background
on fractional integrals of periodic functions. Section 3 contains a general approach to the
periodization of functions of one variable, mainly based on [21], but with some modifi-
cations and specifications, and show how it works in case of the one-dimensional Riesz
kernel.

The main Section 4 is purely two-dimensional. In Subsections 4.2-4.4 we develop a
general approach to the periodic and double periodization itself, keeping in mind appli-
cations of this approach to the fractional integration operators. In Subsection 4.5 we
prove the main statements on coincidence of the corresponding periodic and non-periodic
convolutions. Section 4.6 contains an application of those results to the case of the Riesz
kernel.

Section 5 contains some final remarks on possible generalizations.

2. The one-dimensional background: Weyl and Weyl-

Riesz periodic fractional integration.

For a 2π-periodic function f(x), x ∈ R1 we write

f(x) ∼
∞∑

n=−∞
fne

inx, fn =
1

2π

∫ 2π

0

e−inxf(x) dx.
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The Riemann-Liouville fractional integrodifferentiation does not preserve periodicity of
functions, as is well known. To keep a function periodic, one should introduce the frac-
tional integration as a periodic convolution

1

2π

∫ 2π

0

Ψ(x− t)f(t)dt (2.1)

with a suitable periodic kernel Ψ(x) playing the same role as the power function
xα−1
+

Γ(α)

does in the non-periodic case. This was an original idea of Weyl [19] who introduced the
fractional integration keeping periodicity via the Fourier series representation

Wα
±f(x) ∼

∞∑
n=−∞

′
fn

(±in)α
einx (2.2)

the dash indicating that the term n = 0 is omitted. This definition leads to convolution
(2.1) of the form

Wα
±f(x) =

1

2π

∫ 2π

0

Ψα
±(x− t)f(t)dt, α > 0 (2.3)

where

Ψα
±(x) =

∞∑
n=−∞

′
einx

(±in)α
= 2

∞∑
n=1

cos
(
nx∓ απ

2

)

nα
(2.4)

the signs ± corresponding to the left- and right-hand side forms of fractional integration,
see details on both forms in [18], Section 19. Starting from (2.2)-(2.3), Weyl showed that
in the case of ”nice” functions f(t) this definition coincides with

W α
±f(x) =

1

Γ(α)

∫ ∞

0

tα−1f(x∓ t)dt (2.5)

which was introduced by J. Liouville [12], p. 8, see also [13] and [14]. However, the
integral in (2.5) is not absolutely convergent in case of periodic functions and it is in
reality treated as conventionally convergent in a special way:

W α
±f(x) =

1

Γ(α)
lim
n→∞
n∈Z+

∫ 2πn

0

tα−1f(x∓ t)dt (2.6)

and under the condition that
∫ 2π

0
f(x) dx = 0, see details in [18], Subsection 19.2.

It is worth noticing that the non-absolutely convergent Weyl integral (2.5) of a periodic
function may be transformed to the following absolutely convergent form

Wα
+f(x) =

1

Γ(α)

∫ ∞

0

f(x− t)

{
tα−1 −

(
2π

[
t

2π

])α−1
}

dt (2.7)

where
[

t
2π

]
stands for the entire part of t

2π
, which was observed by M.Mikolas [16], see

[18], p. 353.
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By the Hurwitz formula [20] for the generalized Riemann function ζ(s, a), kernel (2.4)
may be written in terms of the function ζ(s, a):

Ψα
±(t) =

(2π)α

Γ(α)
ζ

(
1− α,± t

2π

)
, 0 < t < 2π. (2.8)

It is known that
1

2π
Ψα
±(t) =

tα−1
+

Γ(α)
+ rα(t) (2.9)

where the function

rα(t) =
1

Γ(α)
lim

n→∞

[
n∑

m=1

(t + 2πm)α−1
+ − (2π)α−1

α
nα

]
(2.10)

is infinitely differentiable for t ∈ (−2π, 2π] (see [18], p. 349).
The one-dimensional Weyl-Riesz fractional integration of periodic functions is intro-

duced via

Wαf(x) ∼
∞∑

n=−∞

′
fn

|n|α einx (2.11)

so that

Wαf(x) =
1

2 cos απ
a

[
Wα

+f + Wα
−f

]
=

1

2π

∫ 2π

0

Ψα(t)f(x− t) dt (2.12)

with

Ψα(t) =
Ψα

+(t) + Ψα
−(t)

2 cos απ
2

= 2
∞∑

n=1

cos nt

nα
, (2.13)

see [18], Subsection 19.3. By relation (2.8), the function Ψ(t) may be also written in the
form

Ψα(t) =
πα

21−αΓ(α) cos απ
2

[
ζ

(
1− α,

t

2π

)
+ ζ

(
1− α,− t

2π

)]
, 0 < t < 2π.

3. Periodization in the one-dimensional case.

For a function k(x) defined on x ∈ R1 by k̂(ξ) and k̃(ξ) we denote the direct and inverse
Fourier transforms:

k̂(ξ) =

∫ ∞

−∞
k(x)eiξx dx, k̃(ξ) =

1

2π

∫ ∞

−∞
k(x)e−iξx dx;

χm(x) will stand for the characteristic function of the interval [2πm, 2π(m + 1)]:

χm(x) =





1, x ∈ [2mπ, 2(m + 1)]π,

0, x /∈ [2mπ, 2(m + 1)π]
;

the means of a function k(x), x ∈ R1 over the interval [2πm, 2π(m + 1)] will be denoted
as

Mm = Mm(k) =
1

2π

∫ 2π(m+1)

2πm

k(x) dx, m = 0,±1,±2, ... (3.1)
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3.1 The general scheme.

a). Definitions. Given a function k(x) locally integrable on R1, by its periodization
usually one means a construction of a periodic functionK(x) : K(x+2π) = K(x), x ∈ R1,
related to the function k(x) by the following properties:

A) its Fourier coefficients Km coincide with the values of the Fourier transform of the
function k at the points ξ = m = 0,±1,±2, ...:

Km = k̃(m), (3.2)

(with the convergence of the Fourier integral at infinity specially discussed),
B) there holds the following coincidence of convolutions:

∫ 2π

0

K(t)f(x− t) dt =

∫ ∞

−∞
k(t)f(x− t) dt (3.3)

for all 2π-periodic functions f(x).
To this end, we need to say more about the function k(x) than just that it is locally

integrable.

Definition 3.1. We say that a locally integrable function k(x) is admissible if the
function k∗(x) defined by k∗(x) = k(x)−Mm, x ∈ [2πm, 2π(m+1)], that is, the function

k∗(x) = k(x)−
∞∑

m=−∞
Mm χm(x), x ∈ R1 (3.4)

belongs to L1(R1). The periodic function

K(x) =
∞∑

m=−∞
k∗(x + 2πm) =

∞∑
m=−∞

[k(x + 2πm)−Mm] (3.5)

will be referred to as the periodization of the function k∗(x) (or of the function k(x).)

In the case of symmetric convergence of the series in (3.5), formula (3.5) is equivalent
to

K(x) = lim
n→∞

{
n∑

m=−n

k(x + 2πm)− An

}
(3.6)

where

An =
1

2π

∫ 2π(n+1)

−2πn

k(t) dt =
K(2πn + 2π)−K(−2πn)

2π
, (3.7)

K(x) being a primitive of the function k(x) (compare with (2.9)-(2.10)).

a) Convergence of series (3.5).

Lemma 3.2. If the kernel k(x) is admissible, then the series defining its periodization
K(x) converges absolutely for almost all x and in the norm of L1(0, 2π), and

∫ 2π

0

|K(x)| dx ≤
∞∑

m=−∞

∫ 2π

0

|k∗(x + 2πm)| dx =

∫ ∞

−∞
|k∗(x)| dx. (3.8)
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Proof. The equality in (3.8) is obvious. It is known that convergence of the series∑ ∫ b

a
|fm(t)| dt implies convergence of the series

∑ |fm(t)| dt for almost all t ∈ [a, b],
see [21]. Therefore, from equality in (3.8) there follows the absolute convergence of the
series defining the function K(x). As for the inequality in (3.8), it follows from the Fatou
theorem for integrals. From this inequality convergence in L1-norm is also derived. 2

In the following lemma we give a sufficient condition for a function k(x) to be admissi-
ble. To this end, we assume that k(x) is differentiable in every interval 2πm ≤ x ≤ 2π(m + 1)
for large |m| ≥ N , with possible jumps at the points x = 2πm. Let

βm = max
2πm≤x≤2π(m+1)

|k′(x)|, |m| ≥ N. (3.9)

Lemma 3.3. Let the series
∑

|m|≥N

βm converge. Then the function k∗(x) is admiisible

and

‖k∗‖L1 ≤ 2

∫ 2πN

−2πN

|k(x)| dx +
4π2

3

∑

|m|≥N

βm. (3.10)

Proof. We have

∫ ∞

−∞
|k∗(x)| dx =

∞∑
m=−∞

∫ 2π(m+1)

2πm

|k∗(x)| dx =
1

2π

∞∑
m=−∞

∫ 2π(m+1)

2πm

∣∣∣∣∣
∫ 2π(m+1)

2πm

[k(x)− k(t)] dt

∣∣∣∣∣ dx.

Representing the difference k(x) − k(t) as k(x) − k(t) =
∫ x

t
k′(s) ds, we arrive at (3.10)

after easy evaluation. 2

The following lemma provides an exactification of the convergence statement of Lemma
3.2.

Lemma 3.4. Under the assumptions of Lemma 3.3

∞∑
m=−∞

|k∗(x0+2πm)| ≤ 1

2π

∑

|m|≤N−1

|k(x0+2πm)|+ 1

2π

∫ 2πN

−2πN

|k(x)| dx+2π
∑

|m|≥N

βm (3.11)

so that series (3.5) defining the periodization of k(x) converges absolutely at any point
x0 ∈ [0, 2π] such that the values k(x0 + 2πm), m = 0,±1,±2, ..,±(N − 1), are finite.
Besides this, ∫ 2π

0

|K(x)| dx ≤
∫ ∞

0

|k∗(x)| dx. (3.12)

Proof. For x0 ∈ [0, 2π] we have

∞∑
m=−∞

|k∗(x0 + 2πm)| ≤ 1

2π

∞∑
m=−∞

∣∣∣∣∣
∫ 2π(m+1)

2πm

[k(x0 + 2πm)− k(t)] dt

∣∣∣∣∣

from which the inequality (3.11) easily follows. The proof of (3.12) is also direct. 2
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c). Achieving goals A) and B)

Theorem 3.5. Let k(x) be an admissible kernel. The Fourier coefficients Km coincide
with the values of the Fourier transform k̃∗ at integer points:

Km = k̃∗(m), m = 0,±1,±2, ... (3.13)

and K0 = k̃∗(0) = 0.

Proof. Indeed,

Km =
1

2π

∫ 2π

0

e−imt

∞∑
j=−∞

k∗(t + 2πj) dt.

By Lemma 3.2, the series converges absolutely and we may integrate it term by term after
which we easily obtain (3.13). The equality K0 = k̃∗(0) = 0 is obvious. 2

Theorem 3.6. If k∗(x) ∈ L1(R1), then the Fourier transform k̃(ξ) of the kernel k(x)
exists at the least at integer points ξ = ±1,±2, ... in the following sense:

k̃(m) =
1

2π
lim

n1→∞,n2→∞
n1,n2∈Z+

∫ 2πn2

−2πn1

e−imtk(t) dt (3.14)

and
k̃(m) = k̃∗(m), m = ±1,±2,±3, ... (3.15)

Proof. Indeed, for m 6= 0 we have

∫ 2πn2

−2πn1

k(t)e−imt dt =

n2−1∑
j=−n1

∫ 2πj+2π

2πj

[k(t)−Mj]e
imt dt =

∫ 2πn2

−2πn1

k∗(t)e−imt dt.

It suffices to refer to the fact that the Fourier transform k̃∗(ξ) exists in the usual sense. 2

Corollary. From Theorems 3.5 and 3.6 it follows that the periodization K(x) of the
kernel k(x) may be represented as

K(x) =
∞∑

m=−∞

′
k̃(m)eimx

at least in the case when k∗(x) ∈ L1(R1), the Fourier integrals k̃(m) being treated in the
sense of (3.14).

The following theorem shows that convolution on real line with the kernel k(x) coin-
cides with the periodic convolution with the kernel K(x), but the former must be treated
as a conventionally convergent at infinity in a special way.

Theorem 3.7. Let k(x), x ∈ R1 be an admissible kernel. Then for almost all x

∫ 2π

0

K(t)f(x− t) dt =

∫ ∞

−∞
k(t)f(x− t) dt (3.16)
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for any 2π-periodic function f(x) ∈ L1(0, 2π) with f0 = 0, provided that the integral on
the right-hand side is interpreted as conventionally convergent at infinity in the following
sense: ∫ ∞

−∞
k(t)f(x− t) dt = lim

min(N1,N2)→∞
N1,N2∈Z+

∫ 2πN2

−2πN1

k(t)f(x− t) dt . (3.17)

The representation by an absolutely convergent integral
∫ 2π

0

K(t)f(x− t) dt =

∫ ∞

−∞
[k(t)−M(t)] f(x− t) dt (3.18)

is also valid, where M(t) is a piece-wise constant function: M(t) = 1
2π

∫ 2π[ t
2π ]+1

2π[ t
2π ]

k(s) ds.

Proof. The series definingK(x) converges in L1-norm, by Lemma 3.2. Therefore, when
substituting (3.5) into the left-hand side of (3.16), we may interchange the integration and
summation, by Young theorem for convolutions. As a result, we have

∫ 2π

0

K(t)f(x− t) dt = lim
min(N1,N2)→∞

∫ 2π

0

f(x− t)

N2∑
m=−N1

[k(t + 2πm)−Mm] dt. (3.19)

Since
∫ 2π

0
f(x)dx = 0, we obtain

∫ 2π

0

K(t)f(x− t) dt = lim
min(N1,N2)→∞

∫ 2πN2

−2πN1

f(x− t)k(t) dt

from which (3.16) follows with the interpretation (3.17) of the integral. To obtain (3.18)

from (3.19), it suffices to choose N1 = N2 = n and note that Mm

∣∣∣∣
m=[ t

2π ]
= M(t). 2

3.2 The case of the Riesz kernel k(x) = |x|α−1

γ1(α) .

As is well known (see, for instance, [17], p.37), the kernel of the multidimensional Riesz
potential operator is given by

kα(x) =
|x|α−n

γn(α)
, 0 < α < n, x = (x1, ..., xn) ∈ Rn, (3.20)

with the normalizing constant γn(α) =
2απ

n
2 Γ(α

2 )
Γ(n−α

2 )
.

Let n = 1 and let

Kα(x) =
1

γ1(α)

∞∑
m=−∞

(|x + 2mπ|α−1 − cm

)
, γ1(α) = 2Γ(α) cos

απ

2
, (3.21)

be the periodization of the kernel kα(x) = |x|α−1

γ1(α)
with 0 < α < 1, where

cm =
1

2π

∫ 2πm+2π

2πm

|t|α−1 dt =
(2π)α−1

α





(m + 1)α −mα, m ≥ 0

|m|α − (|m| − 1)α, m < 0.
(3.22)
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Periodization (3.21) coincides with the function Ψα(x) defined in (2.13), see Theorem
3.9 below.

Lemma 3.8. The kernel kα(x), 0 < α < 1, is admissible (in the sense of Definition
3.1).

Proof. Indeed, since d
dx

kα(x) = α−1
γ1(α)

|x|α−2 sign x, we have βm ≤ c
m2−α with c > 0

not depending on m. Therefore, the series
∑
|m|≤1

βm converges and kα(x) is admissible by

Lemma 3.3. 2

Theorem 3.9. Let 0 < α < 1. The Riesz-Weyl kernel (2.13) coincides with peri-
odization (3.21) of the Riesz kernel up to the constant factor 2π:

Ψα(x) ≡ 2πKα(x) (3.23)

and it may be also represented as

Ψα(x) =
1

2Γ(α) cos απ
2

lim
n→∞

[
2π

n∑
m=−n

|x + 2mπ|α−1 − 2

α
(2πn)α

]
. (3.24)

Proof. From (3.22) we have
n∑

m=−n

cm = (2π)α−1 nα+(n+1)α

α
so that formula (3.24)

follows directly from (3.21), if (3.23) is proved.
To obtain (3.23), we notice that the Fourier coefficients Kα

m of the function Kα
m coincide

with

k̃α(m) =
1

2π

1

γ1(α)

∫ ∞

−∞

e−ixm

|x|1−α
dx =

1

2π

1

|m|α , m = ±1,±2, ...

in view of Theorems 3.5 and 3.6, these theorems being applicable since the Riesz kernel
kα(x) is admissible by Lemma 3.8. Then (3.23) follows directly from the definition given
in (2.11).

2

Corollary. The Riesz-Weyl kernel Ψα(x) and the Riesz kernel kα(x) differ in (−2π, 2π)
by an infinitely differentiable term.

The following theorem is a corollary to Theorem 3.7 for the case of the Riesz kernel,
see an analogous version for the Liouville kernel in [18], p. 353.

Theorem 3.10. Let f(x) be a 2π-periodic function, f(x) ∈ L1(0, 2π) and∫ 2π

0
f(x) dx = 0. Then the Weyl-Riesz fractional integral (2.12) of the function f co-

incides with the Riesz fractional integral:

1

2π

∫ 2π

0

Ψα(t)f(x− t) dt =
1

γ1(α)

∫ ∞

−∞

f(x− t) dt

|t|1−α
, 0 < α < 1, (3.25)

provided that the integral on the right-hand side is interpreted as conventionally convergent
at infinity as in (3.17). The representation by an absolutely convergent integral

9



1

2π

∫ 2π

0

Ψα(t)f(x− t) dt =
1

γ1(α)

∫ ∞

−∞
f(x− t)

{
|t|α−1 −

(
2π

[ |t|
2π

])α−1
}

dt (3.26)

is also valid.

Proof. It suffices to choose k(t) = 1
γ1(α)

|t|α−1 in the statements of Theorem 3.7. To

prove (3.26), the easiest way is to make use of the relation

1

2π

∫ 2π

0

Ψα(t)f(x− t) dt = W α
+f + Wα

−f,

(see (2.12)), take into account that W α
−f = QWα

+Qf, where Qf(x) = f(−x) and make
use of representation (2.7) for W α

+f . 2

4. Periodization of functions of two variables.

Let f(x, y) be a doubly 2π-periodic function on R2 : f(x + 2π, y) = f(x, y + 2π) =
f(x, y), (x, y) ∈ R2. Let S = {(x, y) : 0 < x < 2π, 0 < y < 2π} and

f(x, y) ∼
∑
m,n

fmne
i(mx+ny), (4.1)

where
∑
m,n

=
∑

(m,n)∈Z2

and fmn = 1
(2π)2

∫∫
S

f(x, y)ei(mx+ny) dxdy .

For a function k(x, y) defined on R2 we use the notation

k̂(ξ, η) =

∫∫

R2

k(x, y)ei(ξx+ηy) dxy, k̃(ξ, η) =
1

(2π)2

∫∫

R2

k(x, y)e−i(ξx+ηy) dxy;

by Smn we denote the square

Smn = {(x, y) : 2πm < x < 2π(m + 1), 2πn < y < 2π(n + 1)}, m, n = 0,±1,±2, ...

so that S = S00; by χmn(x, y) = χm(x)χn(y) we designate the characteristic function of
the square Smn; we shall also need the notation

M12
mn(k) =

1

(2π)2

∫∫

Smn

k(x, y) dxdy (4.2)

for the means of the function k(x, y) over Smn, and

M1
m(k, y) =

1

2π

2π(m+1)∫

2πm

k(s, y) ds, M2
n(k, x) =

1

2π

2π(n+1)∫

2πn

k(x, t) dt (4.3)

for the one-dimensional means over the corresponding intervals.
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4.1 Weyl-Riesz fractional integration of periodic functions of
two variables.

The Weyl-Riesz fractional integration of periodic functions of two variables may be intro-
duced in a natural way as

Iαf(x, y) =
∑

|m|+|n|6=0

fmn

(m2 + n2)
α
2

ei(mx+ny). (4.4)

This operator has the form

Iαf(x, y) =
1

(2π)2

∫∫

S

Ψα(ξ, η)f(x− ξ, y − η) dξdη (4.5)

where

Ψα(ξ, η) =
∑

|m|+|n|6=0

ei(mx+ny)

(m2 + n2)
α
2

. (4.6)

Obviously,

Ψα(ξ, η) = Ψα(ξ) + Ψα(η) +
∞∑

m=1

∞∑
n=1

cos mξ cos nη

(m2 + n2)
α
2

in notation (2.13).
We will show that operator (4.5) may be obtained as a result of the periodization of

the Riesz potential over R2 of order α. Therefore, we have to study the periodization of
the two-dimensional Riesz kernel as defined in (3.20), that is,

kα(x, y) =
(x2 + y2)

α−2
2

γ2(α)
, 0 < α < 2, (x, y) ∈ R2 (4.7)

with γ2(α) =
2απΓ(α

2 )
Γ(1−α

2 )
= 2αΓ2

(
α
2

)
sin απ

2
. As is well known (see e.g. [17], p. 38),

k̃α(ξ, η) =
1

(2π)2

1

(ξ2 + η2)
α
2

. (4.8)

4.2 On double and repeated periodization of functions of two
variables.

Similarly to the case of one variable, by a given function k(x, y) one can organize a doubly
periodic function in the form

∞∑
m=−∞

∞∑
n=−∞

k(x + 2πm, y + 2πn) (4.9)

but before one has to modify k(x, y) in such a way that it would have zero mean value
over every square Smn. There are two natural ways to realize this procedure:
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i) to subtract directly the mean over Smn from k(x, y) when considered on Smn,
ii) to arrange a similar process first with respect to x and afterwards with respect to y.

The approach based on the former way will be referred to as the double periodization
and in the latter case we shall speak about the repeated periodization. Both the approaches
have their advantages and disadvantages:
1) In the case of the double periodization, the obtained construction will have mean value
zero over the square S00, while in the case of the repeated periodization partial mean val-
ues in each variable over [0, 2π] will be identically equal to zero.
2) In applications to kernels k(x, y) with singularities, in particular to the Riesz kernel
(4.7), the double periodization proves to be more restrictive; thus the repeated periodiza-
tion allows us to consider all the orders 0 < α < 2, while the double periodization is
possible only for 0 < α < 1: when 1 ≤ α < 2, the corresponding series (4.9) diverges for
the Riesz kernel in the case of the double periodization.
3) In the case when the kernel k(x, y) has singularities at the lines x = 0 and y = 0 (for
example, in the case of the mixed fractional order integration of order α in x and of order
β in y), the double periodization is not applicable at all.
4) The above arguments are in favor of the repeated periodization. However, there appear
arguments in favor of the double periodization when we wish to show that the periodic
convolution whose kernel is the corresponding periodization of a kernel k(x, y), is the same
as the non-periodic convolution on R2 with the kernel k(x, y) itself. This coincidence is
valid for all periodic functions f(x, y) with f00 = 0 in the case of the double periodization,
while in the case of the repeated factorization such a coincidence takes place on functions
f(x, y) with a stronger restriction on the Fourier coefficients:

fm0 = f0n = 0, m = 0,±1,±2, ... , n = 0,±1,±2, ... (4.10)

see Theorem 4.9.
Obviously, to single out the subspace of functions f(x, y) ∈ L1(S00) which satisfy

condition (4.10), means to organize the factor space L1(S00)/A modulo the class A of
functions of the form a(x) + b(y).

Lemma 4.1. Let f ∈ L1(S00). The condition fm0 = 0 for all m ∈ Z is equivalent to
the condition ∫ 2π

0

f(x, y) dy = 0 for almost all x ∈ [0, 2π].

Similarly,

f0n = 0, n ∈ Z ⇔
∫ 2π

0

f(x, y) dx = 0 for almost all y ∈ [0, 2π].

Proof. It suffices to observe that fm0 = 1
(2π)2

∫ 2π

0
eimxg(x) dx with g(x) =∫ 2π

0
f(x, y) dy and similarly for f0n. 2

4.3 The double periodization of functions of two variables.
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a) The function k∗∗(x, y) and its integrability on R2. Let k(x, y) be a locally
integrable function on R2. Similarly to (3.4) we introduce the function k∗∗(x, y) on the
plane R2 by the formula

k∗∗(x, y) = k(x, y)−
∑
mn

M12
mn(k) χmn(x, y), (x, y) ∈ R2, (4.11)

where χmn(x, y) is the characteristic function of the square Smn. Evidently,

k∗∗(x, y) =
1

(2π)2

∫∫

Smn

[k(x, y)− k(s, t)] dsdt, (x, y) ∈ Smn. (4.12)

The obvious formula is valid:
∑

|j|≤m

∑

|`|≤n

k∗∗(x + 2jπ, y + 2`π) =
∑

|j|≤m

∑

|`|≤n

k(x + 2jπ, y + 2`π)− Cmn, (4.13)

where (x, y) ∈ S00 and

Cmn =
1

(2π)2

∫ 2π(m+1)

−2πm

∫ 2π(n+1)

−2πn

k(x, y) dxdy.

It is clear that k∗∗(x, y) ∈ L1(R2) if k(x, y) ∈ L1(R2) and

‖k∗∗‖L1(R2) ≤ 2‖k‖L1(R2), (4.14)

which can be checked directly. However, we are interested in the cases where k∗∗(x, y) ∈
L1(R2), but a locally integrable function k(x, y) is not necessarily in L1(R2). The pos-
sibility for a function k∗∗(x, y) to be integrable over R2 can be obtained due to local
smoothness of the function k(x, y), see Lemma 4.2.

Below we give some conditions on the function k(x, y) sufficient for the function
k∗∗(x, y) to be in L1(R2). In those conditions it will be assumed that the function k(x, y)
satisfies the following conditions:

1) k(x, y) is integrable on S00;
2) k(x, y) is bounded on every square Smn with |m|+ |n| 6= 0.
Let

βmn = sup
(x,y)∈Smn
(s,t)∈Smn

|k(x, y)− k(s, t)| for |m|+ |n| 6= 0. (4.15)

In the case where the function k(x, y) is differentiable in every square Smn, |m|+ |n| 6= 0,
one may take

βmn = 2π

(
sup
Smn

|k′x(x, y)|+ sup
Smn

|k′y(x, y)|
)

. (4.16)

We do not assume the function k(x, y) to be bounded on the square S00 in order to
be able to admit functions with singularity at the origin (like the Riesz kernel).

Lemma 4.2. Suppose that the series

β : =
∑

|m|+|n|6=0

βmn (4.17)
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converges. Then k∗∗(x, y) ∈ L1(R2) and

‖k∗∗‖L1(R2) ≤ ‖k‖L1(S00) + (2π)2β. (4.18)

Proof. We have

‖k∗∗‖L1(R2) =
∑
mn

∫∫

Smn

|k(x, y)−Mmn| dxdy

=
1

(2π)2

∑
mn

∫∫

Smn

∣∣∣∣
∫∫

Smn

|k(x, y)− k(s, t)| dsdt

∣∣∣∣ dxdy.

Passing to constants (4.15) in every term with |m| + |n| 6= 0, after easy calculations we
arrive at (4.18). 2

b) Convergence of the series defining the double periodization. Now by
means of the function k∗∗(x, y) we construct the following doubly 2π-periodic function

K(x, y) =
∑
mn

k∗∗(x + 2πm, y + 2πn). (4.19)

According to (4.13) we may rewrite this series as the limit

K(x, y) = lim
min(m,n)→∞


 ∑

|j|≤m

∑

|`|≤n

k(x + 2πj, y + 2π`)− Cmn


 . (4.20)

Lemma 4.3. Suppose that k∗∗(x, y) ∈ L1(R2). Then series (4.19) converges absolutely
for almost all (x, y) ∈ R2 and may be also represented by (4.20). In the case where k(x, y)
satisfies the assumptions 1) and 2) and numerical series (4.17) converges, series (4.19)
converges absolutely for any point (x0, y0) ∈ S00 at which the function k(x, y) is finite and

∑
mn

|k∗∗(x0 + 2πm, y0 + 2πn)| ≤ |k(x0, y0)−M00|+ β. (4.21)

Proof. The almost everywhere convergence is derived by the same arguments as in
the proof of Lemma 3.2. Let 0 ≤ x0 ≤ 2π, 0 ≤ y0 ≤ 2π. Denote |k(x0, y0)−M00| = a for
brevity. We have

∑
mn

|k∗∗(x0 + 2πm, y0 + 2πn)| = a +
∑

|m|+|n|6=0

|k(x + 2πm, y + 2πn)−Mmn|

≤ a +
1

(2π)2

∑

|m|+|n|6=0

∣∣∣∣
∫∫

Smn

[k(x + 2πm, y + 2πn)− k(s, t)] dsdt

∣∣∣∣ ≤ a +
∑
mn

βmn.

2
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4.4 The repeated periodization of functions of two variables.

a) The function k∗∗(x, y). Now for a that function k(x, y) locally integrable on R2, we
construct a function k∗∗(x, y) with mean value zero in each variable, first by introducing
the function

k∗(x, y) = k(x, y)−M1
m(k, y), 2πm < x < 2π(m + 1), y ∈ R1, (4.22)

and then the function

k∗∗(x, y) = k∗(x, y)−M2
n(k∗, x), 2πn < y < 2π(n + 1), x ∈ R1 (4.23)

where M1
m(k, y) and M2

n(k∗, x) are the one-dimensional means, see (4.3). From (4.22) and
(4.23) it follows that the function k∗∗(x, y) has the following representation on the whole
plane :

k∗∗(x, y) = k(x, y)−
∞∑

m=−∞
χm(x)M1

m(k, y) (4.24)

−
∞∑

n=−∞
χn(y)M2

n(k, x) +
∑
mn

χm(x)χn(y)M12
mn(k), (x, y) ∈ R2,

compare with (3.4) and (4.11). It is not hard to see that

k∗∗(x, y) =
1

(2π)2

∫∫

Smn

[k(x, y)− k(s, y)− k(x, t) + k(s, t)] dsdt, (x, y) ∈ Smn. (4.25)

The mixed difference obtained in (4.25) has the representation

k(x, y)− k(s, y)− k(x, t) + k(s, t) =

∫ x

s

∫ y

t

∂2k

∂ξ∂η
dξdη (4.26)

under the assumption that the mixed derivative of k(x, y) exists. Therefore,

|k∗∗(x, y)| ≤ max
(x,y)∈Smn

∣∣∣∣
∂2k

∂x∂y

∣∣∣∣ (2π)2, (x, y) ∈ Smn. (4.27)

Similarly to (4.14) we have the following statement.

Lemma 4.4. Let k(x, y) ∈ L1(R2). Then k∗∗(x, y) ∈ L1(R2) and ‖k∗∗‖L1(R2) ≤
4‖k‖L1(R2).

Proof. We have

‖k∗∗‖L1(R2) =
∑
mn

∫∫

Smn

k∗∗(x, y) dxdy.

Making use of representation (4.25), we obtain

‖k∗∗‖L1(R2) ≤ 1

(2π)2

∑
mn

∫∫

Smn

dxdy

∫∫

Smn

(|k(x, y)|+ |k(s, y)|+ |k(x, t)|+ |k(s, t)|) dsdt

15



from which lemma’s statement easily follows. 2

However, of more importance is derivation of integrability of k∗∗(x, y) from local smooth-
ness of the function k(x, y) in the situation when k(x, y) may be not integrable at infinity.
To this end, we introduce the series

µ =
∑

|m|+|n|6=0

µmn with µmn = max
(x,y)∈Smn

∣∣∣∣
∂2k

∂x∂y

∣∣∣∣ . (4.28)

Lemma 4.5. Let k(x, y) ∈ L1(S00) and suppose that series (4.28) converges. Then
k∗∗(x, y) ∈ L1(R2) and

‖k∗∗‖L1(R2) ≤ 4‖k‖L1(S00) + (2π)4µ. (4.29)

Proof. We have

‖k∗∗‖L1(R2) =

∫∫

S00

|k∗∗(x, y)| dxdy +
∑

|m|+|n|6=0

∫∫

Smn

|k∗∗(x, y)| dxdy.

By (4.27) we arrive at (4.29). 2

Finally we introduce the repeated periodization of the function k(x, y) as

K(x, y) =
∑
mn

k∗∗(x + 2πm, y + 2πn). (4.30)

As it follows from (4.24), a relation of type (4.13) in this case has the form

∑

|j|≤m

∑

|`|≤n

k∗∗(x + 2πj, y + 2π`)

=
∑

|j|≤m

∑

|`|≤n

[
k(x + 2πj, y + 2π`)−M1

j (k, y + 2π`)−M2
` (k, x + 2πj) + M12

j` (k)
]

for (x, y) ∈ S00, so that the corresponding analogue of (4.20) is

K(x, y) = lim
min(m,n)→0


 ∑

|j|≤m

∑

|`|≤n

k(x + 2πj, y + 2π`)− Am(y)−Bn(x) + Cmn


 (4.31)

for (x, y) ∈ S00, where

Am(y) =
1

2π

2π(m+1)∫

−2πm

k(s, y) ds Bn(x) =
1

2π

2π(n+1)∫

−2πn

k(x, t) dt

and Cmn is the same as in (4.13).

b) Convergence of the series defining the repeated periodization.
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Lemma 4.6. Let k(x, y) satisfy the assumptions of Lemma 4.5. Then series (4.30)
converges absolutely at any point (x0, y0) ∈ S00 for which the following values are finite:

k(x0, y0),

∫ 2π

0

k(x0, t)dt and

∫ 2π

0

k(s, y0)ds

and ∑
mn

|k∗∗(x0 + 2πm, y0 + 2πn)| ≤ |A(x0, y0)|+ (2π)2µ, (4.32)

where A(x0, y0) = k(x0, y0)−
∫ 2π

0
k(x0, t)dt− ∫ 2π

0
k(s, y0)ds + M00.

Proof. Indeed,

∑
mn

|k∗∗(x + 2πm, y + 2πn)| = |k∗∗(x, y)|+
∑

|m|+|n|6=0

|k∗∗(x + 2πm, y + 2πn)|

= |A(x0, y0)|+ 1

(2π)2

∑

|m|+|n|6=0

∫∫

Smn

[k(x, y)− k(s, y)− k(x, t) + k(s, t)] dsdt

in view of (4.25), whence (4.32) follows according to (4.27). 2

4.5 Fourier coefficients of the periodizations K(x, y) and K(x, y)
and coincidence between the corresponding periodic and
non-periodic convolutions.

For a doubly 2π-periodic function f(x, y) we consider the periodic convolutions

Kf(x, y) =

∫∫

S00

K(s, t)f(x− s, y − t) dsdt ∼
∑
mn

Kmnfmne
i(mx+ny) (4.33)

and

Kf(x, y) =

∫∫

S00

K(s, t)f(x− s, y − t) dsdt ∼
∑
mn

Kmnfmne
i(mx+ny) (4.34)

whose kernels are the double and repeated periodizations of a given locally integrable
kernel k(x, y), as defined in (4.19), (4.30). Theorem 4.8 below shows that they coincide,
generally speaking, with the non-periodic convolution on R2 with the kernel k(x, y).

Lemma 4.7. Let k∗∗ ∈ L1(R2). The double periodization K(x, y) has mean value
zero: ∫∫

S00

K(x, y) dxdy = 0. (4.35)

Similarly, when k∗∗ ∈ L1(R2), the repeated periodization K(x, y) has partial mean values
equal to zero: ∫ 2π

0

K(s, y) ds =

∫ 2π

0

K(x, t) dt = 0 (4.36)
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for almost all x, y ∈ [0, 2π].

Proof. Statement (4.35) follows directly from the definition of the function K(x, y).
In fact, (4.36) also is a consequence of the definition of K(x, y), but may be also checked
directly via representation (4.25). 2

Theorem 4.8. Suppose that k∗∗(x, y) ∈ L1(R2). The Fourier coefficients Kmn of the
periodization (4.19) coincide with the values of the Fourier transforms of the functions
k∗∗ at the points (m,n):

Kmn = k̃∗∗(m,n), m, n ∈ Z , |m|+ |n| 6= 0, (4.37)

and similarly

Kmn = k̃∗∗(m,n), m, n ∈ Z , m 6= 0, n 6= 0, (4.38)

in the case where k∗∗(x, y) ∈ L1(R2).
Also

Kmn = k̃(m,n), |m|+ |n| 6= 0 (4.39)

and
Kmn = k̃(m,n), m 6= 0, n 6= 0, (4.40)

where the Fourier transform of the locally integrable function k(x, y) on the right-hand
sides of (4.39) and (4.40) exists at the least at integer points (m,n) in the following
sense:

k̃(m,n) = lim
min(m1,m2)→∞

m1,m2∈Z+

lim
min(n1,n2)→∞

n1,n2∈Z+

∫ 2πm2

−2πm1

∫ 2πn2

−2πn1

k(x, y)e−i(mx+ny) dxdy.

In the excluded cases we have

K00 = 0, Km0 = K0n = 0. (4.41)

Theorem 4.8 is similar to statements of Theorem 3.5 and Lemma 3.6 and is proved in
the same way. Relations (4.40) follow also from (4.35) and (4.36).

Corollary. The double and repeated periodization of the kernel k(x, y) are nothing
else but

K(x, y) =
∑
mn

′
k̃(m,n)ei(mx+ny) and K(x, y) =

∑
mn

′′
k̃(m,n)ei(mx+ny),

where the dash ′ as usual means omission of the term with m = n = 0, while the double
dash ′′ means that all the terms with m = 0 or n = 0 are omitted.

The next theorem generalizes Theorem 3.7.

Theorem 4.9. I. Suppose that k∗∗(x, y) ∈ L1(R2). Then a.e. on R2

∫∫

S00

K(s, t)f(x− s, y − t) dsdt =

∫∫

R2

k(s, t)f(x− s, y − t) dsdt (4.42)
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for any (2π)-periodic function f(x, y) ∈ L1(S00) with f00 = 0 provided that the integral on
the right hand side of (4.42) is interpreted as

lim
min(m1,m2)→∞

m1,m2∈Z+

lim
min(n1,n2)→∞

n1,n2∈Z+

∫ 2πm2

−2πm1

∫ 2πn2

−2πn1

k(s, t)f(x− s, y − t) dsdt. (4.43)

II. Let k∗∗(x, y) ∈ L1(R2). Then a.e. on R2

∫∫

S00

K(s, t)f(x− s, y − t) dsdt =

∫∫

R2

k(s, t)f(x− s, y − t) dsdt (4.44)

for any (2π)-periodic function f(x, y) ∈ L1(S00) satisfying conditions (4.10) under the
same interpretation (4.43) of the integral on the right-hand side.

Proof. The proof is similar to that of Theorem 3.7. For example, representation (4.44)
is obtained from the relation∫∫

S00

K(s, t)f(x− s, y − t) dsdt (4.45)

= lim
min(m,n)→∞

∑

|j|≤m

∑

|`|≤n

∫∫

Sj`

[
k(s, t)−M1

j (k, t)−M2
` (k, s) + M12

j` (k)
]
f(x− s, y − t) dsdt

if one notices that the terms with M1
j (k, t),M2

` (k, t) and M12
j` (k) disappear since the func-

tion f(x, y) satisfies conditions (4.10) and, therefore, the corresponding repeated integrals
are equal to zero by Lemma 4.1. 2

4.6 Periodization of kernels of two-dimensional fractional inte-
gration operators.

a) Periodization of the kernel of the mixed fractional integration. This case is
not in fact two-dimensional being easily reduced to repeated one-dimensional application
of operations. Of much more interest is the periodization of the Riesz kernel to which we
pass in the next item, after we dwell briefly on the main points for the mixed fractional
integration. A natural definition of the mixed fractional integration of order α in x and
of order β in y of doubly periodic functions (4.1) is

W α,βf(x, y) =
∑
mn

m6=0,n6=0

fmn

(im)α(in)β
ei(mx+ny), α > 0, β > 0. (4.46)

It may be written as a periodic convolution

Wα,β
++ f(x, y) =

1

(2π)2

∫∫

S00

Ψα,β
++(s, t)f(x− s, y − t) dsdt (4.47)

with the kernel

Ψα,β
++(x, y) =

∑
mn

m6=0,n6=0

ei(mx+ny)

(im)α(in)β
= 4

∞∑
m=1

∞∑
n=1

cos mx cos ny

mαnβ
= Ψα

+(x)Ψβ
+(y) (4.48)
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where Ψα
+(x) was defined in (2.4). The kernel Ψα,β

++(x, y) may be obtained as a periodiza-

tion of the kernel k(x, y) =
xα−1
+

Γ(α)

yβ−1
+

Γ(β)
. The double periodization is not applicable in this

case (one cannot obtain the convergent series (4.19) just by subtracting only the means
over squares as in (4.11)). Under the repeated periodization (4.30), the corresponding
one-dimensional means are equal to

M1
m(k, y) = am(α)

yβ−1

Γ(β)
and M2

n(k, x) = an(β)
xα−1

Γ(α)

with am(α) = (2π)α

Γ(α+1)

[
(m + 1)α

+ −mα
+

]
and M12

mn(k) = am(α)an(β).

The terms Am(y), Bn(x), and Cmn from (4.31) are equal to

Am(y) =
(2π)α−1

Γ(α + 1)
(m + 1)α yβ−1

+

Γ(β)
, Bn(x) =

(2π)β−1

Γ(β + 1)
(n + 1)β xα−1

+

Γ(α)
(4.49)

and

Cmn =
(2π)α+β−2

Γ(β + 1)Γ(β + 1)
(m + 1)α(n + 1)β (4.50)

for all m ≥ 0, n ≥ 0, being each equal to zero if m < 0 or n < 0.

Theorem 4.10. The series defining the repeated periodization K(x, y) of the kernel

k(x, y) =
xα−1
+

Γ(α)

yβ−1
+

Γ(β)
in the case 0 < α < 1 and β > 1 converges for all (x, y) ∈ R2

except for the lines x = 2πm and y = 2πn, m, n ∈ Z (and uniformly in any square
{2πm + ε ≤ x ≤ 2π(m + 1)− ε, 2πn + ε ≤ y ≤ 2π(n + 1)− ε}) and

K(x, y) =
1

(2π)2
Ψα,β

++(x, y). (4.51)

The formula

1

(2π)2
Ψα,β

++(x, y) =
1

Γ(α)Γ(β)
lim

min(m,n)→∞

[
m−1∑
j=0

n−1∑

`=0

(x + 2πj)α−1
+ (y + 2π`)β−1

+ (4.52)

− (2π)α−1

α
mαyβ−1

+ − (2π)β−1

β
nβxα−1

+ +
(2π)α+β−2

αβ
mαnβ

]
, (x, y) ∈ S00,

also holds, and for all doubly 2π-periodic functions f(x, y) ∈ L1(S00) satisfying condition
(4.10), the coincidence

W α,β
++ f(x, y) =

1

Γ(α)Γ(β)

∫ ∞

0

∫ ∞

0

f(x− s, y − t)

sα−1tβ−1
dsdt (4.53)

is valid (under the corresponding interpretation of the integral on the right-hand side).

Proof. The convergence of series (4.30) for the kernel k(x, y) =
xα−1
+

Γ(α)

yβ−1
+

Γ(β)
follows from

Lemma 4.6 since µmn = const
m2−αn2−β and series (4.28) converges. The coincidence (4.51) is a
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consequence of Theorem 4.8, while (4.53) follows from Theorem 4.9. To obtain (4.52), it
suffices to refer to (4.31) and (4.49)-(4.50).

2

b) Periodization of the Riesz kernel kα(x, y); convergence of the series. First
we observe that the means M12

mn(kα) of the Riesz kernel (4.7) over the square Smn have
the following asymptotics

M12
mn(kα) = kα(2πm, 2πn) + o

(
1

(|m|+ |n|)2−α

)
=

1

(m2 + n2)1−α
2

[
(2π)α−2

γ2(α)
+ o(1)

]

(4.54)
as |m|+ |n| → ∞.

Indeed, we have

M12
mn(k) =

1

(2π)2

∫∫

Smn

kα(x, y) dxdy =
1

(2π)2−αγ2(α)

m+1∫

m

ds

n+1∫

n

dt

(s2 + t2)1−α
2

and taking into account that m ≤ s ≤ m+1, n ≤ t ≤ n+1, obtain [(m + 1)2 + (n + 1)2]
α
2
−1 ≤

(2π)2−αγ2(α)M12
mn(k) ≤ (m2 + n2)

α
2
−1

, from which (4.54) follows.
Let

Sε
00 = {(x, y) ∈ S00, x

2 + y2 ≥ ε2}, 0 < ε < 2π.

In Lemmas 4.11 and 4.12, by Vε, ε > 0 we denote the union of arbitrarily small
neighborhoods of the vertices (0, 0), (0, 2π), (2π, 0), (2π, 2π) lying inside the square S00.

Lemma 4.11. Let 0 < α < 1. Series (4.19) defining the double periodization of
the Riesz kernel kα(x, y) converges absolutely for all (x, y) ∈ S00 and uniformly on any
truncated square S00\Vε.

Proof. The Riesz kernel is integrable on S00 and infinitely differentiable outside the
origin. Therefore, by Lemma 4.3 it suffices to check that β < ∞, that is, series (4.17)
converges. To make use of (4.16), we observe that ∂

∂x
kα(x, y) = α−2

γ2(α)
x(x2 + y2)

α
2
−2 and

similarly for ∂
∂y

kα(x, y). Consequently,

βmn ≤ const · max(m,n)

(m2 + n2)2−α
2

≤ c

(m2 + n2)
3−α

2

.

Hence ∑

|m|+|n|6=0

βmn ≤ c
∑

|m|+|n|6=0

1

(m + n)3−α

= 4c

( ∞∑
n=1

1

n3−α
+

∞∑
m=1

∞∑
n=1

1

(m + n)3−α

)
≤ c1 + 4c

∞∑
m=1

∞∑
n=m+1

1

n3−α

and it remains to note that
∑∞

n=m+1
1

n3−α ≤ c
m2−α . 2

Lemma 4.12. Let 0 < α < 2. Series (4.30) defining the repeated periodization of
the Riesz kernel kα(x, y) converges absolutely for all (x, y) ∈ S00 and uniformly on any
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subsquare {(x, y) : ε < x < 2π − ε, ε < y < 2π − ε}; in the case α > 1 it converges
uniformly on the larger set S00/Vε.

Proof. The absolute convergence in S00 follows from Lemma 4.6. The uniform con-
vergence is easily derived from estimate (4.32) if one shows that µ < ∞. To prove this,

we note that ∂2kα(x,y)
∂x∂y

= const xy

(x2+y2)3−
α
2

, so that for series (4.28) we have

µ ≤ c

∞∑
m=1

∞∑
n=1

mn

(m2 + n2)3−α
2

which converges for all 0 < α < 2. Indeed,

∞∑
m=1

∞∑
n=1

mn

(m2 + n2)3−α
2

≤ 23−α
2

∞∑
m=1

m

∞∑
n=1

n

(m + n)6−α

≤ 23−α
2

∞∑
m=1

m

∞∑
n=m+1

n

n5−α
≤ c1

∞∑
m=1

1

n3−α
< ∞.

In the case α > 1 it suffices to observe that the function A(x, y) from (4.32) is uniformly
bounded on S00\Vε. 2

Let Kα(x, y) and Kα(x, y) be the double and repeated periodizations of the Riesz
kernel kα(x, y). According to (4.19) and (4.31), for (x, y) ∈ S00 we have

Kα(x, y) =
1

γ2(α)
lim

min(m,n)→∞


 ∑

|j|≤m

∑

|`|≤n

1

[(x + 2πj)2 + (y + 2π`)2]1−
α
2

− cmn


 (4.55)

in the case 0 < α < 1 and
Kα(x, y) = (4.56)

1

γ2(α)
lim

min(m,n)→∞


 ∑

|j|≤m

∑

|`|≤n

1

[(x + 2πj)2 + (y + 2π`)2]1−
α
2

− am(y) − an(x) + cmn




in the case 0 < α < 2, with

an(y) =
1

2π

∫ 2π(m+1)

−2πm

ds

(s2 + y2)1−α
2

, cmn =
1

(2π)2

∫ 2π(m+1)

−2πm

∫ 2π(n+1)

−2πn

dsdt

(s2 + t2)1−α
2

.

(4.57)
Below we study the behavior of the terms am(y) and cmn when m,n →∞.

c) Periodization of the Riesz kernel kα(x, y); asymptotics of the terms cmn

and am(y) as m,n →∞ .
For the term cmn from (4.57)we start from the following relation

cmn =
2α

π2−α
gα(m,n) + M12

mn(kα) (4.58)
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where

gα(m,n) =

∫ m

0

∫ n

0

dsdt

(s2 + t2)1−α
2

(4.59)

and lim|m|+|n|→∞ M12
mn(kα) = 0. The relation (4.58) is obtained directly with M12

m,n(kα)
equal to the mean (4.2) corresponding to the kernel γ2(α)kα(x, y). Its tendency to zero
follows from (4.54).

So we have to study the behavior of gα(m,n) as |m|+ |n| → ∞. Obviously, gα(m,n)
is a homogeneous function of m and n of degree α:

gα(m,n) = (m2 + n2)
α
2 gα(µ, ν), µ =

m√
m2 + n2

, ν =
n√

m2 + n2
, µ2 + ν2 = 1.

(4.60)

Lemma 4.13. gα(µ, ν) satisfies the estimates

π

2α
[min(µ, ν)]α ≤ gα(µ, ν) ≤ π

2α
(4.61)

and takes its maximal value when µ = ν =
√

2
2

.

Proof. Obviously,

∫∫

Dr

dxdy

(x2 + y2)1−α
2

≤ gα(m,n) ≤
∫∫

DR

dxdy

(x2 + y2)1−α
2

where Dr and DR are the quarters of the circles:

Dr = {(x, y) : x > 0, y > 0, x2 + y2 < r}

of the radii r = min(m, n) and R =
√

m2 + n2. Passing to polar coordinates we easily
obtain (4.61).

To find the maximum value, we represent gα(µ, ν) as the function of λ = µ2:

gα(µ, ν) =

∫ λ

0

∫ 1−λ

0

f(x, y)dxdy := h(λ)

with f(x, y) = 1

4
√

xy(x+y)
2−α

2
. Then easy calculations yield

h′(λ) =

∫ 1−λ

0

f(λ, x) dx +

∫ λ

0

f(1− λ, x) dx.

We have h′(1
2
) = 0 and

h′(λ) =

∫ λ

0

[f(λ, x)− f(1− λ, x)] dx +

∫ 1−λ

λ

f(λ, x) dx, 0 < λ <
1

2
,

h′(λ) =

∫ 1−λ

0

[f(λ, x)− f(1− λ, x)] dx +

∫ λ

1−λ

f(λ, x) dx,
1

2
< λ < 1,
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so that h′(λ) > 0 for 0 < λ < 1
2

and h′(λ) < 0 for 1
2

< λ < 1, which ends the proof. 2

The following lemma gives a precise expression for gα(µ, ν) in terms of the Gauss
hypergeometric function

F (a, b; c; z) =
∞∑

n=0

(a)k(b)k

(c)kk!
zk =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

sb−1(1− s)c−b−1(1− sz)−ads. (4.62)

Lemma 4.14. gα(µ, ν) may be calculated by the formula

gα(µ, ν) =
ν

αµ
F

(
1 + α

2
, 1;

3

2
;−ν2

µ2

)
+

µ

αν
F

(
1 + α

2
, 1;

3

2
;−µ2

ν2

)
. (4.63)

In particular,

g1(µ, ν) = µ ln

(
1 +

1

µ

)
+ ν ln

(
1 +

1

ν

)
(4.64)

in the case α = 1.

Proof. Passing to polar coordinates we have

gα(µ, ν) =

∫ θ

0

dϕ

∫ µ
cos ϕ

0

rα−1 dr +

∫ π
2

θ

dϕ

∫ ν
sin ϕ

0

rα−1 dr

with θ = arctg ν
µ
. Hence

gα(µ, ν) =
1

α

(
µα

∫ θ

0

dϕ

cosα ϕ
+ να

∫ π
2

θ

dϕ

sinα ϕ

)
.

The changes cos ϕ =
√

t and sin ϕ =
√

t in these integrals yield

gα(µ, ν) =
1

2α

(
µα

∫ 1

µ2

dt

t
1+α

2

√
1− t

+ να

∫ 1

ν2

dt

t
1+α

2

√
1− t

)

which is transformed to (4.63) via the substitutions t = µ2 + ν2s in the first integral and
t = ν2 + µ2s in the second one.

Formula (4.64) for α = 1 follows from the known relation

F (1, 1;
3

2
; z) =

arcsin
√

z√
z(1− z)

.

2

Remark 4.15. Making use of the formula

F (a, b; c;−z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
z−aF

(
a, 1− c + a; 1− b + a;−1

z

)
(4.65)
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+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
z−bF

(
b, 1− c + b; 1− a + b;−1

z

)

for hypergeometric functions (see [7], formula 9.132.2), we may represent gα(µ, ν) in the
case α 6= 1 also in the form

gα(µ, ν) =

√
πΓ

(
1−α

2

)

2αΓ
(
1− α

2

)µα (4.66)

+
µ

αν

[
F

(
1 + α

2
, 1;

3

2
;−µ2

ν2

)
+

1

α− 1
F

(
1,

1

2
;
3− α

2
;−µ2

ν2

)]
.

Now we pass to the study of the asymptotics of the term am(y) defined in (4.57). First
we note that it has the form

am(y) = hα(m; y) + o(1) (4.67)

as m →∞, where

hα(m; y) =
1

π

∫ 2πm

0

ds

(s2 + y2)1−α
2

(4.68)

and o(1) is uniform in y.

Lemma 4.16. Let 0 < α < 2. The integral hα(m; y) admits the following representa-
tion in terms of the Gauss hypergeometric function

hα(m; y) = 2m|y|α−2F

(
2− α

2
,
1

2
;
3

2
; −

(
2πm

y

)2
)

; (4.69)

in particular,

h1(m; y) =
1

π
ln

(
2πm +

√
(2πm)2 + y2

|y|

)
(4.70)

when α = 1. The function hα(m; y) has the following asymptotics

hα(m; y) =
1

2π

[
A

|y|1−α
+

B

(2πm)1−α
+ O

(
y2

m3−α

)]
(4.71)

as m →∞, with A =
√

πΓ( 1−α
2 )

Γ( 2−α
2 )

and B =
Γ(α−1

2 )
Γ( 1+α

2 )
in the case α 6= 1 and

h1(m; y) =
1

π

[
ln

1

|y| + ln (4πm) + O

( |y|
m

)]
. (4.72)

in the case α = 1.

Proof. Representation (4.69) follows directly from the integral representation of the
hypergeometric function, see (4.62). The particular case (4.70) is obtained from (4.69) by

the known formula F
(

1
2
, 1

2
; 3

2
; −z2

)
= ln(z+

√
z2+1)

z
.
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To obtain the asymptotics (4.71), we make use of formula (4.65) and in the case where
α 6= 1, obtain

F

(
2− α

2
,
1

2
;
3

2
; −z2

)
=

A

2z
+

B

2
zα−2F

(
2− α

2
,
1− α

2
;
3− α

2
; − 1

z2

)
.

Since F (a, b; c; 1
z
) = 1 + M(z)

z
where M(z) is bounded for |z| ≥ 2, we obtain

F

(
2− α

2
,
1

2
;
3

2
; −z2

)
=

A

2z
+

B

2z2−α
+

C(z)

z4−α
(4.73)

where sup
|z|≥2

|C(z)| < ∞. Then (4.71) follows from (4.69) and (4.73).

Finally, (4.72) is a direct consequence of (4.70) since ln

(
1 +

√
1 +

(
y

2πm

)2
)

=

ln 2 + O( |y|
m

) as m →∞.
2

d) Periodization of the Riesz kernel kα(x, y); the final statements.
Making use of the asymptotics obtained above for the terms cmn and am(·) involved

in (4.55) and (4.56), we provide an exactification of relations (4.55)-(4.56) in Theorems
4.17 and 4.19 below.

Theorem 4.17. Let 0 < α < 1. Then

Kα(x, y) =
1

γ2(α)
lim

min(m,n)→∞


 ∑

|j|≤m

∑

|`|≤n

1

[(x + 2πj)2 + (y + 2π`)2]1−
α
2

− (m2 + n2)
α
2 Ω

(m

n

)



(4.74)
where (x, y) ∈ S00 and the ”angular coefficient”

Ω
(m

n

)
=

2α

απ2−α

[
m

n
F

(
1 + α

2
, 1, ;

3

2
; −m2

n2

)
+

n

m
F

(
1 + α

2
, 1, ;

3

2
; − n2

m2

)]
(4.75)

satisfies the estimates

2α−1

απ1−α

[
min

(
m√

m2 + n2
,

n√
m2 + n2

)]α

≤ Ω
(m

n

)
≤ 2α−1

απ1−α
; (4.76)

the limit in (4.74) exists for any (x, y) ∈ S00. Under the symmetrical (m = n) passage to
the limit one has

Kα(x, y) =
1

γ2(α)
lim

m→∞


 ∑

|j|≤m

∑

|`|≤m

1

[(x + 2πj)2 + (y + 2π`)2]1−
α
2

− λ(α)mα


 (4.77)

with

λ(α) = 2
α
2 Ω(1) =

21+ 3α
2

απ2−α
β(α), β(α) = F

(
1 + α

2
, 1, ;

3

2
; −1

)
. (4.78)
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Proof. Relation (4.74)-(4.75) follows from (4.55) in view of (4.58), (4.60) and (4.63).
The estimates (4.76) are obtained from (4.61), since Ω

(
m
n

)
= 2α

π2−α gα(µ, ν). 2

Remark 4.18. The number β(α) from (4.78) satisfies the estimates π
4
· 1

2
α
2
≤ β(α) ≤ π

4

which follows from (4.76), so that

1

α
(2π)α−1 ≤ λ(α) ≤ 1

α
(2π)α−1 2

α
2 .

Corollary to Theorem 4.17. For α = 1, from (4.74) and (4.82) we have

K1(x, y) =
1

2π
lim

min(m,n)→∞


 ∑

|j|≤m

∑

|`|≤n

1√
(x + 2πj)2 + (y + 2π`)2

−
√

m2 + n2Ω
(m

n

)



(4.79)

=
1

2π
lim

m→∞


 ∑

|j|≤m

∑

|`|≤m

1√
(x + 2πj)2 + (y + 2π`)2

− λm




with

Ω(t) =
2

π

(1 + t) ln (1 +
√

1 + t2)− tln t√
1 + t2

and λ =
4

π
ln (1 +

√
2). (4.80)

Similarly, in the case of the repeated periodization, we make use also the asymptotics
(4.56), (4.71)-(4.72) for am(y) and from (4.56) derive the following statement.

Theorem 4.19. Let 0 < α < 2 and (x, y) ∈ S00. Then for α 6= 1

Kα(x, y) =
1

γ2(α)
lim

min(m,n)→∞


 ∑

|j|≤m

∑

|`|≤n

1

[(x + 2πj)2 + (y + 2π`)2]1−
α
2

(4.81)

− A

2π

(|x|α−1 + |y|α−1
)− B

(2π)1−α

(
mα−1 + nα−1

)
+ (m2 + n2)

α
2 Ω

(m

n

)]

where Ω
(

m
n

)
is the same as in (4.74), A and B are the constants from (4.71) and the

terms with B may be omitted in the case α < 1. In the case α = 1 one has

K1(x, y) =
1

2π
lim

min(m,n)→∞


 ∑

|j|≤m

∑

|`|≤n

1√
(x + 2πj)2 + (y + 2π`)2

(4.82)

− 1

π
ln

1

xy
+

1

π
ln [(4π)2mn] +

√
m2 + n2 Ω

(m

n

)]

=
1

2π
lim

m→∞


 ∑

|j|≤m

∑

|`|≤m

1√
(x + 2πj)2 + (y + 2π`)2

− 1

π
ln

1

xy
+

2

π
ln (4πm) + λm




27



with Ω(t) and λ given in (4.80).

Theorem 4.20. The Weyl-Riesz kernel Ψα(x, y) is related to the periodizations
Kα(x, y) and Kα(x, y) of the Riesz kernel by the formulas

Ψα(x, y) = (2π)2Kα(x, y), 0 < α < 1, (4.83)

Ψα(x, y) = Ψα(x) + Ψα(y) + (2π)2Kα(x, y), 0 < α < 2, (4.84)

where Ψα(x) is the one-dimensional Weyl-Riesz kernel (2.13).

Proof. Relations (4.83)-(4.84) follow from the general Theorem 4.8, see also its Corol-
lary, under the choice k(x, y) = kα(x, y). In the case 1 ≤ α < 2, when considering (4.84),
one should take into account that periodic convolutions of f(x, y) with the one-dimensional
terms Ψα(x) and Ψα(y) are identical zeroes by Lemma 4.1. 2

Theorem 4.21. Let 0 < α < 1. Then the Weyl-Riesz fractional integral (4.5)
coincides with the Riesz potential:

1

(2π)2

∫∫

S00

Ψα(ξ, η)f(x− ξ, y − η) dξdη =
1

γ2(α)

∫∫

R2

f(x− ξ, y − η)

(ξ2 + η2)1−α
2

dξdη, (4.85)

for all doubly periodic functions f(x, y) ∈ L1(S00) with f00 = 0, the convergence of the
integral on the right-hand side being interpreted as in (4.43). Relation (4.85) is also valid
for 1 ≤ α < 2, if f(x, y) satisfies additionally conditions (4.10).

Proof. Relation (4.85) is a consequence of general Theorem 4.9 and Theorem 4.20. 2

5. Final remarks.

Remark 5.1. All the results for the Riesz kernel remain valid for complex values of α
( 0 < <α < 2 for the repeated periodization and 0 < <α < 1 for the double one) with
α replaced by <α when we write estimating inequalities in Subsection 4.6. For example,
the estimation in (4.61) should run as π

2<α
[min(µ, ν)]<α ≤ |gα(µ, ν)| ≤ π

2<α
and so on.

Remark 5.2. Instead of 2π-periodicity in each variable, we could deal with the
different periodicity in each variable, say with the period T1 in x and T2 in y, working with
the net of the corresponding rectangles instead of squares. Such a slight generalization is
just a matter of easy recalculations.

Remark 5.3. Similar results may be developed for the periodization of two-
dimensional Riesz differentiation, formally corresponding to the case of negative α in
kernel (4.7). In this case the kernel k−α(x, y), 0 < α < 2, has a non-integrable singularity
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at the origin, so the general approach presented in Subsections 4.2-4.5 for locally inte-
grable kernels, is not applicable. However, we can arrange a similar process within the
framework of distributions and it is always possible to consider the pointwise convergence
of the series defining the periodization beyond the points (2πm, 2πn), m, n ∈ Z. When
(x, y) lies far away from those points, this series converges faster for α < 0 than for α > 0
because of nicer behavior of the kernel at infinity. But, of course we have troubles with
the behavior of the series when (x, y) may reach those points.

Remark 5.4. Of a special interest is to consider periodization of other forms of frac-
tional integration of many variables. We dealt with the fractional power of the Laplace
operators. One could proceed in the same way for fractional powers of other differen-
tial operators in partial derivatives, for example, wave or heat operators, Schrödinger
operators and others, see [17], Ch. 9, for the space versions of these fractional powers.
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