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Abstract

Within the framework of the method of approximative inverse operators, the
inversion of the Riesz potential operator Iαϕ is constructed in the case of densities
ϕ in weighted spaces Lp(ρ) with the Muckenhoupt-Wheeden Ap,q-weight functions
ρ(x). The range Iα[Lp(ρ)] also is described in terms of the approximative inverse
operators.

1 Introduction

Let

Iαϕ =
1

γn(α)

∫

Rn

ϕ(t)

|x− t|n−α
, 0 < Reα < n (1.1)

be the well known Riesz potential operator. We consider it in the weighted spaces
Lp(ρ), where the weight ρ(x) belongs to the Muckenhoupt-Wheeden class Ap,q. As
is known, the operator inverse to Iα within the framework of Lp-densities ϕ can be
constructed in the form of hypersingular integral

Dαf = lim
ε→0

1

dn,l(α)

∫

|t|>ε

(∆l
tf)(x)

|t|n+α
dt

at least for real α. The range Iα(Lp) also can be described in terms of the operator
Dα (see [9-13; 15, Sections 2 and 7; 16, §25-26]). In the papers [5-6] (see also the
book [15], Ch. 7) there may be found a generalization of these results to weighted
spaces Lp(ρ), ρ(x) ∈ Ap,q.
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We also note, that hypersingular integrals of the form

Dα
Ωf =

∫

Rn

(∆l
tf)(x)

|t|n+α
Ω(t)dt

are also known to be an effective tool for inverting the generalized Riesz potentials

Kα
θ ϕ =

∫

Rn

θ(x− t)

|x− y|n−α
ϕ(t)dt, 0 < Reα < n,

in the elliptic case, when the symbol of the operator Kα
θ does not vanish in Rn \{0}

(we refer to the books [15, Section 8; 16, Chapter 5] and surveying paper [12]).
Recently, an alternative method of inversion, known as the method of approxi-

mative inverse operators (AIO), was developed. This method proved to be effective
in non-elliptic cases, when the method of hypersingular integrals in its direct form
does not work well or does not work at all (see the surveying papers [7,8]). Within
the framework of AIO’s method the inverse operator is constructed as the limit of
a sequence of convolutions with integrable kernels.

The AIO’s method was also applied for inverting some potentials in the elliptic
case. In particular, in the case of operator (1.1), a general approach was devel-
oped in [13] (see also [14]). Within the framework of this approach the inversion is
constructed in the form

T αf = lim
ε→0

Tα
ε f, (1.2)

Tα
ε f = ε−α

∫

Rn

qα(y)f(x− εy)dy,

where
q̂α(ξ) = |ξ|αk̂(ξ) (1.3)

k(x) being any fixed averaging kernel, that is,

∫

Rn

k(y) dy = 1, (1.4)

satisfying some general assumption, namely

k(y) ∈ L1(R
n)

⋂
Iα(L1) (1.5)

and which can be chosen by our will. We note that the relation (1.3) means that,
qα = Dαk.

Our goal in this paper is to develop the technique of approximative inverse
operators for the same purposes in the case of weighted spaces Lp(ρ), ρ(x) ∈ Ap,q.
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2 Preliminaries

We shall use the following notation: < f, ω >=
∫

Rn

f(x)ω(x)dx; f̂(ξ) =
∫

Rn

f(t)eiξ·tdt

is the Fourier transform of a function f ; (F−1f)(x) = f̃(x) = 1
(2π)n

∫
Rn

f(ξ)e−ix·ξdξ is

the inverse Fourier transform;

Lp(ρ) =

{
f(x) :

∫
Rn

ρ(x)|f(x)|pdx < ∞
}

, 1 ≤ p < ∞; S is the Schwartz class of

rapidly decreasing smooth functions; Ψ = {ψ ∈ S : (Dkψ)(0) = 0, |k| = 0, 1, ...} is

the Lizorkin class; Φ = {ϕ ∈ S : φ̂ ∈ Ψ} is its Fourier dual (see [1,2]). The class Φ
is invariant with respect to the Riesz potential Iα.

Let Ap be the Muckenhoupt class (see [3]) of weight ρ(x), satisfying the condition

1

|Q|
∫

Q

ρ(x)dx


 1

|Q|
∫

Q

ρ−
1

p−1 (x)dx




p−1

≤ c < ∞,

1 < p < ∞, then Ap,q ⊂ Ap. We need the imbedding

Lp(ρ) ⊂ L1((1 + |x|)−n), ρ(x) ∈ Ap (2.1)

(see [5]) and the evident relation

ρ−
1

p−1 (x) ∈ Ap′ , if ρ(x) ∈ Ap. (2.2)

We shall also use the weighted Hölder inequality

∫

Rn

|f(x)g(x)|dx ≤ ‖f‖Lp(ρ)‖g‖L
p
′ (ρ1−p

′
)

(2.3)

(see [16], formula (1.38)).
The end of proof is denoted by 2.

3 The main results

Let Ap,q be the class of weights ρ(x), satisfying the following condition


 1

|Q|
∫

Q

ρ
q
p (x)dx




p
q

 1

|Q|
∫

Q

ρ−
1

p−1 x)dx




p−1

≤ c < ∞,

1 < p < ∞, 1 < q < ∞,

where Q is an arbitrary n-dimensional cube, |Q| being its measure (see [4]).
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Assumption on the choice of the identity approximation kernel. In
what follows, k(x) is any kernel, satisfying condition (1.4), such that k(x) itself and
the corresponding kernel qα(x) defined in (1.3) via Fourier transform, admit radial
non-increasing integrable dominants (we note that the relation (1.5) is valid under
these assumptions).

As an example of the kernel, satisfying the above assumption, one can take the
kernel, defoned via Fourier transforms by

k̂(ξ) = e−|ξ|

so that k(x) = P (x, 1), where P (x, t) is the Poisson kernel and then

qα(x) =
Γ(n + α)

2n−1π
n
2 Γ(n

2
)
F

(
n + α

2
,
n + α + 1

2
;
n

2
;−|x|2

)
, (3.1)

where F (a, b; c; z) is the Gauss hypergeometric function, see [13, 17].
Another example given below has an advantage in the sense that both k(x) and

qα(x) are elementary functions:

qα(x) =
(−1)m

γn(2m− α)
∆m

(
1

(1 + |x|2)n+α
2
−m

)
, (3.2)

where m is an integer such that 2m > α. This kernel is preferable because is much
simpler in comparison with (3.1). The kernel (3.2) corresponds to the averaging
kernel

k(x) =
c

(1 + |x|2)m+n−α
2

, c =
Γ

(
m + n−α

2

)

π
n
2 Γ

(
m− α

2

) ,

see details in [16,17].
The following two statements adjoin to Theorems 7.35 and 7.36 in [15] where α

was real and instead of the approximative operator T α there was used the hyper-
singular operator Dα. It is supposed that the operator Tα is defined by any kernel
k(x) satisfying the above Assumption on identity approximation kernel.

Theorem 3.1. Let f = Iαϕ, 0 < Reα < n, ϕ ∈ Lp(ρ), ρ(x) ∈ Ap,q, 1 < p <
n/Reα, 1

q
= 1

p
− Reα

n
. Then

TαIαϕ = ϕ, (3.3)

where Tα is the operator (1.2) with the kernel qα(x) of the form (1.3)), the limit in
(1.2) being taken in the Lp(ρ)-norm or almost everywhere.

The next theorem gives a description of the range Iα[Lp(ρ)].

Theorem 3.2. Let α and ρ(x) be the same as in Theorem (3.1.). A function
f(x) belongs to the space Iα[Lp(ρ)] if and only if
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1) f(x) ∈ Lq(ρ
q
p );

2) one of the following conditions is fulfilled:
a) Tαf ∈ Lp(ρ), where Tα is operator (1.2) with the limit in (1.2) taken in the

Lp(ρ)-norm,
b) sup

ε>0
‖T α

ε f‖Lp(ρ) < ∞.

4 Some auxiliary statements

The following statements play an important role in the proof of Theorems 3.1.
and 3.2..

Theorem 4.1. ([4]). Let 0 < α < n and ρ(x) ∈ Ap,q, p < n/α, 1
q

= 1
p
− α

n
.

Then the operator Iα is bounded from Lp(ρ) into Lq(ρ
q
p ).

Denote kε(x) = ε−nk(x/ε).

Theorem 4.2. ([5; 15, Theorem 7.31]) a) Let k(x) have a non-increasing radial
dominant b(|x|) ∈ L1 and f ∈ Lp(ρ), ρ(x) ∈ Ap. Then

sup
ε>0

|(kε ∗ f)(x)| ≤ c‖b‖1(Mf)(x), (4.1)

where (Mf)(x) is the Hardy-Littlewood maximal function.
b) If in addition

∫
Rn

k(x)dx = 1, then

(kε ∗ f)(x) → f(x)

as ε → 0 in the Lp(ρ)-norm and almost everywhere.

Theorem 4.3. The Lizorkin class Φ is dense in Lp(ρ), ρ(x) ∈ Ap.

Theorem 4.3, which is of special interest itself, was proved in [15], Theorem 7.34.
Here we give another proof based on the estimate (4.1).

Since the class C∞
0 is dense in Lp(ρ), ρ(x) ∈ Ap (see [15], Theorem 7.32), it suffices

to approximate a function f ∈ C∞
0 in the norm of Lp(ρ) by functions in Φ. Let

ψN(ξ) = µ(N |ξ|)f̂(ξ),

where µ(r) ∈ C∞([0,∞)) is such that µ(r) = 1 for r ≥ 2, µ(r) = 0 for r ≤ 1 and

0 ≤ µ(r) ≤ 1. We set fN(x) = ψ̃N(x) (then fN ∈ Φ) and represent fN(x) as follows:

fN(x) = f(x)− (KNf)(x),

(KNf)(x) =

∫

Rn

k(|t|)f(x−Nt)dt,
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where k(|t|) = F−1(1− µ(|ξ|))(t). It remains to prove that

lim
N→∞

∫

Rn

ρ(x)|(KNf)(x)|pdx = 0. (4.2)

The equality (4.2) is justified by the application of Lebesgue dominated theorem,
which is applicable in view of (4.1) due to the fact, that the operator M is bounded
in Lp(ρ), ρ(x) ∈ Ap (see [3]); the relation (KNf)(x) → 0, x ∈ Rn as N → ∞ is
evident. 2

5 Proof of the main results

5.1 Proof of Theorem 3.1

We base ourselves on the equality

(Tα
ε Iαϕ)(x) =

1

εn
k

(x

ε

)
∗ ϕ, (5.1)

φ ∈ Lp(ρ), ρ(x) ∈ Ap,q. This equality is verified via Fourier transform for ϕ ∈ Φ.
It is extended by boundedness to the whole Lp(ρ) by virtue of Theorem 4.3, since

the operators on both sides of (5.1) are bounded from Lp(ρ) into Lq(ρ
q
p ). This is

evident for the operator on the right-hand side. Boundedness of the operator T α
ε Iα

follows from Theorem 4.1 and the fact, that Tα
ε is bounded in Lq(ρ

q
p ) (we observe

that ρ
q
p (x) ∈ Aq). The last statement follows from (4.1) (in view of our assumption

on qα(x)). It remains to pass to the limit as ε → 0 in (5.1), in the Lp(ρ)-norm
or almost everywhere, which is possible by the statement b) of Theorem 4.2. As a
result, we arrive at (3.1). 2

5.2 Proof of Theorem 3.2

The ”only if” part of Theorem 3.2 follows from Theorem 4.1 and the equality
(5.1). Passing to the ”if” part, first, we consider the part a), that is, we assume that

f ∈ Lq(ρ
q
p ) and T αf ∈ Lp(ρ), the limit in (1.2) being understood in the norm of

Lp(ρ). For ω ∈ Φ we have

< IαT αf, ω >=< T αf, Iαω >=

=<
(Lp(ρ))

lim
ε→0

Tα
ε f, Iαω >= lim

ε→0
< T α

ε f, Iαω >=

= lim
ε→0

< f, T α
ε Iαω >= lim

ε→0
< f,

1

εn
k(

x

ε
) ∗ ω >=< f, ω > . (5.2)
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The third of these equalities follows from the fact, that the convergence in Lp(ρ)
implies that in the space of distributions Φ

′
. The fourth equality is justified by

Fubini theorem, applicable in view of (2.3). The last equality is justified with the
aid of (2.3).

Thus, we arrived at the formula

< f, ω >=< IαTαf, ω >, ω ∈ Φ. (5.3)

Since two locally integrable functions (in S
′
), which agree as Φ

′
-distributions, may

differ from each other only by a polynomial, we obtain

f(x) = (IαTαf)(x) + P (x),

where P (x) is a polynomial. But because of (2.1) we have P (x) ≡ 0.

Let now f ∈ Lq(ρ
q
p ) and sup

ε>0
‖T α

ε f‖Lp(ρ) < ∞. Making use of weak compactness

of the space Lp(ρ), p > 1, we choose such a sequence Tα
εk

f that

w −
(Lp(ρ))

lim
εk→0

Tα
εk

f = ϕ ∈ Lp(ρ),

where the symbol w −
(Lp(ρ))

lim denotes the weak limit in Lp(ρ). Replacing
(Lp(ρ))

lim by

w−
(Lp(ρ))

lim in the chain of equalities (5.2), we also arrive at (5.3). As above, we derive
from here that f(x) = (IαTαf)(x). 2
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