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ON MULTI-DIMENSIONAL INTEGRAL EQUATIONS
OF CONVOLUTION TYPE WITH SHIFT

N.K.Karapetiants and S.G.Samko
The criterion of invertibility or Fredholmness of some multi-dimensional integral operators with a Car-
leman shift are given. The operators considered involve those of convolution type, singular Calderon-type
operators and operators with a homogeneous kernel. The shift used is generated by a linear transformation
in the Euclidean space satisfying the generalized Carleman condition. The investigation is based on some
Banach space approach to equations with an involutive operator. A modified version of this approach is also
presented in the paper.

1. INTRODUCTION

The results on Fredholm theory of integral equations of singular type (with Cauchy kernel, of convolution
type, discrete equations) with Carleman shift are well known, see the books [19], [15], [18] and [1] and
references therein. These results cover mainly one-dimensional equations. As for multi-dimensional integral
equations of singular or convolution type, the corresponding results are also well known in the case of
equations without shift. We refer, for example, to the paper [27] and the books [23] and [18]. In this paper
we consider multi-dimensional integral equations of singular or convolution type with a linear Carleman-type
shift. Such a shift has a rotational structure and we reveal the problems arising from the complexity of the
shift.

Investigating Fredholmness of the equations we base ourselves on some general abstract approach, devel-
oped by the authors in [12]-[13] and [14], for studying operators of the form

K=A4+QA+ ..+ QN 1Ay (1.1)

with an involutive operator @ of order N : Q" = I, in a Banach space X, where A; are linear bounded
operators in X satisfying some assumptions, j =1,2,..., N.

For the reader’s convenience, we present here the modified version of this abstract approach with proofs
in Section 2. The reader can compare this presentation with that given in [12]-[13] and [14] and [15]. In
Section 3 we apply this approach to multi-dimensional integral equations. While doing this, the main job to
be done is to verify some axioms from the abstract approach. This verification requires a knowledge of the
structure of the shift and we show how the complexity of the shift influences on this verification.

2. FREDHOLMNESS OF AN ABSTRACT EQUATION WITH
AN INVOLUTIVE OPERATOR

2.1. Non-matrix approach

The results in the Banach space settings presented below, has as a starting model, the theory of singular
integral operators with Carleman-type shift. The Carleman-type shift of order N generates an involutive
operator of order N. An abstract equations with an operator satisfying the condition QV = I, or algebraic



operator (that is, P(Q) = 0, P being a polynomial) or almost algebraic operator (P(Q) = T, T being a
compact operator) were investigated in [25]. The investigations in the books [25] reflected, in fact, the
nature of singular equations without shift, since they based on the assumption that the ”coefficients” A;
in (1.1) quasicommute with ¢ up to a compact operator. In the case of singular integral equations with a
Carleman shift this immediately requires invariance of the coefficients of the equations with respect to the
shift and does not allow to consider arbitrary coefficients.

The authors gave a general Banach space approach to operators of the type (1.1) in the general non-
commutative case, the first version (non-matrix one) of this approach being presented in [10] and [11], see
also [15]. The case of two independent involutive operators and the matrix approach in case of an involutive
operator of order n > 2 was presented in [14]. The content of Sections 2 is a modified version of those results.

In this section we consider equations of the form

Kp:=(A+QB)p=f, (2.1)

where A and B are linear bounded operators and @ is an involutive operator: QY = I for some N. The main
important moment in the investigation of Fredholmness of the equation (2.1) is a possibility to construct, by
a given operator A, another operator A; ”of the type” of the operator A, such that the ”quasicommutant”
QA — A1Q is a compact operator. In the abstract approach for the operators (2.1), given below, such a
possibility is postulated from the very beginning, see Axiom 2. The abstract scheme itself will be aimed at
the reduction of the equation (2.1) to an equation ”without” the involutive operator Q.

a). The system of axioms. Examples. Let X be a Banach space and £(X) the algebra of all
bounded linear operators in X. We say that the operators A, B € L(X) quasicommute if their commutant
AB — BA is a compact operator in X. By T, Ty, T5, ... we denote compact operators in X.

Definition 2.1. The operator Q € L(X), is called a generalized involutive operator of order N, if
QN =1, N>2, and Q*#1I for 1<j<N. (2.2)

We assume that @ is a generalized involutive operator of order N, and suppose that there exists a lineal
S of operators in £(X), related in a sense to the operator @ and satisfying the following four axioms.

AXIOM 1. The lineal & contains all the compact operators in X and operators in & quasicommute with
each other.

AXIOM 2. For any A € & there exists an operator A1 € & such that the operator A1Q — QA is compact
in X.

AXIOM 3. There exists a Fredholm operator U € L(X), which quasicommutes with operators in & and
such that UQ — e, QU is a compact operator in X, where €,, = N

AXIOM 4. The subset of Fredholm operators in & is dense in S.

The following are examples of involutive operators ) and the corresponding sets &.

Example 2.2. Let X = L,(R?),1 <p < o0, and (Q¢)(x1,22) = ¢(x2,71) and

Ap = a(z)p(x) (2.3)

where a(z) € C(R?).
In this case we can put Uyp(x) = sign(xes—x1)¢(x), which is an invertible operator satisfying the condition
UQ+ QU =0.

Example 2.3. Let X = L,(R?),1 < p < o0, and Q be a rational rotation of the form (Qp)(x1,x2) =

p(x1 cos€ + xosiné, —xy sin€ + xo cos &) with £ = QW” and A be the same as in (2.3).

In this case we have QN = I. Let I'y = {& = (r,0) : 0 < § < 27} be the sector on the plane and

N
;=@ ~YTy), j=1,2,..,N, so that R? = |J I';. In this case we can put Up(z) = u(x)p(x), where
j=1

u(e) = ek xe, (@) (2.4)



and X (x) is the characteristic function of I';. It is easy to verify that U is an invertible operator and it
satisfies the condition UQ — eNyQU = 0.

Example 2.4. Let X = L,(R3?),1 < p < o0, and (Qp)(x1, 72, x3) = ©(x3,71,22) and A the same as in
(2.8), with a(z) € C(R?).
In this case Q3 = I. The transformation (z1,22,23) — (73,71,22) generated by the matrix 2 =
0 0 1
1 0 0 may be reduced to the canonical rotation. Namely, there exists (see Subsection 3.1) a real
0 1 0
invertible matrix 9B such that BAB ! = ¢, where

o(Cx) =: p(x1 cos& + xosiné, —xy sin€ + x5 cos &, x3),

&= %’T, and we may use the construction of Example 2.2. Then the operator U may be taken as U = ¢~ €,
where (Urp)(x) = u(z1, x2)@(z) and u(z1,x2) is the function (2.4) with N = 3.

b). Fredholmness theorem.

Theorem 2.5. Let S be a lineal of operators in X, satisfying Axioms 1-4, and A, B € &. If the operator
M=AAy...An_1+ (-1)""'BB;... By (2.5)
with Aj = QTAQ7 and B; = Q’BQ~7 is Fredholm in X, then the operator
K=A+QB (2.6)
is Fredholm in X as well, and its index is equal to Ind K = % Ind M.

Proof. Let us denote _
Kj = Aj + &‘JQB . (27)

The following formula is valid:
KNflKN,Q...KlK:M‘FT. (28)

To prove this formula, we suppose at first that the operator A is Fredholm. Then we may use its regu-
larizer R4 and have K = A(I + RaQB) + T} , so that K1 K = AJA(I + eRAQB)(I + RaQB) + T». Fur-
thermore, by induction KNflKN72 ..K = AN,1 . AlA H;V:BI ([ + EjRAQB) + T3 = AN,1 “e AlA[I +
(DN ANy AN(RAQB)N] + T3 = Ay ... 1A+ (-1)N"YQB)N + Ty = M + T. So, (2.8) has been
proved in the case of Fredholmness of the operator A. If A is not Fredholm, it remains to use Axiom 4.

Evidently, (K,)s = Kj+s + Tjs, so that the sets { K }j,v:_ol and {Kj+s}j.v:_01 consist of the same operators
(up to compact terms). This means that it is possible to make cyclic permutations of the factors in (2.8).
Then from (2.8), because of known properties of Fredholm operators, there follows, in view of the possibility
of cyclic permutations, that Fredholmness of the operator M yields that of each of the operators K.

To complete the proof, it remains to prove the formula for the index. To this end, in view of (2.8), it is

sufficient to prove that
Ind K = Ind K;, j=1,2,...,N—1. (2.9)

According to Axiom 3 we have U’ (A + QB) = (A+&/QB)U’ + T}, so that always
Ind K = Ind (A+QB) = Ind (A4 £/ QB). (2.10)
Furthermore, we have
(Aj +e'QB)AAy ... Aj_1 = AAy ... Aj +€9QBAA;, ... Aj_1 + Tx, (2.11)

and
AA; .. Aj(A+QB)=AA, ... Aj + QBAA, ... A;_ 1+ T, (2.12)



Suppose that the operator A is Fredholm. Then A; are the same, j = 1,2,..., N — 1. Consequently, the
left-hand sides in (2.11)- 2.12) are Fredholm. Then the right-hand sides are Fredholm. According to (2.10)
these right-hand sides have equal indices. Then the indices of the operators in the left-hand sides should
coincide as well. Since Ind A; = Ind A, from (2.11) -(2.12) we have Ind (A; +£/QB) = Ind (A + @B),
which gives (2.9).

If A is not Fredholm, we use Axiom 4 and approximate the operator A by Fredholm operators A, and take
(A4)): =Q7A.Q%,j =1,...,N, basing on Axiom 2’. Then (A;). is Fredholm as well. We take ¢ sufficiently
small, so that the Fredholm operator K. has the same index as K. Repeating the above arguments with
(Aj)c instead of A4;,j =1,..., N, we arrive at the same conclusion. O

One of the immediate realizations of Theorem 2.5 can be made for the operator Q¢ = @ of complex
conjugation in the following abstract Banach space setting.

Let X be any Banach space of complex valued functions. By X,.(X., resp.) we denote its version over
the field of real (complex, resp.) numbers. We assume that @ € X, for any ¢ € X,. Then the operator
Q¢ = p of complex conjugation is a bounded linear operator in X,.. By &, we denote the lineal of operators
satisfying Axioms 1 and 2. Independently of the choice of &. we can always take Uy = iy in Axiom 3 since
UQ + QU = 0 in this case. As an operator A; in Axiom 2 we can take A;p = Ap : = Ap. We immediately
arrive at the following theorem as a consequence of Theorem 2.5.

Theorem 2.6. Let the lineal & satisfy Azioms 1-2. The operator
Ko:=Ap+ By (2.13)
with A, B € &, is Fredholm in X, if and only if the operator

AA - BB (2.14)
is Fredholm in X.. If Aziom 4 is also valid, then Indx, K = Indx, (AA — BB).
c). Some remarks.

Remark 2.7. In the proof of Fredholmness itself of the operator K in Theorem 2.5, only Azioms 1,2,/
were used. Application of Aziom 4 gave a simple proof of the relation (2.8). It is possible to show that Aziom
4 1is extra, if to keep in mind just obtaining Fredholmmness of the operator K from that of the operator M, but
we do not dwell on the proof of this fact. However, the proof of the formula for the index used essentially all
the Axioms 1-4.

A natural question arises: is Fredholmness of the operator M, defined in (2.5), necessary for that of the
operator K 7 In the case N = 2, the answer to this question is positive due to a possibility to construct
effectively a regularizer of the operator M by a given regularizer of the operator K, see [12] and [16]. In the
case N > 2 this approach does not work and we restrict ourselves by the following easily proved statement,
in which the operators M and K are defined in (2.5) and (2.6).

Theorem 2.8. Let S be a lineal of operators in X, satisfying Azioms 1-3, and A, B € &. If the operator
A is Fredholm, then Fredholmness of the operator M is necessary for that of the operator K.

2.2. Matrix approach

In Subsection 2.1 we gave an approach to investigate ” two-term” equations of the form K¢ = (A+QB)p =
f with a generalized involutive operator ). In this subsection we consider more general operators

Ko= (A +QAs+ ... +QV ' Ax)p=f

and now the operators A; and @ do not necessarily quasicommute as in Subsection 2.1. The consideration
in Subsection 2.1 was based on a simple possibility to carry out these investigations within the framework
of scalar equations, without passage to systems of equations. In the case of more general equations of the



above form, the passage to systems is necessary in a sense, at least without additional assumptions on
quasicommutation of operators A; with the operator Q).

Let X be a Banach space and (Q a generalized involutive operator in X, see Definition 2.1. We investigate
the Fredholm properties of operators of the form (1.1). The operator @@ and the ”coefficients” A;, j =
1,2,..., N, are assumed to satisfy the following axioms.

AXIOM 1. There exists a Fredholm operator U € L(X) such that

2mi

UQ=enQU~+T, ey=en, (2.15)

where T is compact in X.
AXIOM 2. The operators Aj, 7 =1,2,...,N quasicommute with the operator U from the Aziom 1:

AU=UA;+T;, j=1,2,...,N. (2.16)

With the operator (1.1) we relate the following matrix operator acting in X% = X x X x ... X :

Al QAQTT Q%A3Q7? ... QNTTANQTNH!
ko | A2 Q4071 QA7 L. QVTlAQTVE | (2.17)
Ay QAIQTY Q%4Q7% ... QNTMAN_, Q7N

Theorem 2.9. Fredholmness of the operator K in X~ is sufficient for that of the operator K in X.
Under Axzioms 1 and 2, it is also necessary and

1
Indx K = NlndXN K. (2.18)
Proof. We introduce the operators
N . .
KO =3 g,
Jj=1
and denote
1 1 1 1
. 1 e, g2 . gn—t
V= (S;T_l)(j_l))rjﬂ = 1 & o s g2nTh) , (2.19)
1 en—1 21 (n=1)(n-1)
n n n
I o0 0 .- 0
0 Q 0 - 0
W = (csm-QH)m.:1 = 0o 0 @ --- o0 , (2.20)
0 0 0o --- Qn—l

0r; being the Kronecker symbol. The operator W has the diagonal form with invertible operators on the
diagonal. The operator V is invertible, since the Vandermonde determinant det (e5) is different from zero.
The following equality is valid

K 0 0o - 0
0 KM e 0
VWKWV = n(6,, K" _ = 0 0 K® ... 0 . (2.21)

0 0 0 co. Kn=1)



which can be verified directly. Since the operators V and W are invertible, the operators K and (6,; K" 1) TI,V =1
are simultaneously Fredholm. From the Axiom 1 and 2 we observe that

UK =K®WU*+T,, s=1,2,...,N—1

) )

where T, are compact operators. Consequently, all the operators K(®), s =0,1,..., N—1, are simultaneously
Fredholm and their indices coincide.

Sufficiency part. Let the operator K be Fredholm, then the diagonal operator (6TjKT_1)£Yj:1 is
the same and all the operators K(®), s =0,1,..., N — 1, are Fredholm. Consequently, the operator K is
Fredholm.

Necessity part. Let now the operator K be Fredholm, then all the operators K(*), s=0,1,...,N —1,
are Fredholm and Ind K = Ind K, s=1,2,...,N — 1, so that the diagonal operator (6TjKr_1)£Yj:1 is

also Fredholm and K is the same. From (2.21) it follows that Ind K = Zf;ol Ind K®) = NInd K. O
Remark 2.10. In the case N = 2 the matriz identity (2.21) turns to be the well known relation

r 1 AL+ QA 0 I Q B A QAQ
<Q _Q)< 0 A1—QA2><I —Q)_2<A2 QA1Q>’ (2.22)

where A1 and Ay are arbitrary linear operators and Q* = I, this equality being known as Gohberg-Krupnik
relation ([7], see also [18]).

Remark 2.11. Let the operator K be Fredholm in X™. Then from (2.21) it follows that the operator K
and all the operators K®) are Fredholm in X and

N—-1 N—-1
a(K) =Y a(KW), BEK) =Y BE).
s=0 s=0

In particular, if the operator K is invertible (left or right invertible), then the operator K is also invertible
(left or right invertible resp.). Let Azioms 1-2 be fulfilled with the additional assumption that the compact
operators T and Tj; in (2.15)-(2.16) are equal to zero. Then the inverse statement is valid: invertibility of
the operator K in X implies that of the operator K in XV,

3. FREDHOLMNESS OF MULTI-DIMENSIONAL CONVOLUTION-
TYPE EQUATIONS WITH SHIFT

3.1. Some properties of linear involutive transformations in R"

a). Characterization of involutive transformations in R". Let
a(z) =Ax + 0, (3.1)

be a linear transformation in R™, where % is an n X n-matrix with constant real entries and x, 3 € R™. We
are interested in knowledge of a criterion for the transformation a(z) to satisfy the generalized Carleman
condition, that is,
an(z) = alay_1(z)]| == (3.2)
for some N > 1 with aj(z) Zxfor 1 <j<N-—-1.
The following statement is a matter of direct verification.

Lemma 3.1. A linear transformation a(z) in R"™ satisfies the generalized Carleman condition (3.2) if
and only if



a) the matriz A satisfies the condition
AV = F | (3.3)

where E is the identity matriz;
b) the vector € R™ is the root of the equation

(E4+A+---+2V"Hp =0, (3.4)
We wish to describe the matrices 2 and vectors § , satisfying the conditions (3.3) and (3.4). We observe
first that the eigenvalues A1, ..., A, of a matrix 2, satisfying that condition, may be only roots of 1:
ANV =1.
In what follows we use the notation diag {4,0,...,3} for a block-diagonal matrix.
In the case n = 2, any rotational (2 x 2)-matrix
. cos¢  siné
Re = ( —siné cos¢& > (3.5)

generates an involutive operator of order N if % is a rational number, % = % with (m, N) = 1. For further
goals, we observe that the functional equation

o(Rex) = e p(x), z € R? (3.6)

has a solution
o) = 21 +izs (3.7)

independent of £&. This may be checked directly, but it is a consequence of the following simple fact:

Let A be an n x n-matriz and a € R™. A linear function ¢(x) = a - x is a solution of the functional
equation p(Ax) = Ap(x) if and only if X is an eigenvalue of the transposed matriz A™ and a is an eigen-vector
corresponding to A.

b). Canonical form of involutive transformation. Any involutive matrix may be reduced to
rotations with respect to some of variables. To show this, we introduce the following definition, in which
15,8, £ < 5, are arbitrary real numbers.

Definition 3.2. Let & # 0 (mod 7), j =1,2,...,£. The block-diagonal matric

¢ = diag {( cos€y sing )< cosg - sing ),—1,...,—1,1,...,1} (3.8)

—sin&;  cos&y —siné cos§

is called a canonical rotational matrix. In the case when all the numbers 5—;, e 2% are rational:
ST with (N =1 (N> 3), j=1,.0 (3.9)
2r Nj I I= ’

it 1s called canonical involutive rotational matrix.

Remark 3.3. Let LCM(ny,na,...,nm) denote the least common multiple of integers mi, ..., ny,. In the
case (3.9) the order of involutivity of the matriz (3.8) is equal to

N — { LCM(2, Ny, No, ..., Ny) if even if one — 1 is present in (3.8) (3.10)

LCM(Ny, Na, ..., Ny) otherwise

Lemma 3.4. A matriz 2 satisfies the involutivity relation (3.3) if and only if it has the form

A=BeB !, (3.11)



where B is a non-degenerate matriz and € is a canonical involutive rotational matriz and in this case the
eigenvalues of the matriz A may be only the numbers €%, j = 1,...,¢, and +1; given A, there exists the
matriz B with real entries.

Proof. Sufficiency part of this lemma is evident.

Necessity part. It is known that any matrix 20 may be reduced to its normal Jordan form A. In case
of (3.3) the Jordan form may be only diagonal. Indeed, suppose that it has some block Ay of dimension
greater than one. Then obviously A]kv is not the identity block. Consequently, A may be only diagonal and
we obtain

A=Wt diag {\1,...., \} W . (3.12)

We remind that the eigenvalues of 2l are roots of 1. Real eigenvalues may be only +1. The diagonal
block of order 2 corresponding to a pair of complex conjugate roots is known to be reduced to the form
( —C(;lsnff 21022 > , where £ = arg A, see [6], Ch. 9, Section 13, and the final representation (3.11) contains
the transformation matrix 9B with real-valued entries, see also [6]. o

Because of (3.11) we shall call the matrix € from (3.11) the canonical representative of the matrix 2.
Evidently, |det 2| = |det €| = 1. We also note that € is an orthogonal matrix: €~ = €7, where €7 is the
transposed matrix, and the powers ¢* have the from

kg coské&  sinké cosk&  sinkg Nk Y
¢* = diag {( _sinkg, coskéd; )\ Zsinke coské S(=DF (=D)L (3.13)

To deal with the condition (3.4) on 3, we notice that it may be rewritten in terms of the canonical matrix
(E4+e&+ -+ Ny =0, (3.14)

where v = B713.

Lemma 3.5. The following statements are valid:
1)det(E+€E+---+ N1 =0;
2) the rank of E+&+---+&N~1 s equal to the quantity m of the number 1 in the canonical representative
¢
3) The dimension of the subspace of solutions 8 of the equation (3.4) is equal to n — m;
4) The set of fixed points of the involutive transform a(x) is a hyperplane of the dimension m. In the
case m = 0 the fixed point is unique.

N—1
Proof. Using the representation (3.13) for &* and observing that > e¥¢ =0, s = 1,...,l, we obtain
§=0
E+¢+ .-+ eV = Ndiag {0,...,0,1,...,1}, where the number 1 stays exactly at the same places as it
appeared in the initial matrix €. This yields the statements 1) and 2) of the lemma. Obviously, 3) follows
from 2). Finally, the set of fixed points of a(z) has the same the dimension as the set of solutions of the
non-homogeneous equation (E — &)x = . The latter has the unique solution, if there is no any number 1 in
the canonical representative € , since in this case det(F — €) # 0. Otherwise, rank(F — €) =n —m. a

3.2. Wiener-Hopf operators with reflection in sectors on the plane

In this subsection we apply the general approach of Section 2 to treat Fredholmness of convolution
operators with reflection in sectors on plane. To this end, we formulate first some results for convolution
operators in cones.

a). On Wiener-Hopf equations in cones. Let I' be a cone in R"™ and

Ko = \o(a) + /F Wz — p(t)dt = f(z) , €T (3.15)

a Wiener-Hopf equation in this cone. The following theorem was proved in [27].



Theorem 3.6. Let h(t) € L1(R") and T be a convex cone in R™. The operator (3.15) is Fredholm in
the space Ly(T'), 1 < p < oo, if and only if the condition )\—1—71({) #+0, &€ R", is satisfied, and then it has
zero index in the case n > 1.

To formulate some immediate generalization of this theorem (see Theorem 3.8), we single out some class
of functions a(z,y) on I' x T which have limiting values a(co, 00) at infinity inside different components of
a cone in the following weak sense.

Definition 3.7. Let ' = U;n:l T'; be a union of finite number of unilateral simply connected cone, the
closures of which do not intersect with each other except for the origin. A function a(z,y) on I'x T is said to
belong to the class B(I' xT) if a(x,y) € Loo(I' xT') and it has limiting values ar, (00, 00) in every component
I'j of the cone I' in the familiar sense:

lim esssup |a(z,y) —a. (00,00)| =0, j=1,...,m. (3.16)
N—=00 [a|>N,|y|>N ’
merj,yerj

Theorem 3.8. Let I' be the same as in Definition 3.7 and h(t) € L1(R™). The operator
Ao(o) + [ aw)he ~ yelo)dy = fa) . w €T, (3.17)
r

is Fredholm in L,(T'), 1 < p < oo, if and only if infecpn ‘)\ +ar, (00, oo)/ﬁ(g) >0 forallj=1,..m. Under
this condition the index of the operator is equal to zero if n > 1.

We shall use a result on Fredholmness of systems of equations of the type (3.15) in a sector on the plane,
that is, a plane sector, as formulated in Theorem 3.9 below.

Let T be a sector in the first quarter-plane:

I'= {(tl,tg) 0<tya < ktl} , (318)

where 0 < k < oo and 0(§) = AE +E(§) be the matrix-symbol, where h(z) is a (m x m)-matrix-function
with entries in L;(R?).

Theorem 3.9. A system of integral equations of the form (8.15) is Fredholm in the space L,(T'), 1 <
p < 0o, if and only if .
deto’(&) 7é 07 g = (51752) € R2 (319)

and partial indices, with respect to the variable &4, of the matrices
0(€1,&) and (& cosl + Esinh, & sinf — &5 cosb), (3.20)
where 0 = arctg k, are equal to zero for all & € R3.

Proof. The proof may be obtained after some calculation from the result of [26] for systems of equations
of the type (3.15) in a cone in R™ (in [26] the results were stated for p = 2, but the analysis of the proof
shows that they are valid for all 1 < p < c0.) O

b). Wiener-Hopf operators with reflection in sectors on the plane. Let us consider the Wiener-
Hopf type integral equation for two variables containing the reflection with respect to one of the variables:
Ko = Ap(z1,22) + pp(—21, 22)

(3.21)
+

NE!

11Iar(x,t)hr(:n —t)p(t)dt + an: Jop (@, t) 0 (21 + t1, ma — t2)p(t)dt, == (x1,22) €T,

T r=6T

where T is the bisector I' = {(¢1,t5) : 5 < t2 < k|t1|} being a union of two symmetric non-intersecting sectors:
' =T, T2, where I'y = {(t1,t2) : 0 < ta < kt1} is the sector (3.18) and T'g = {(t1,t4) : 0 < t2 < —kty;}
is its image under the reflection.



We represent the operator K in the familiar way as
K=A+@B, (3.22)

where (Qp)(t) = @(—t1,t2), t=(t1,t2), Q* =1, and

Ap=p(@)+ Y / o (m, ) (2 — B)p(t)dt, (3.23)
r=1"T
and .
By = pp(x) + Z /F br(z,t)0-(t1 — 1, 2 — ta)(t)dt (3.24)

intending to apply our general result presented in Theorem 2.9 to the operator (?7). We formulate the final
statement in Theorem 3.11 below, ehere we use the following notation

WO = A+ D alhi(€), oB(€)=pu+ > Bil(E), i=1,2 (3.25)

for the symbols of the operator A and B with respect to the cone I';,i = 1,2, where £ = (£5,£2) and E:
(—&1,&) and o} = a,.(00, 00;00,00), a? = a,(—o0, 00; —00,0) , AL = b,.(—00, 00; —00, ), 2 = b,.(c0, 00; 00, 00).
The matrix symbols of the corresponding matrix operator is the following pair of functions

o[ 7@ H@ Y
(Q (g@ ﬂ@)’ b (320

To prove Theorem 3.11 below (which was stated without proof in [8]), we use the following lemma [28].
We agree to call two domains ; and €y divergent at infinity if the distance between their intersections with
the exterior of the ball of the radius N tends to infinity as N — oo.

Lemma 3.10. Let Q; and Qo be domains in R"™ divergent at infinity and h(t) € Lgs(R™). The operator
Po,HPq, is compact in L,(R™), 1 <p < oc.

Theorem 3.11. Let h,(t) € L7(R?) and a,(x,t) € B¥P( x I') where r = 1,...,m. The operator (77)
is Fredholm in the space L,(T'), 1 < p < oo, if and only if

1) deto®(€) #£0, E€ R?, i=1,2;

2) Partial indices, with respect to the variable &, of the matrices o*(£1,&), i = 1,2, o'(& cosf +
&sind, & sinh — Egcosh), (=& cosl — Easinf, & sinf — & cosb) are equal to zero for all & € RY (0 =
arctg k).

Proof. By Theorem 7?7 we arrive at the matrix operator

[ A5 OAQ
k= (3 oxe) (3.27)

which has the symbol (3.26). To justify the apvlication of Theorem 2.9, we have to construct the operator
U satisfying Axiom 1 and Axiom 2 from Subsection 2.6. We introduce it as

(Up)(t) = sign t1 p(t),

which is a bounded invertible operator in L,(I') and UQ + QU = 0, so that Axiom 1 is satisfied. It remains
to check Axiom 2, that is, to show that the operators A;U — UA;, j = 1,2, are compact. To this end, it
suffices to prove that the operatpr

(To)(x) = /F(szgn x1 — sign t1)h(x — t)e(t)dt, z €T (3.28)



with a kernel h(t) € Ly (T") is compact in L,(T"). This follows from the equality T' = 2Pr, H Pr, +2Pr,HPr, ,
where Pr; are the projection operators onto I';, 7 = 1,2, since every term here is compact by Lemma 3.10.
Thus, Axiom 2 is also satisfied and the appliwation of Theorem 2.9 is justified.

It remains to write down the conditions for the matrix operator (??) to be Fredholm. We mfy consider
this operator separately oa sectors I'y and I's. Applying Theprem 3.9 in each of the sectors, we arrive at the
statement of the theorem. O

Remark 3.12. Similarly one may treat the yquation (3.27) with the reflection (Qy)(x) = w(xs5, —2)
in another variable or with the reflection (Qv)(x) = w(—x1,—x2) in both, wigh Ty being the corresponding
reflection of I'y. The only point to be mentioned is the choice of the operator U in the second case. It may
be taken as (Ug)(x) = u(x)p(x), with uw(x) = xr,(v) — xr,(x) as in (2.4), xr,(x) being the characteristic
function of the sector I'j,j = 1,2.

Remark 3.13. In a similar fashion one may study equations of the type (3.27) with reflection in x1, when
Ty is an arbitrary sector in the right-hand side semi-plane, that is, T'y = {(t1,t2) : to > 0, —lt; < ta < ktr},
where 0 < k < 00,0 </ < 0.

3.3. Convolution operators with Carleman linear transform

Let a(z) = Az + [ be a generalized Carleman transformation of order N > 2 generpted by an orthogonal
matrix 2. We consider the convolution integral operator of the form

N—-6

(Ke)a) = {amamm

i () ol () — y]dy} ~ J(x), zeR" (3.29)
k=0 Rr

where ay are constant, ag(x) = x and the kernels hy(z) are either integrable: hp(z) € Li(R"™) or are
Calderon-Zygmund singular kernels.

a). Preliminaries: on Calderon-Zygmund operators. We suppose that the characteristic Q(¢) of
the multidimensional singular operator

oy’ n Y o on-
o) = [ Sotw—yay, ser, y=Les, (3.30)
re 1Yl lyl
satisfies the standard assumptions: [q,_, Q(£)dé =0, fol @dé < oo,wherew(d) = sup [Q()—0Q(0)].
Geshies
The function )
o) = [ 2000, €= 1
Sn—1 _g * 9
is known as the symbol of the singular operator 7 .
We observe that in the case n = 2 for Q(y) = ylr;% we have
im? 1
(€)= 7(51 +i&), sothat o(§)#0 for €8S . (3.31)
To note dependence on characteristic {2, we denote
T =To. (3.32)
Lemma 3.14. Let A be any orthogonal linear transformation in R™, that is, |Ax| = |z| for all x € R,
and Qp = p(Az + 3), B € R™*. Then
QToQ ™" =To- , (3.33)
where Q*(x) = Q(Az).
Proof. The proof is direct. O

b). Reduction to the case of the canonical form of the shift. Lemma 3.15 below demonstrates
that the invertibility problem for the operator (??) is reduced to that of its canonical representative. Before



we remark that A = BEB~! by (3.11) and easy calculations show that

ap(z) =BE*B o+ BE+E+... +&HB 15, k=21,...F-1. (3.34)

Lemma 3.15. The following representation holds

B'KB=K"  with (By)(z)= ¢(Br) (3.35)
where
K° ¥ 0 ! ALY to(t)dt 3.36
(<) = 3 {ewstode)] + gl Whiode) — ot} (3.36)
and
x) =¢x+3° pO=B"13, hl(x)= h,(Bx) (3.37)

Proof. Takigg into account (3.11) and using the notation (Qg)(d) = pla(z)] for the shift operator, we
have (B°QFBy)(z) = B lp[BE s+ B(E+E+.. .+ H)B713] = ¢ [a(x)] . For a convolution operator

H, in notations similar to (3.37) we have B~1HByp = mH 9 which follows from the equalities
1
BQ"HBp = (B'C*B)(B'HBp) = — Qi H°.

O

c). A result on invertibility. Now we consider the invertibiliti problem for the equation (??). For
simplicity, we consider first the case when all the kernels are in L;(R™), and at the end mention the result
for the case when some of the kernels may be singular.

We need the following matrices

~ . N
A= (arpg2)y and HE) = (hy2(@7)) (3.38)

r,j=1

Theorem 3.16. Let hy(x) € L1(R™), k=0,1,...,N —1. The operator K of the form (??) is invertible
in the space L,(R"),1 < p < oo, if and only if min det [A+ H({)] #0 .
EER™

Proof. By Lemma 3.15 it suffices to study the case a(z) = €x + 7. The operator K has the form (1.1)
with

n

App = ax_19 + / hi-1(z —y)p(y)dy and (Qp)(z) = p(Cx + 7). (3.39)

To apply Theorem 2.9 to the operator K, we have to construct the operator U satisfying Axioms 1-2
required by that theorem. This construction is the main job we should do in our proof.

To explain the idea of this construction we start with the simplest case when the canonical matrix € has
only one rotation block.

1st step. The case of a single rotation block. Let € have the form

2rk
¢ = diag{Re,1,1,...,1}, ¢ = % N>2, (3.40)
where R is the (2 x 2)-block (3.5). Let z = (2/,2”) with 2’ = (21, 22) and 2" = (x3,...,2,). The shift
operator Qp = ¢(€ + ) in the case (3.40) has the form

Qe = p(Rex’ ++,2") (3.41)

since 7"/ = 0 (otherwise this shift is not involutive). We look for the operator U in the form of a singular
Calderon-Zygmund operator in twy variables:

Qy’
Up =Top = / (, 2)@(33' —y,2")dy",
r Y




where ¢y = (y1,¥2). (The idea of the construction of the operator U in such a form in the case N =n = 2
was suggested in [27]). The opedator U must satisfy the relation of the type (??), that is,

4

UQ=e%QU (3.42)

in our case. Since the operator @) acts only in two variables according to (?7), we may apply Lemma
3.14, which reduces the equation (??) to a similar relation for the characteristic Q(zo,z2) :  Q(2') =
eF Q(Rex'), 2’ = (w1,72). According to (3.6), this equation is satisfied by the function Q(z') = Lz

[o2 1 2
ri+xs

if k =1in (3.40). If k # 1, the relation (3.6) says that the same function Q(z’) satisfies the relation
2npki 27

Q') = e%Q(Rfsc’), x' = (x1,x9). Since (k, N) = 1, there exists an integer p such that e 8 =e~ .
Then the corresponding power of the operator 7q, that is,

U=12 (3.43)

suits for our goal. Indeed, the relation (3.42) is satisfied in this case and the operator U is invertible. The
latter follows from the known results on invertibility of multi-dimensional singular integral operators with a
non-vanishing symbol, see [23], since |o(¢')] = %2 # 0 for all ¢ = (&,&) € S? by (3.31).

To finish with the case of a single rotation block, it remains to consider the situation when —1 is one of
the eigenvalues of the matrix €, so that

) 27k
¢ =diag{Re, £1,£1,...,£1}, = N N>2, (3.44)

with § = 278 Ny < N,

If Ny is even, then N = Ny, so that the operator U may be taken the same as constructed in (3.43). Let
N3 be odd. Then the order N of involutivsty of the matrix € is equal to N = 2N;. Suppose that we have
—1 at the j-th place in (3.44). Thef we construct the operator U in the form

U = (T5)™ 8, (3.45)
where 5 .
Sj(,O:f/ plettes) e; = (0,0,..,0,1,0,...,0), (3.46)
T Jpt t ——
=5

is the one-dimensional singular operator in the j-th variable and the exponents m; and mso are to be
27

determined. The relation (??) for the operator (3.45) beads to the equality (eNT> ' (=1)ms = %", that

iw, 2my + Nymg = 1. Since (N7,4) = 1, this equation is solvable in integer numbers, see [3] and references
there. Under this choice of m; and mg one can now directly check that the operator (3.45) satisfies the
relation (3.42) and is invertible.

2nd step. The case of several rotation blocks, at least one of them being of order N; = N. We suppose
that the canonical matrix

2
X;’“, N>2, (r,Ne)=1,k=1,...m (3.47)
k

Q::diag{Rgl,...,R&m,:l:l,...,:l:l}, fk =

has at least one block R¢, with N; = N. Then the operator U may be taken just in the form (3.43) with
respect to the variables xg;_1, x;:
U=1%, (3.48)

with

Q(ty,t
Top = / (|t1|22)g0(x1, oy T2j-2, Taj—1 — t1,T2j — b2, Xoji1, e, Ty )dt, = (t1,12). (3.49)
R2

3nd step. The case of several rotation blocks with N; < N for all the blocks. In this case it is natural to
look for the operator U in the form of the composition

U= ﬁ (Tg”‘1’2”)p” (3.50)

v=1



of powers of two-dimensional Calderon-Zygmund operators ’TQQ V_I’QV, where the upper indices denote that
the operator is applied with respect to the variables x5, _1, 2,. Evidently, all these operators commute with

each other. Here ) = 2:=if2v g the same characteristic and the exponents p, are to be determined.
T2y —1TT2y
(See Remark 3.17 below on the method of the construction of the operator U).
Obviously, the operator (3.50) commutes with the operators (??). Trying to satisfy the relation (3.42),

we arrive at the relation

27w 2mi

271
TP R _ T (3.51)

Two cases are possible: 1) at least one of the integers N; is even and 2) all N; are odd. In the case 1) the

order N is surely the least multiple of integers N7, No, ..., N,,,. Obviously, the integers Nil, ]\%’ S NL have
no common dividers greater than 1. Then the equation (3.51), that is,
N N
= —_ ek —p =1 3.52
R CR N e O (3.52)

has a solution in integers, as is known, see [3].

In the case 2), the order N is again the least multiple of Ny, N, ..., Ny, if there is no —1 among the
eigen-values of the matrix €. Therefore, in this case the operator U is the same as in (3.50). Let —1 be an
eigen-value of € located at the j-th place in (3.48), j > m + 1. In this case the order N is the least multiple
of the integers 2, N1, No, ..., Np,. As in (3.45), we may make use of the one-dimensional singular operator in
the corresponding variable:

m
Py
v=TT (z )" spmee, (3.53)
v=1
Then the relation (3.42) leads to the equation similar to (3.52):
Nt Yttt N =1 (3.54)
Nlpl N2p2 Nmpm 9 Pm+1 =1, .
N N

which is again solvable in integers, since the numbers Nﬁl, N N % have no common dividers.
Therefore, the required operator U exists in all possible situations. It remains to apply Theorem 2.9 to

the operator K. Theorem 2.9 leads to the matrix operator with the entries

QA 1Q o = aryj_ap(x) + /m hrgj—2 (W1 (2 — y))p(y)dy.

Calculating Fourier transforms of the kernel of the resulting matrix convolution operator, we obtain that its
symbol matrix is equal to A+ H(§) , where A and H() were defined in (3.38). This concludes the proof of
the theorem. O

Remark 3.17. In the proof of Theorem 3.16, to construct the Fredholm operator U, required by Theorem
2.9, we used two-dimensional Calderon-Zygmund operators separately for each (2 x 2)-block in the canonical
matriz €. In general, it is impossible to construct such an operator U directly in terms of n-dimensional
singular operators. Indeed, in the case n > 3 and N > 3, the matriz A may have the eigenvalue A = 1. Then
A has a fized point o on the unit sphere, Azg = xo. The condition (3.42) gives the relation Q(x) = e % Q(Cx)
for the characteristic of Calderon-Zygmund operator, which implies the same for its symbol o(x). Therefore,
we have o(xg) = eno(xg), so that there exist no Calderon-Zygmund operator of order n > 3 with continuous
non-vanishing symbol in this case.

We conclude the consideration with the final remark.

Remark 3.18. Let some of the kernels hy(x) be in Li(R™), while others be singular:

_ Qu(a/la])

hao(2) o e/l eC™(S" Y, m> g (3.55)

Then Theorem 3.16 remains valid with min,  p. det [A + H(£)] replaced by inf, ., det [A+ H(E)].



Indeed, it suffices to note that the operator U may be taken the same and it commutes with Calderon-
Zygmund singular operators as well.

Remark 3.19. It would be of interest to investigate multidimensional singular integral equations with an
arbitrary, i.e. non-linear shift, and over a domain in R"™ different from R™. Up to the author’s knowledge,
such an investigation was undertaken only in [4]-[5] for the case of special type of characteristics Q(z'), ¢’ =
é—‘, corresponding to singular integral operators used in the Vekua’s theory of generalized analytic functions.

3.4. Equations with homogeneous kernels and the inversion shift in R"

We intend to study Fredholmness of equations with homogeneous kernels and the inversion shift ﬁ:

(Ke)(x) : = a(z)p(z) + b(z)p (\ZT;) +
(3.56)

J el k(@ y)ew)dy + [ deyiaye () dy = f@),
Rn Rn

where 6 > 0. One-dimensional equations of such a type were investigated [15] on the half-axis Rl+ with the
inversion shift % In (3.56) it is supposed that the kernels k(x, y) and £(z,y) are homogeneous of degree —n,
the functions a(x),b(x), c(z,y) and d(z,y) satisfy some boundedness conditions. In the multi-dimensional
case such equations without shift, that is, in the case b(z) = d(z, y) = 0, were studied in [20], [21], [22] and
[2] and [17]. To cover the Fredholm nature of the operator (3.57) by means of our general Theorem 2.9, we
expose first some additional properties of multi-dimensional operators with a homogeneous kernel.

a) Compactness and the algebra property of operators with a homogeneous-type kernel.
We consider the lineal of integral operators of the form

(Kep)@) = [ clwy)ieg)oly)dy (3.57)

n

where k(x,y) is the "main” part of the kernel, being a homogeneous kernel, satisfying the conditions

k(te,ty) =t "k(z,y), Vt>0; (3.58)
k(w(x)7"‘j(y)) = k(iﬂ,y), Vw € SO(TL), (359)

where SO(n) is the rotation group, and
k= [ her ol Fdy < +ox, (3.60)

R'Vl
where e; = (1,0, ...,0), while ¢(z,y) is a bounded function on R™ x R™ having the values ¢(0, 0) and ¢(o0, c0)
in the following sense
lim  esssup |e(x,y) —c(0,0)] =0, lim esssup |c(x,y)— c(oo,00)| =0, (3.61)
N=00 1< L lyl< L N=0 2> N [y|>N

compare with (3.16).

Lemma 3.20. Let k(x,y) satisfy the conditions (3.58), (3.59) and (3.60), and c¢(x,y) be a bounded
function on R™ x R™ with ¢(0,0) = ¢(co,00) = 0 in the sense (3.61). Then the operator T, is compact in
the space L,(R™), 1 <p < oo.

We refer to [9] for the proof of this lemma.

Corollary. Let Qy and Qo be neighborhoods of 0 and oo, respectively, 0 ¢ Qo and co & Qq, and let Pq
denote the operator of multiplication by the characteristic function xq(z) of a set Q. The operator

Po,KPo_ (3.62)

is compact in the space L,(R"), 1 <p < 0.



Indeed, it suffices to choose c(z,y) = xa,(z)xa.. (¥), so that this function satisfies the condition (3.61)
with ¢(0,0) = ¢(oc0, 00) = 0.

The following lemma was proved by O.Avsyankin (PhD Theses, Rostov University, 1997). For the reader’s
convenience we give it with the complete proof.

Lemma 3.21. Let c(x,t) =1 in (3.57). The integral operators K with the kernel k(z,y), satisfying the
conditions (3.58), (3.59) and (3.60), form a commutative algebra with respect to the usual multiplication of
operators.

Proof. Let

Kjp = . ki(x,y)e(y)dy, j=1,2 (3.63)

be two such operators. Their composition K = K; K5 is an integral operator of the same form with the
kernel

k(e y) = / o (2, )k (£, ) . (3.64)

The validity of the conditions (3.58) and (3.59) for k(x,y) is evident and the verification of (3.60) is direct.
It remains to check the commutativity K3 Ko = KoK;. The function (3.64) is invariant with respect to all
rotations. Therefore, it has the form k(z,t) = ¢, (|z|?, [¢|2,2" - ') . Then

k(z,t) = Lo (|z?, [t 2" - t) = Lo (|2, |t - 2') = k (||t |t]2)) .

Hence, because of the homogeneity of the kernels we easily obtain

!/ t/ x/ yl dy
ke.y) / b (o1t y) Kz (9, #127) / ERRs <y| |x|)‘””2 <|t|’|y> P

In the last integral we make the change z = ﬁ of variables and get

1 t' x’
k = —k — ko | — dz.
(@) / ERER < |x> 2(|t|’z> ‘
Rn

Making another change z = u/(|z||t|) of variables and using the homogeneity property (3.58), we finally

obtain ) p /
u xr u

k1(m»y)k2(y,t)dy=/ k ( ) k2 () du
/ S (alriely? ™ el Jal )= \ Tt fallt

Rn

= /k1 (u, [t|t") k2 (Jz|2’,u) du = /kz(x,y)k'l(y,t) dy.
R» R»
O

We denote the algebra of operators K of the form (3.63) satisfying the conditions (3.58), (3.59) and
(3.60), by K. For any operator K € K, the symbol {0,,(£)}55_, is defined by

m=0

om(&) =om(k,&) = /k(el,y)Pm(el ~g/)|y|_"/p+zfdy7 meZ,, £€ R! . (3.65)
R’!L

Lemma 3.22. Let {0,,(€)}20_, be the symbol of the composition K = K1 Ko of two operators K1, Ko € K
with the symbols {03, (€)}_y, 7 =1,2. Then

om(€) = 0, () (§) , m=0,1,2,... (3.66)



Proof. The proof may be obtained as a consequence of properties of Mellin transforms and the fact that
{07.(£)}5_,, are Fourier-Laplace multipliers for spherical convolution operators, see Funk-Hekke formula,
[24].

Od

b) Investigation of the equation (3.56). Returning to the operator (3.56), we suppose that the

functions a(x), |x\27nb(x), c(x,y) and |y|27nd(x,y) are bounded on R" x R™ and have limiting values in the
sense (3.61). We put

Xo =a(0), mno = lim 67%|x|%b(x) o =¢(0,0), vy= lim 97%|x|27nd(x,y)
z—0 (@,y)—(0,0)

and similarly at infinity. We denote

A(z) = a(z)a (é@) — b(a)b <|i“’|”2> , (3.67)
and

Um,O(g) = {)‘0 + NOUm(kag)} {>‘oo + /looom(ka _5)} - {770 +voom (Y, f)} {7700 + Voo Om (£, _f)}a ( )
3.68

Tm.o0(§) = {Aoe + trocom (K, €)} {A0 + poom (k; =€)} — {no + 100m (€, )} {nee + veoom (£, =€)}

where {0, (k, &) }°_, and {0, (¢,£)}2_, are symbols of the operators as defined in (3.65).

bz

Since the shift operator ¢ (IwP) is not bounded in L,(R™),1 < p < oo, we introduce its bounded

modification

n _2n 956
(Qp)(z) =07z 7 ¢ () : (3.69)
It is easily checked that ||Q], =1, 1 <p < oo, and Q=1

Lemma 3.23. Let K € K and Q be the operator (3.69). Then the operator K1 = QKQ is also in K and

has the kernel .
x oz 2]\ » 1
k =k —,— — —_ . 3.70
e =k(me) (5) 5w (370)

not depending on 0. Their symbol functions o,,(k,&) and o,,(k1,£) are related by the equality
om(k1,§) =om(k, =€), meZy. (3.71)

Proof. We have

2n, _2n Ox _2n 0
Kip=QKQp =07 |z|"» /k<x|2’y) |yl ”<P<y?|J2>)dy7
R’n/

and after the change z = ﬁ% of variables we obtain that, indeed, K7 has the kernel kq(x,y). By (3.70) it is

evident that ki (z,y) satisfies the conditions (3.58) and (3.59). To verify the condition (3.60), after obvious
change of variables we have

_n Yy n dy _n
[ sl pdy—/\k<e1,|y|2>'|yqylgn = [ er il Fay <o
R™ R™ R»

A similar change of variables yields the statement (3.71):

om(k1,€) = /kl(elay)Pm(el )y TPy = /k(elay)Pm(el Yy TP dy = oy (k, —£).
R" Rn



O

Theorem 3.24. Let the functions k(xz,y) and l(x,y) satisfy the conditions (3.58), (3.59) and (3.60) and
the functions a(z), |m|27nb(x) € Loo(R") and c(x,y), |y\27nd(x,y) € Loo(R™ x R™) have limiting values at the
origin and at infinity in the sense (3.61). The operator K of the form (3.56) is Fredholm in L,(R'),1 <
p < o0, if and only if

essinf |A(z)| #0, mino, o) #0, meZ; . (3.72)
IGRH EERI

&)
Under these conditions Ind K= — %" dp,(m)ind omo(§), where d,(m)=
m=1

(n+m—3)!
m!(n—2)! "~

(n+2m—2) the sum being always finite.

Proof. We first note that the condition (3.72) is equivalent to miZn §mgl1 Om,0(€) # 0, because
mesy4 £

"}E)noo .;—pelgll |Um70(§) B )\‘ - 07

where A = Ao — 10700 7# 0 does not depend on m.
According to our general approach of Theorem 2.5, we represent the equation (3.56) in the form

Ko =A+QB, (3.73)

where
(A)(x) = Ax)p(a) + u(z) / k(e y)e(y)dy + T |

n

and the operator B is defined by the operator

(Bip)(z) = n(z)p(x) + v(z) o Uz, y)p(y)dy + Tz,

via the relation B = QB;Q, and T} and and T} are compact operators, and A(z) = a(z), n(z) = 077 |z # b(z)
and

p(x) = { R |27 d(@.9) |zy=00) if @€ By
c¢(o0,0), if x € R"\By '’ |z| ™ d(x,y) |($7y):(oo)oo) if e R"By

where By is the ball of the radius 6. To verify the representation (3.73), we observe that by Lemma 3.20
and its Corollary, the operator K. may be reduced, up to a compact operator, to the operator

¢(0,0) Py K Py + ¢(00, 00) Pso K P,

where Py is a projection operator onto the ball By of the radius # and Py, = I — Py. By the same reason,
the operator ¢(0,0)PyK Py + ¢(00,00) Poo K Po, may be reduced up to a compact operator to the operator
¢(0,0) P K + ¢(00,00) P K = pu(x)K.

By similar arguments we can reduce the operator Ky, up to a compact operator, to v(x)Ly, where Lp
is the integral operator with the kernel ¢(z,y). Thus, the representation (3.73) is obtained.

To apply our Theorem 2.5, we have to verify Axioms 1-4 of Subsection 2.1. We notice that Q(uv)(z) =

u (%) (Qv)(z) for any two functions u(z) and v(z) and then, after easy calculations obtain

Arp = QAQp(z) = A (égfg) p(x) + p (éﬁ) (K1p)(2)

By =QBQy(r) =1 (é@) o(x) +v (éﬂ) (L1p)(z) ,

where the kernels k;(x,y) and ¢;(z,y) are defined accordingly to (3.70).



Axioms 1-2 are satisfied by Lemma 3.20. The operator U from Axiom 3 may be taken as

Up(z) = sign In Iz

Vo

|| ;

so that UQ + QU = 0. Since the function c(z,y) = sign ln% — sign ln% has zero limiting values in
the sense (3.61): ¢(0,0) = ¢(oco,00) = 0, we obtain that the operator U quasicommutes with A and B.
Thus, Axiom 1-4 are all satisfied and we can apply Theorem 2.5. According to that theorem, we have
to deal with the symbol of the operator AA; — BBy, which is a pair of function sequences {o.,.0(&)}5%0_,
and {om,00(€)}5°_y. By Lemma 3.71 we have 0y, 00(§) = om,0(—¢) for any m € Z; and we arrive at the
conditions (3.72). Finally,

Ind K = % i dn(m)ind C’Wg = - i dy(m)ind o.m,0(§) .
oo Om,0
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