
Integr. Equat. Oper. Theory
Vol. 39, 2001, 305-328

MR 2002b:45004

ON MULTI-DIMENSIONAL INTEGRAL EQUATIONS
OF CONVOLUTION TYPE WITH SHIFT

N.K.Karapetiants and S.G.Samko
The criterion of invertibility or Fredholmness of some multi-dimensional integral operators with a Car-

leman shift are given. The operators considered involve those of convolution type, singular Calderon-type
operators and operators with a homogeneous kernel. The shift used is generated by a linear transformation
in the Euclidean space satisfying the generalized Carleman condition. The investigation is based on some
Banach space approach to equations with an involutive operator. A modified version of this approach is also
presented in the paper.

1. INTRODUCTION

The results on Fredholm theory of integral equations of singular type (with Cauchy kernel, of convolution
type, discrete equations) with Carleman shift are well known, see the books [19], [15], [18] and [1] and
references therein. These results cover mainly one-dimensional equations. As for multi-dimensional integral
equations of singular or convolution type, the corresponding results are also well known in the case of
equations without shift. We refer, for example, to the paper [27] and the books [23] and [18]. In this paper
we consider multi-dimensional integral equations of singular or convolution type with a linear Carleman-type
shift. Such a shift has a rotational structure and we reveal the problems arising from the complexity of the
shift.

Investigating Fredholmness of the equations we base ourselves on some general abstract approach, devel-
oped by the authors in [12]-[13] and [14], for studying operators of the form

K = A1 + QA2 + ... + QN−1AN (1.1)

with an involutive operator Q of order N : QN = I, in a Banach space X, where Aj are linear bounded
operators in X satisfying some assumptions, j = 1, 2, ..., N .

For the reader’s convenience, we present here the modified version of this abstract approach with proofs
in Section 2. The reader can compare this presentation with that given in [12]-[13] and [14] and [15]. In
Section 3 we apply this approach to multi-dimensional integral equations. While doing this, the main job to
be done is to verify some axioms from the abstract approach. This verification requires a knowledge of the
structure of the shift and we show how the complexity of the shift influences on this verification.

2. FREDHOLMNESS OF AN ABSTRACT EQUATION WITH
AN INVOLUTIVE OPERATOR

2.1. Non-matrix approach

The results in the Banach space settings presented below, has as a starting model, the theory of singular
integral operators with Carleman-type shift. The Carleman-type shift of order N generates an involutive
operator of order N . An abstract equations with an operator satisfying the condition QN = I, or algebraic



operator (that is, P (Q) = 0, P being a polynomial) or almost algebraic operator (P (Q) = T, T being a
compact operator) were investigated in [25]. The investigations in the books [25] reflected, in fact, the
nature of singular equations without shift, since they based on the assumption that the ”coefficients” Aj

in (1.1) quasicommute with Q up to a compact operator. In the case of singular integral equations with a
Carleman shift this immediately requires invariance of the coefficients of the equations with respect to the
shift and does not allow to consider arbitrary coefficients.

The authors gave a general Banach space approach to operators of the type (1.1) in the general non-
commutative case, the first version (non-matrix one) of this approach being presented in [10] and [11], see
also [15]. The case of two independent involutive operators and the matrix approach in case of an involutive
operator of order n > 2 was presented in [14]. The content of Sections 2 is a modified version of those results.

In this section we consider equations of the form

Kϕ : = (A + QB)ϕ = f , (2.1)

where A and B are linear bounded operators and Q is an involutive operator: QN = I for some N . The main
important moment in the investigation of Fredholmness of the equation (2.1) is a possibility to construct, by
a given operator A, another operator A1 ”of the type” of the operator A, such that the ”quasicommutant”
QA − A1Q is a compact operator. In the abstract approach for the operators (2.1), given below, such a
possibility is postulated from the very beginning, see Axiom 2. The abstract scheme itself will be aimed at
the reduction of the equation (2.1) to an equation ”without” the involutive operator Q.

a). The system of axioms. Examples. Let X be a Banach space and L(X) the algebra of all
bounded linear operators in X. We say that the operators A,B ∈ L(X) quasicommute if their commutant
AB −BA is a compact operator in X. By T, T1, T2, ... we denote compact operators in X.

Definition 2.1. The operator Q ∈ L(X), is called a generalized involutive operator of order N , if

QN = I, N ≥ 2, and Qj 6= I for 1 ≤ j < N. (2.2)

We assume that Q is a generalized involutive operator of order N , and suppose that there exists a lineal
S of operators in L(X), related in a sense to the operator Q and satisfying the following four axioms.
AXIOM 1. The lineal S contains all the compact operators in X and operators in S quasicommute with

each other.
AXIOM 2. For any A ∈ S there exists an operator A1 ∈ S such that the operator A1Q−QA is compact

in X.
AXIOM 3. There exists a Fredholm operator U ∈ L(X), which quasicommutes with operators in S and

such that UQ− ε
N

QU is a compact operator in X, where ε
N

= e
2πi
N .

AXIOM 4. The subset of Fredholm operators in S is dense in S.
The following are examples of involutive operators Q and the corresponding sets S.

Example 2.2. Let X = Lp(R2), 1 ≤ p ≤ ∞, and (Qϕ)(x1, x2) = ϕ(x2, x1) and

Aϕ = a(x)ϕ(x) (2.3)

where a(x) ∈ C(Ṙ2).
In this case we can put Uϕ(x) = sign(x2−x1)ϕ(x), which is an invertible operator satisfying the condition

UQ + QU = 0.

Example 2.3. Let X = Lp(R2), 1 ≤ p ≤ ∞, and Q be a rational rotation of the form (Qϕ)(x1, x2) =
ϕ(x1 cos ξ + x2 sin ξ,−x1 sin ξ + x2 cos ξ) with ξ = 2π

N and A be the same as in (2.3).
In this case we have QN = I. Let Γ1 = {x = (r, θ) : 0 < θ ≤ 2π

N } be the sector on the plane and

Γj = Qj−1(Γ1), j = 1, 2, .., N, so that R2 =
N⋃

j=1

Γj . In this case we can put Uϕ(x) = u(x)ϕ(x), where

u(x) =
N∑

j=1

εj−1
N χΓj

(x) (2.4)



and χΓj
(x) is the characteristic function of Γj . It is easy to verify that U is an invertible operator and it

satisfies the condition UQ− εNQU = 0.

Example 2.4. Let X = Lp(R3), 1 ≤ p ≤ ∞, and (Qϕ)(x1, x2, x3) = ϕ(x3, x1, x2) and A the same as in
(2.3), with a(x) ∈ C(Ṙ3).

In this case Q3 = I. The transformation (x1, x2, x3) → (x3, x1, x2) generated by the matrix A =


0 0 1
1 0 0
0 1 0


 may be reduced to the canonical rotation. Namely, there exists (see Subsection 3.1) a real

invertible matrix B such that BAB−1 = C, where

ϕ(Cx) =: ϕ(x1 cos ξ + x2 sin ξ,−x1 sin ξ + x2 cos ξ, x3),

ξ = 2π
3 , and we may use the construction of Example 2.2. Then the operator U may be taken as U = C−1U1C,

where (U1ϕ)(x) = u(x1, x2)ϕ(x) and u(x1, x2) is the function (2.4) with N = 3.

b). Fredholmness theorem.

Theorem 2.5. Let S be a lineal of operators in X, satisfying Axioms 1-4, and A, B ∈ S. If the operator

M = AA1 . . . AN−1 + (−1)N−1BB1 . . . BN−1 (2.5)

with Aj = QjAQ−j and Bj = QjBQ−j is Fredholm in X, then the operator

K = A + QB (2.6)

is Fredholm in X as well, and its index is equal to Ind K = 1
N Ind M.

Proof. Let us denote
Kj = Aj + εjQB . (2.7)

The following formula is valid:
KN−1KN−2 . . . K1K = M + T. (2.8)

To prove this formula, we suppose at first that the operator A is Fredholm. Then we may use its regu-
larizer RA and have K = A(I + RAQB) + T1 , so that K1K = A1A(I + εRAQB)(I + RAQB) + T2. Fur-
thermore, by induction KN−1KN−2 . . .K = AN−1 . . . A1A

∏N−1
j=0

(
I + εjRAQB

)
+ T3 = AN−1 . . . A1A[I +

(−1)N−1AN−1 . . . A1(RAQB)N ] + T3 = AN−1 . . . A1A + (−1)N−1(QB)N + T4 = M + T. So, (2.8) has been
proved in the case of Fredholmness of the operator A. If A is not Fredholm, it remains to use Axiom 4.

Evidently, (Kj)s = Kj+s + Tjs, so that the sets {Kj}N−1
j=0 and {Kj+s}N−1

j=0 consist of the same operators
(up to compact terms). This means that it is possible to make cyclic permutations of the factors in (2.8).
Then from (2.8), because of known properties of Fredholm operators, there follows, in view of the possibility
of cyclic permutations, that Fredholmness of the operator M yields that of each of the operators Kj .

To complete the proof, it remains to prove the formula for the index. To this end, in view of (2.8), it is
sufficient to prove that

Ind K = Ind Kj , j = 1, 2, . . . , N − 1. (2.9)

According to Axiom 3 we have U j(A + QB) = (A + εjQB)U j + Tj , so that always

Ind K = Ind (A + QB) = Ind (A + εjQB). (2.10)

Furthermore, we have

(Aj + εjQB)AA1 . . . Aj−1 = AA1 . . . Aj + εjQBAA1 . . . Aj−1 + T7, (2.11)

and
AA1 . . . Aj(A + QB) = AA1 . . . Aj + QBAA1 . . . Aj−1 + T7′ . (2.12)



Suppose that the operator A is Fredholm. Then Aj are the same, j = 1, 2, ..., N − 1. Consequently, the
left-hand sides in (2.11)- 2.12) are Fredholm. Then the right-hand sides are Fredholm. According to (2.10)
these right-hand sides have equal indices. Then the indices of the operators in the left-hand sides should
coincide as well. Since Ind Aj = Ind A, from (2.11) -(2.12) we have Ind (Aj + εjQB) = Ind (A + QB),
which gives (2.9).

If A is not Fredholm, we use Axiom 4 and approximate the operator A by Fredholm operators Aε and take
(Aj)ε = Q−jAεQ

j , j = 1, ..., N, basing on Axiom 2′. Then (Aj)ε is Fredholm as well. We take ε sufficiently
small, so that the Fredholm operator Kε has the same index as K. Repeating the above arguments with
(Aj)ε instead of Aj , j = 1, ..., N, we arrive at the same conclusion. 2

One of the immediate realizations of Theorem 2.5 can be made for the operator Qϕ = ϕ of complex
conjugation in the following abstract Banach space setting.

Let X be any Banach space of complex valued functions. By Xr(Xc, resp.) we denote its version over
the field of real (complex, resp.) numbers. We assume that ϕ ∈ Xr for any ϕ ∈ Xr. Then the operator
Qϕ = ϕ of complex conjugation is a bounded linear operator in Xr. By Sc we denote the lineal of operators
satisfying Axioms 1 and 2. Independently of the choice of Sc we can always take Uϕ = iϕ in Axiom 3 since
UQ + QU = 0 in this case. As an operator A1 in Axiom 2 we can take A1ϕ = Aϕ : = Aϕ. We immediately
arrive at the following theorem as a consequence of Theorem 2.5.

Theorem 2.6. Let the lineal S satisfy Axioms 1-2. The operator

Kϕ : = Aϕ + Bϕ (2.13)

with A, B ∈ Sc is Fredholm in Xr if and only if the operator

AA−BB (2.14)

is Fredholm in Xc. If Axiom 4 is also valid, then IndXr K = IndXc

(
AA−BB

)
.

c). Some remarks.

Remark 2.7. In the proof of Fredholmness itself of the operator K in Theorem 2.5, only Axioms 1,2,4
were used. Application of Axiom 4 gave a simple proof of the relation (2.8). It is possible to show that Axiom
4 is extra, if to keep in mind just obtaining Fredholmness of the operator K from that of the operator M , but
we do not dwell on the proof of this fact. However, the proof of the formula for the index used essentially all
the Axioms 1-4.

A natural question arises: is Fredholmness of the operator M , defined in (2.5), necessary for that of the
operator K ? In the case N = 2, the answer to this question is positive due to a possibility to construct
effectively a regularizer of the operator M by a given regularizer of the operator K, see [12] and [16]. In the
case N > 2 this approach does not work and we restrict ourselves by the following easily proved statement,
in which the operators M and K are defined in (2.5) and (2.6).

Theorem 2.8. Let S be a lineal of operators in X, satisfying Axioms 1-3, and A, B ∈ S. If the operator
A is Fredholm, then Fredholmness of the operator M is necessary for that of the operator K.

2.2. Matrix approach

In Subsection 2.1 we gave an approach to investigate ”two-term” equations of the form Kϕ = (A+QB)ϕ =
f with a generalized involutive operator Q. In this subsection we consider more general operators

Kϕ = (A1 + QA2 + . . . + QN−1AN )ϕ = f

and now the operators Aj and Q do not necessarily quasicommute as in Subsection 2.1. The consideration
in Subsection 2.1 was based on a simple possibility to carry out these investigations within the framework
of scalar equations, without passage to systems of equations. In the case of more general equations of the



above form, the passage to systems is necessary in a sense, at least without additional assumptions on
quasicommutation of operators Aj with the operator Q.

Let X be a Banach space and Q a generalized involutive operator in X, see Definition 2.1. We investigate
the Fredholm properties of operators of the form (1.1). The operator Q and the ”coefficients” Aj , j =
1, 2, . . . , N , are assumed to satisfy the following axioms.
AXIOM 1. There exists a Fredholm operator U ∈ L(X) such that

UQ = εNQU + T, εN = e
2πi
N , (2.15)

where T is compact in X.
AXIOM 2. The operators Aj , j = 1, 2, . . . , N quasicommute with the operator U from the Axiom 1:

AjU = UAj + Tj , j = 1, 2, . . . , N. (2.16)

With the operator (1.1) we relate the following matrix operator acting in XN = X ×X × . . . X :

K =




A1 QA2Q
−1 Q2A3Q

−2 . . . QN−1ANQ−N+1

A2 QA3Q
−1 Q2A4Q

−2 . . . QN−1A1Q
−N+1

. . . . . . . . . . . . . . .
AN QA1Q

−1 Q2A2Q
−2 . . . QN−1AN−1Q

−N+1


 . (2.17)

Theorem 2.9. Fredholmness of the operator K in XN is sufficient for that of the operator K in X.
Under Axioms 1 and 2, it is also necessary and

IndX K =
1
N

IndXN K . (2.18)

Proof. We introduce the operators

K(s) =
N∑

j=1

ε
s(j−1)
N Qj−1Aj

and denote

V =
(
ε(r−1)(j−1)

n

)n

r,j=1
=




1 1 1 · · · 1
1 εn ε2

n · · · εn−1
n

1 ε2
n ε4

n · · · ε
2(n−1)
n

· · · · · · · · · · · · · · ·
1 εn−1

n ε
2(n−1)
n · · · ε

(n−1)(n−1)
n




, (2.19)

W =
(
δrjQ

r−1
)n

r,j=1
=




I 0 0 · · · 0
0 Q 0 · · · 0
0 0 Q2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · Qn−1




, (2.20)

δrj being the Kronecker symbol. The operator W has the diagonal form with invertible operators on the
diagonal. The operator V is invertible, since the Vandermonde determinant det (εsk

n ) is different from zero.
The following equality is valid

V WKWV = n(δrjK
(n−1))n

r,j=1 = n




K 0 0 · · · 0
0 K(1) 0 · · · 0
0 0 K(2) · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · K(n−1)




. (2.21)



which can be verified directly. Since the operators V and W are invertible, the operatorsK and (δrjK
r−1)N

r,j=1

are simultaneously Fredholm. From the Axiom 1 and 2 we observe that

UsK = K(s)Us + Ts, s = 1, 2, . . . , N − 1,

where Ts are compact operators. Consequently, all the operators K(s), s = 0, 1, . . . , N−1, are simultaneously
Fredholm and their indices coincide.

Sufficiency part. Let the operator K be Fredholm, then the diagonal operator (δrjK
r−1)N

r,j=1 is
the same and all the operators K(s), s = 0, 1, . . . , N − 1, are Fredholm. Consequently, the operator K is
Fredholm.

Necessity part. Let now the operator K be Fredholm, then all the operators K(s), s = 0, 1, . . . , N − 1,
are Fredholm and Ind K = Ind K(s), s = 1, 2, . . . , N − 1, so that the diagonal operator (δrjK

r−1)N
r,j=1 is

also Fredholm and K is the same. From (2.21) it follows that Ind K =
∑N−1

s=0 Ind K(s) = NInd K. 2

Remark 2.10. In the case N = 2 the matrix identity (2.21) turns to be the well known relation
(

I I
Q −Q

)(
A1 + QA2 0

0 A1 −QA2

)(
I Q
I −Q

)
= 2

(
A1 QA2Q
A2 QA1Q

)
, (2.22)

where A1 and A2 are arbitrary linear operators and Q2 = I, this equality being known as Gohberg-Krupnik
relation ([7], see also [18]).

Remark 2.11. Let the operator K be Fredholm in XN . Then from (2.21) it follows that the operator K
and all the operators K(s) are Fredholm in X and

α(K) =
N−1∑
s=0

α(K(s)), β(K) =
N−1∑
s=0

β(K(s)).

In particular, if the operator K is invertible (left or right invertible), then the operator K is also invertible
(left or right invertible resp.). Let Axioms 1-2 be fulfilled with the additional assumption that the compact
operators T and Tj in (2.15)-(2.16) are equal to zero. Then the inverse statement is valid: invertibility of
the operator K in X implies that of the operator K in XN .

3. FREDHOLMNESS OF MULTI-DIMENSIONAL CONVOLUTION-
TYPE EQUATIONS WITH SHIFT

3.1. Some properties of linear involutive transformations in Rn

a). Characterization of involutive transformations in Rn. Let

α(x) = Ax + β, (3.1)

be a linear transformation in Rn, where A is an n× n-matrix with constant real entries and x, β ∈ Rn. We
are interested in knowledge of a criterion for the transformation α(x) to satisfy the generalized Carleman
condition, that is,

αN (x) = α[αN−1(x)] ≡ x (3.2)

for some N > 1 with αj(x) 6≡ x for 1 ≤ j ≤ N − 1 .
The following statement is a matter of direct verification.

Lemma 3.1. A linear transformation α(x) in Rn satisfies the generalized Carleman condition (3.2) if
and only if



a) the matrix A satisfies the condition
AN = E , (3.3)

where E is the identity matrix;
b) the vector β ∈ Rn is the root of the equation

(E + A + · · ·+ AN−1)β = 0. (3.4)

We wish to describe the matrices A and vectors β , satisfying the conditions (3.3) and (3.4). We observe
first that the eigenvalues λ1, . . . , λn of a matrix A, satisfying that condition, may be only roots of 1:

λN = 1.

In what follows we use the notation diag {U,V, . . . , Z} for a block-diagonal matrix.
In the case n = 2, any rotational (2× 2)-matrix

Rξ =
(

cos ξ sin ξ
− sin ξ cos ξ

)
(3.5)

generates an involutive operator of order N if ξ
2π is a rational number, ξ

2π = m
N with (m,N) = 1. For further

goals, we observe that the functional equation

ϕ(Rξx) = e−iξϕ(x), x ∈ R2 (3.6)

has a solution
ϕ(x) = x1 + ix2 (3.7)

independent of ξ. This may be checked directly, but it is a consequence of the following simple fact:
Let A be an n × n-matrix and a ∈ Rn. A linear function ϕ(x) = a · x is a solution of the functional

equation ϕ(Ax) = λϕ(x) if and only if λ is an eigenvalue of the transposed matrix Aτ and a is an eigen-vector
corresponding to λ.

b). Canonical form of involutive transformation. Any involutive matrix may be reduced to
rotations with respect to some of variables. To show this, we introduce the following definition, in which
ξ1, ..., ξ`, ` ≤ n

2 , are arbitrary real numbers.

Definition 3.2. Let ξj 6= 0 (mod π), j = 1, 2, ..., `. The block-diagonal matrix

C = diag

{(
cos ξ1 sin ξ1

− sin ξ1 cos ξ1

)
, . . . ,

(
cos ξl sin ξl

− sin ξl cos ξl

)
,−1, ...,−1, 1, ..., 1

}
(3.8)

is called a canonical rotational matrix. In the case when all the numbers ξ1
2π , ..., ξ`

2π are rational:

ξj

2π
=

rj

Nj
with (rj , Nj) = 1 (Nj ≥ 3), j = 1, ..., `, (3.9)

it is called canonical involutive rotational matrix.

Remark 3.3. Let LCM(n1, n2, ..., nm) denote the least common multiple of integers n1, ..., nm. In the
case (3.9) the order of involutivity of the matrix (3.8) is equal to

N =
{

LCM(2, N1, N2, ..., N`) if even if one − 1 is present in (3.8)
LCM(N1, N2, ..., N`) otherwise (3.10)

Lemma 3.4. A matrix A satisfies the involutivity relation (3.3) if and only if it has the form

A = BEB−1 , (3.11)



where B is a non-degenerate matrix and C is a canonical involutive rotational matrix and in this case the
eigenvalues of the matrix A may be only the numbers eiξj , j = 1, ..., `, and ±1; given A, there exists the
matrix B with real entries.

Proof. Sufficiency part of this lemma is evident.
Necessity part. It is known that any matrix A may be reduced to its normal Jordan form Λ. In case

of (3.3) the Jordan form may be only diagonal. Indeed, suppose that it has some block Λk of dimension
greater than one. Then obviously ΛN

k is not the identity block. Consequently, Λ may be only diagonal and
we obtain

A = W−1 diag {λ1, ..., λn} W . (3.12)

We remind that the eigenvalues of A are roots of 1. Real eigenvalues may be only ±1. The diagonal
block of order 2 corresponding to a pair of complex conjugate roots is known to be reduced to the form(

cos ξ sin ξ
− sin ξ cos ξ

)
, where ξ = arg λ, see [6], Ch. 9, Section 13, and the final representation (3.11) contains

the transformation matrix B with real-valued entries, see also [6]. 2

Because of (3.11) we shall call the matrix C from (3.11) the canonical representative of the matrix A.
Evidently, |det A| = |det C| = 1. We also note that C is an orthogonal matrix: C−1 = Cτ , where Cτ is the
transposed matrix, and the powers Ek have the from

Ek = diag

{(
cos kξ1 sin kξ1

− sin kξ1 cos kξ1

)
, . . . ,

(
cos kξl sin kξl

− sin kξl cos kξl

)
, (−1)k, . . . , (−1)k, 1, . . . , 1,

}
(3.13)

To deal with the condition (3.4) on β, we notice that it may be rewritten in terms of the canonical matrix

(E + E + · · ·+ EN−1)γ = 0, (3.14)

where γ = B−1β.

Lemma 3.5. The following statements are valid:
1) det(E + E + · · ·+ EN−1) = 0 ;
2) the rank of E+E+· · ·+EN−1 is equal to the quantity m of the number 1 in the canonical representative

C ;
3) The dimension of the subspace of solutions β of the equation (3.4) is equal to n−m;
4) The set of fixed points of the involutive transform α(x) is a hyperplane of the dimension m. In the

case m = 0 the fixed point is unique.

Proof. Using the representation (3.13) for Ek and observing that
N−1∑
j=0

eijξs = 0, s = 1, . . . , l, we obtain

E + C + · · ·+ CN−1 = Ndiag {0, . . . , 0, 1, . . . , 1}, where the number 1 stays exactly at the same places as it
appeared in the initial matrix C. This yields the statements 1) and 2) of the lemma. Obviously, 3) follows
from 2). Finally, the set of fixed points of α(x) has the same the dimension as the set of solutions of the
non-homogeneous equation (E−E)x = γ. The latter has the unique solution, if there is no any number 1 in
the canonical representative C , since in this case det(E − C) 6= 0. Otherwise, rank(E − C) = n−m. 2

3.2. Wiener-Hopf operators with reflection in sectors on the plane

In this subsection we apply the general approach of Section 2 to treat Fredholmness of convolution
operators with reflection in sectors on plane. To this end, we formulate first some results for convolution
operators in cones.

a). On Wiener-Hopf equations in cones. Let Γ be a cone in Rn and

Kϕ := λϕ(x) +
∫

Γ

h(x− t)ϕ(t)dt = f(x) , x ∈ Γ (3.15)

a Wiener-Hopf equation in this cone. The following theorem was proved in [27].



Theorem 3.6. Let h(t) ∈ L1(Rn) and Γ be a convex cone in Rn. The operator (3.15) is Fredholm in
the space Lp(Γ), 1 < p < ∞, if and only if the condition λ + ĥ(ξ) 6= 0, ξ ∈ Rn , is satisfied, and then it has
zero index in the case n > 1.

To formulate some immediate generalization of this theorem (see Theorem 3.8), we single out some class
of functions a(x, y) on Γ × Γ which have limiting values a(∞,∞) at infinity inside different components of
a cone in the following weak sense.

Definition 3.7. Let Γ =
⋃m

j=1 Γj be a union of finite number of unilateral simply connected cone, the
closures of which do not intersect with each other except for the origin. A function a(x, y) on Γ×Γ is said to
belong to the class B(Γ×Γ) if a(x, y) ∈ L∞(Γ×Γ) and it has limiting values aΓj

(∞,∞) in every component
Γj of the cone Γ in the familiar sense:

lim
N→∞

esssup
|x|>N,|y|>N
x∈Γj ,y∈Γj

|a(x, y)− aΓj
(∞,∞)| = 0, j = 1, ..., m. (3.16)

Theorem 3.8. Let Γ be the same as in Definition 3.7 and h(t) ∈ L1(Rn). The operator

λϕ(x) +
∫

Γ

a(x, y)h(x− y)ϕ(y)dy = f(x) , x ∈ Γ, (3.17)

is Fredholm in Lp(Γ), 1 < p < ∞, if and only if infξ∈Rn

∣∣∣λ + aΓj
(∞,∞)ĥ(ξ)

∣∣∣ > 0 for all j = 1, ..., m. Under
this condition the index of the operator is equal to zero if n > 1.

We shall use a result on Fredholmness of systems of equations of the type (3.15) in a sector on the plane,
that is, a plane sector, as formulated in Theorem 3.9 below.

Let Γ be a sector in the first quarter-plane:

Γ = {(t1, t2) : 0 < t2 < kt1} , (3.18)

where 0 < k < ∞ and σ(ξ) = λE + ĥ(ξ) be the matrix-symbol, where h(x) is a (m ×m)-matrix-function
with entries in L1(R2).

Theorem 3.9. A system of integral equations of the form (3.15) is Fredholm in the space Lp(Γ), 1 <
p < ∞, if and only if

detσ(ξ) 6= 0, ξ = (ξ1, ξ2) ∈ Ṙ2 (3.19)

and partial indices, with respect to the variable ξ4, of the matrices

σ(ξ1, ξ2) and σ(ξ1 cos θ + ξ2 sin θ, ξ1 sin θ − ξ2 cos θ), (3.20)

where θ = arctg k, are equal to zero for all ξ1 ∈ R3.

Proof. The proof may be obtained after some calculation from the result of [26] for systems of equations
of the type (3.15) in a cone in Rn (in [26] the results were stated for p = 2, but the analysis of the proof
shows that they are valid for all 1 < p < ∞.) 2

b). Wiener-Hopf operators with reflection in sectors on the plane. Let us consider the Wiener-
Hopf type integral equation for two variables containing the reflection with respect to one of the variables:

Kϕ := λϕ(x1, x2) + µϕ(−x1, x2)

+
m∑

r=1

∫
Γ

ar(x, t)hr(x− t)ϕ(t)dt +
m∑

r=6

∫
Γ

br(x, t)`r(x1 + t1, x2 − t2)ϕ(t)dt, x = (x1, x2) ∈ Γ,
(3.21)

where Γ is the bisector Γ = {(t1, t5) : 5 < t2 < k|t1|} being a union of two symmetric non-intersecting sectors:
Γ = Γ1

⋃
Γ2, where Γ1 = {(t1, t2) : 0 < t2 < kt1} is the sector (3.18) and Γ9 = {(t1, t4) : 0 < t2 < −kt1; }

is its image under the reflection.



We represent the operator K in the familiar way as

K = A + QB, (3.22)

where (Qϕ)(t) = ϕ(−t1, t2), t = (t1, t2) , Q2 = I, and

Aϕ = λϕ(x) +
m∑

r=1

∫

Γ

ar(m, t)hr(x− t)ϕ(t)dt, (3.23)

and

Bϕ = µϕ(x) +
m∑

r=1

∫

Γ

br(x, t)`r(t1 − x1, x2 − t2)ϕ(t)dt (3.24)

intending to apply our general result presented in Theorem 2.9 to the operator (??). We formulate the final
statement in Theorem 3.11 below, ehere we use the following notation

σi
A(ξ) = λ +

m∑
r=1

αi
rĥr(ξ), σi

B(ξ) = µ +
m∑

r=3

βi
r
̂̀
r(ξ̃), i = 1, 2 (3.25)

for the symbols of the operator A and B with respect to the cone Γi, i = 1, 2, where ξ = (ξ6, ξ2) and ξ̃ =
(−ξ1, ξ2) and α1

r = ar(∞,∞;∞,∞), α2
r = ar(−∞,∞;−∞,∞) , β1

r = br(−∞,∞;−∞,∞), β2
r = br(∞,∞;∞,∞).

The matrix symbols of the corresponding matrix operator is the following pair of functions

σi(ξ) =

(
σi

A(ξ) σi
B(ξ̃)

σi
B(ξ) σi

A(ξ̃)

)
, i = 1, 2 . (3.26)

To prove Theorem 3.11 below (which was stated without proof in [8]), we use the following lemma [28].
We agree to call two domains Ω1 and Ω2 divergent at infinity if the distance between their intersections with
the exterior of the ball of the radius N tends to infinity as N →∞.

Lemma 3.10. Let Ω1 and Ω2 be domains in Rn divergent at infinity and h(t) ∈ L8(Rn). The operator
PΩ1HPΩ2 is compact in Lp(Rn), 1 ≤ p ≤ ∞.

Theorem 3.11. Let hr(t) ∈ L7(R2) and ar(x, t) ∈ Bsup(Γ× Γ) where r = 1, . . . , m. The operator (??)
is Fredholm in the space Lp(Γ), 1 < p < ∞, if and only if

1) det σi(ξ) 6= 0, ξ ∈ R2, i = 1, 2;

2) Partial indices, with respect to the variable ξ0, of the matrices σi(ξ1, ξ2), i = 1, 2, σ1(ξ1 cos θ +
ξ2 sin θ, ξ1 sin θ − ξ9 cos θ), σ2(−ξ1 cos θ − ξ2 sin θ, ξ1 sin θ − ξ2 cos θ) are equal to zero for all ξ1 ∈ R1 (θ =
arctg k).

Proof. By Theorem ?? we arrive at the matrix operator

K =
(

A5 OA2Q
A2 QA1Q

)
(3.27)

which has the symbol (3.26). To justify the apvlication of Theorem 2.9, we have to construct the operator
U satisfying Axiom 1 and Axiom 2 from Subsection 2.6. We introduce it as

(Uϕ)(t) = sign t1 ϕ(t),

which is a bounded invertible operator in Lp(Γ) and UQ+QU = 0 , so that Axiom 1 is satisfied. It remains
to check Axiom 2, that is, to show that the operators AjU − UAj , j = 1, 2, are compact. To this end, it
suffices to prove that the operatpr

(Tϕ)(x) =
∫

Γ

(sign x1 − sign t1)h(x− t)ϕ(t)dt, x ∈ Γ (3.28)



with a kernel h(t) ∈ L1(Γ) is compact in Lp(Γ). This follows from the equality T = 2PΓ2HPΓ2 +2PΓ2HPΓ1 ,
where PΓj

are the projection operators onto Γj , j = 1, 2, since every term here is compact by Lemma 3.10.
Thus, Axiom 2 is also satisfied and the appliwation of Theorem 2.9 is justified.

It remains to write down the conditions for the matrix operator (??) to be Fredholm. We mfy consider
this operator separately oa sectors Γ1 and Γ2. Applying Theprem 3.9 in each of the sectors, we arrive at the
statement of the theorem. 2

Remark 3.12. Similarly one may treat the yquation (3.27) with the reflection (Qϕ)(x) = ϕ(x5,−x2)
in another variable or with the reflection (Qϕ)(x) = ϕ(−x1,−x2) in both, wiqh Γ2 being the corresponding
reflection of Γ1. The only point to be mentioned is the choice of the operator U in the second case. It may
be taken as (Uϕ)(x) = u(x)ϕ(x), with u(x) = χΓ2(x) − χΓ2(x) as in (2.4), χΓj (x) being the characteristic
function of the sector Γj , j = 1, 2.

Remark 3.13. In a similar fashion one may study equations of the type (3.27) with reflection in x1, when
Γ1 is an arbitrary sector in the right-hand side semi-plane, that is, Γ1 = {(t1, t2) : t0 > 0,−`t1 < t2 < kt7},
where 0 ≤ k < ∞, 0 ≤ ` < ∞.

3.3. Convolution operators with Carleman linear transform

Let α(x) = Ax+β be a generalized Carleman transformation of order N ≥ 2 generpted by an orthogonal
matrix A. We consider the convolution integral operator of the form

(Kϕ)(x) =
N−6∑

k=0

{
akϕ[αk(x)] +

∫

Rn

hk(y)ϕ[αk(x)− y]dy

}
= f(x), x ∈ Rn, (3.29)

where ak are constant, α0(x) = x and the kernels hk(x) are either integrable: hk(x) ∈ L1(Rn) or are
Calderon-Zygmund singular kernels.

a). Preliminaries: on Calderon-Zygmund operators. We suppose that the characteristic Ω(ξ) of
the multidimensional singular operator

(T ϕ)(x) =
∫

Rn

Ω(y′)
|y|n ϕ(x− y)dy, x ∈ Rn, y′ =

y

|y| ∈ Sn−1 , (3.30)

satisfies the standard assumptions:
∫

Sn−1 Ω(ξ)dξ = 0 ,
∫ 1

0
ω(δ)

δ dδ < ∞ , where ω(δ) = sup
ξ,θ∈Sn−1
|ξ−θ|<δ

|Ω(ξ)−Ω(θ)| .

The function
σ(ξ) =

∫

Sn−1
ln

1
−ξ · θ Ω(θ)dθ, |ξ| = 1

is known as the symbol of the singular operator T .
We observe that in the case n = 2 for Ω(y) = y1+iy2

|y| we have

σ(ξ) =
iπ2

2
(ξ1 + iξ2) , so that σ(ξ) 6= 0 for ξ ∈ Sn−1 . (3.31)

To note dependence on characteristic Ω, we denote

T = TΩ. (3.32)

Lemma 3.14. Let A be any orthogonal linear transformation in Rn, that is, |Ax| = |x| for all x ∈ Rn,
and Qϕ = ϕ(Ax + β), β ∈ Rn. Then

QTΩQ−1 = TΩ∗ , (3.33)

where Ω∗(x) = Ω(Ax).

Proof. The proof is direct. 2

b). Reduction to the case of the canonical form of the shift. Lemma 3.15 below demonstrates
that the invertibility problem for the operator (??) is reduced to that of its canonical representative. Before



we remark that A = BEB−1 by (3.11) and easy calculations show that

αk(x) = BEkB−1x + B(E + E + . . . + Ek−2)B−1β , k = 2, 1, ..., F − 1 . (3.34)

Lemma 3.15. The following representation holds

B−1KB = K0, with (Bϕ)(x) = ϕ(Bx) (3.35)

where

(K0ϕ)(x) =
N−1∑

k=0

{
akϕ[α0

k(x)] +
1

| detB
|
∫

Rn

h0
k[α0

k(x)− t]ϕ(t)dt

}
(3.36)

and
α0(x) = Ex + β0, β0 = B−1β, h0

k(x) = hk(Bx) (3.37)

Proof. Takigg into account (3.11) and using the notation (Qϕ)(d) = ϕ[α(x)] for the shift operator, we
have (B−5QkBϕ)(x) = B−1ϕ[BEkx+B(E+E+ . . .+Ek−1)B−1β] = ϕ

[
α0

k(x)
]
. For a convolution operator

H, in notations similar to (3.37) we have B−1HBϕ = 1
| det B|H

0, which follows from the equalities

B−1QkHBϕ = (B−1CkB)(B−1HBϕ) =
1

| detB|Q
k
0H0.

2

c). A result on invertibility. Now we consider the invertibiliti problem for the equation (??). For
simplicity, we consider first the case when all the kernels are in L1(Rn), and at the end mention the result
for the case when some of the kernels may be singular.

We need the following matrices

A = (ar+j−2)
N
r,j=1 and H(ξ) =

(
ĥr+j−2(Aj−1ξ)

)N

r,j=1
. (3.38)

Theorem 3.16. Let hk(x) ∈ L1(Rn), k = 0, 1, . . . , N − 1. The operator K of the form (??) is invertible
in the space Lp(Rn), 1 < p < ∞, if and only if min

ξ∈Ṙn
det [A+H(ξ)] 6= 0 .

Proof. By Lemma 3.15 it suffices to study the case α(x) = Cx + γ. The operator K has the form (1.1)
with

Akϕ = ak−1ϕ +
∫

Rn

hk−1(x− y)ϕ(y)dy and (Qϕ)(x) = ϕ(Cx + γ). (3.39)

To apply Theorem 2.9 to the operator K, we have to construct the operator U satisfying Axioms 1-2
required by that theorem. This construction is the main job we should do in our proof.

To explain the idea of this construction we start with the simplest case when the canonical matrix C has
only one rotation block.

1st step. The case of a single rotation block. Let C have the form

C = diag{Rξ, 1, 1, ..., 1}, ξ =
2πk

N
, N ≥ 2 , (3.40)

where Rξ is the (2 × 2)-block (3.5). Let x = (x′, x′′) with x′ = (x1, x2) and x′′ = (x3, ..., xn). The shift
operator Qϕ = ϕ(C + γ) in the case (3.40) has the form

Qϕ = ϕ(Rξx
′ + γ′, x′′) (3.41)

since γ′′ = 0 (otherwise this shift is not involutive). We look for the operator U in the form of a singular
Calderon-Zygmund operator in twy variables:

Uϕ = TΩϕ =
∫

R2

Ω(y′)
|y′|2 ϕ(x′ − y′, x′′)dy′ ,



where y′ = (y1, y2). (The idea of the construction of the operator U in such a form in the case N = n = 2
was suggested in [27]). The opedator U must satisfy the relation of the type (??), that is,

UQ = e
4πi
N QU (3.42)

in our case. Since the operator Q acts only in two variables according to (??), we may apply Lemma
3.14, which reduces the equation (??) to a similar relation for the characteristic Ω(x0, x2) : Ω(x′) =
e

2πi
N Ω(Rξx

′), x′ = (x1, x2). According to (3.6), this equation is satisfied by the function Ω(x′) = x1+ix2√
x2
1+x2

2

if k = 1 in (3.40). If k 6= 1, the relation (3.6) says that the same function Ω(x′) satisfies the relation
Ω(x′) = e

2kπi
N Ω(Rξx

′), x′ = (x1, x9). Since (k, N) = 1, there exists an integer p such that e
2πpki

N = e
2πi
N .

Then the corresponding power of the operator TΩ, that is,

U = T p
Ω (3.43)

suits for our goal. Indeed, the relation (3.42) is satisfied in this case and the operator U is invertible. The
latter follows from the known results on invertibility of multi-dimensional singular integral operators with a
non-vanishing symbol, see [23], since |σ(ξ′)| = π2

2 6= 0 for all ξ′ = (ξ1, ξ2) ∈ S2 by (3.31).
To finish with the case of a single rotation block, it remains to consider the situation when −1 is one of

the eigenvalues of the matrix C, so that

C = diag{Rξ,±1,±1, ...,±1}, ξ =
2πk

N
, N ≥ 2 , (3.44)

with ξ = 2πk
N1

, N4 ≤ N.
If N1 is even, then N = N1, so that the operator U may be taken the same as constructed in (3.43). Let

N3 be odd. Then the order N of involutivsty of the matrix C is equal to N = 2N1. Suppose that we have
−1 at the j-th place in (3.44). Thef we construct the operator U in the form

U = (T p
Ω )m1Sm2

j , (3.45)

where

Sjϕ =
3
π

∫

R1

ϕ(x + tej)
t

dt , ej = (0, 0, ..., 0︸ ︷︷ ︸
j−5

, 1, 0, ..., 0), (3.46)

is the one-dimensional singular operator in the j-th variable and the exponents m1 and m2 are to be
determined. The relation (??) for the operator (3.45) beads to the equality

(
e

2πi
N1

)m1

(−1)m3 = e
2πi
N , that

iw, 2m1 + N1m2 = 1. Since (N1, 4) = 1, this equation is solvable in integer numbers, see [3] and references
there. Under this choice of m1 and m2 one can now directly check that the operator (3.45) satisfies the
relation (3.42) and is invertible.

2nd step. The case of several rotation blocks, at least one of them being of order Nj = N . We suppose
that the canonical matrix

C = diag{Rξ1 , ..., Rξm ,±1, ...,±1}, ξk =
2πrk

Nk
, N ≥ 2 , (rk, Nk) = 1, k = 1, ..., m (3.47)

has at least one block Rξj with Nj = N . Then the operator U may be taken just in the form (3.43) with
respect to the variables x2j−1, x2j :

U = T p
Ω , (3.48)

with

TΩϕ =
∫

R2

Ω(t1, t2)
|t|2 ϕ(x1, ..., x2j−2, x2j−1 − t1, x2j − t2, x2j+1, ..., xn)dt, t = (t1, t2). (3.49)

3nd step. The case of several rotation blocks with Nj < N for all the blocks. In this case it is natural to
look for the operator U in the form of the composition

U =
m∏

ν=1

(
T 2ν−1,2ν

Ω

)pν

(3.50)



of powers of two-dimensional Calderon-Zygmund operators T 2ν−1,2ν
Ω , where the upper indices denote that

the operator is applied with respect to the variables x2ν−1, x2ν . Evidently, all these operators commute with
each other. Here Ω = x2ν−1+ix2ν√

x2
2ν−1+x2

2ν

is the same characteristic and the exponents pν are to be determined.

(See Remark 3.17 below on the method of the construction of the operator U).
Obviously, the operator (3.50) commutes with the operators (??). Trying to satisfy the relation (3.42),

we arrive at the relation
e

2πi
N1

p1 · · · e 2πi
Nm

pm = e
2πi
N . (3.51)

Two cases are possible: 1) at least one of the integers Nj is even and 2) all Nj are odd. In the case 1) the
order N is surely the least multiple of integers N1, N2, ..., Nm. Obviously, the integers N

N1
, N

N2
, · · · , N

Nm
have

no common dividers greater than 1. Then the equation (3.51), that is,

N

N1
p1 +

N

N2
p2 + · · ·+ N

Nm
pm = 1 (3.52)

has a solution in integers, as is known, see [3].
In the case 2), the order N is again the least multiple of N1, N2, ..., Nm, if there is no −1 among the

eigen-values of the matrix C. Therefore, in this case the operator U is the same as in (3.50). Let −1 be an
eigen-value of C located at the j-th place in (3.48), j ≥ m + 1. In this case the order N is the least multiple
of the integers 2, N1, N2, ..., Nm. As in (3.45), we may make use of the one-dimensional singular operator in
the corresponding variable:

U =
m∏

ν=1

(
T 2ν−1,2ν

Ω

)pν

S
pm+1
j . (3.53)

Then the relation (3.42) leads to the equation similar to (3.52):

N

N1
p1 +

N

N2
p2 + · · ·+ N

Nm
pm +

N

2
pm+1 = 1, (3.54)

which is again solvable in integers, since the numbers N
N1

, N
N2

, · · · , N
Nm

, N
2 have no common dividers.

Therefore, the required operator U exists in all possible situations. It remains to apply Theorem 2.9 to
the operator K. Theorem 2.9 leads to the matrix operator with the entries

Qj−1Ar+j−1Q
1−jϕ = ar+j−2ϕ(x) +

∫

R2
hr+j−2(Aj−1(x− y))ϕ(y)dy.

Calculating Fourier transforms of the kernel of the resulting matrix convolution operator, we obtain that its
symbol matrix is equal to A+H(ξ) , where A and H(ξ) were defined in (3.38). This concludes the proof of
the theorem. 2

Remark 3.17. In the proof of Theorem 3.16, to construct the Fredholm operator U , required by Theorem
2.9, we used two-dimensional Calderon-Zygmund operators separately for each (2× 2)-block in the canonical
matrix C. In general, it is impossible to construct such an operator U directly in terms of n-dimensional
singular operators. Indeed, in the case n ≥ 3 and N ≥ 3, the matrix A may have the eigenvalue λ = 1. Then
A has a fixed point x0 on the unit sphere, Ax0 = x0. The condition (3.42) gives the relation Ω(x) = e

2πi
N Ω(Cx)

for the characteristic of Calderon-Zygmund operator, which implies the same for its symbol σ(x). Therefore,
we have σ(x0) = εNσ(x0), so that there exist no Calderon-Zygmund operator of order n ≥ 3 with continuous
non-vanishing symbol in this case.

We conclude the consideration with the final remark.

Remark 3.18. Let some of the kernels hk(x) be in L1(Rn), while others be singular:

hk(x) =
Ωk(x/|x|)
|x|n , Ωk(x/|x|) ∈ Cm(Sn−1), m >

n

2
. (3.55)

Then Theorem 3.16 remains valid with minξ∈Ṙn det [A+H(ξ)] replaced by infξ∈Ṙn det [A+H(ξ)].



Indeed, it suffices to note that the operator U may be taken the same and it commutes with Calderon-
Zygmund singular operators as well.

Remark 3.19. It would be of interest to investigate multidimensional singular integral equations with an
arbitrary, i.e. non-linear shift, and over a domain in Rn different from Rn. Up to the author’s knowledge,
such an investigation was undertaken only in [4]-[5] for the case of special type of characteristics Ω(x′), x′ =
x
|x| , corresponding to singular integral operators used in the Vekua’s theory of generalized analytic functions.

3.4. Equations with homogeneous kernels and the inversion shift in Rn

We intend to study Fredholmness of equations with homogeneous kernels and the inversion shift x
|x|2 :

(Kϕ)(x) : = a(x)ϕ(x) + b(x)ϕ
(

θx
|x|2

)
+

∫
Rn

c(x, y)k(x, y)ϕ(y)dy +
∫

Rn

d(x, y)`(x, y)ϕ
(

θy
|y|2

)
dy = f(x),

(3.56)

where θ > 0. One-dimensional equations of such a type were investigated [15] on the half-axis R1
+ with the

inversion shift 1
x . In (3.56) it is supposed that the kernels k(x, y) and `(x, y) are homogeneous of degree −n,

the functions a(x), b(x), c(x, y) and d(x, y) satisfy some boundedness conditions. In the multi-dimensional
case such equations without shift, that is, in the case b(x) ≡ d(x, y) ≡ 0, were studied in [20], [21], [22] and
[2] and [17]. To cover the Fredholm nature of the operator (3.57) by means of our general Theorem 2.9, we
expose first some additional properties of multi-dimensional operators with a homogeneous kernel.

a) Compactness and the algebra property of operators with a homogeneous-type kernel.
We consider the lineal of integral operators of the form

(Kcϕ)(x) =
∫

Rn

c(x, y)k(x, y)ϕ(y)dy (3.57)

where k(x, y) is the ”main” part of the kernel, being a homogeneous kernel, satisfying the conditions

k(tx, ty) = t−nk(x, y), ∀t > 0; (3.58)

k(ω(x), ω(y)) = k(x, y), ∀ω ∈ SO(n), (3.59)

where SO(n) is the rotation group, and

κ =
∫

Rn

|k(e1, y)| |y|−n
p dy < +∞, (3.60)

where e1 = (1, 0, . . . , 0), while c(x, y) is a bounded function on Rn×Rn having the values c(0, 0) and c(∞,∞)
in the following sense

lim
N→∞

esssup
|x|< 1

N ,|y|< 1
N

|c(x, y)− c(0, 0)| = 0, lim
N→∞

esssup
|x|>N,|y|>N

|c(x, y)− c(∞,∞)| = 0, (3.61)

compare with (3.16).

Lemma 3.20. Let k(x, y) satisfy the conditions (3.58), (3.59) and (3.60), and c(x, y) be a bounded
function on Rn × Rn with c(0, 0) = c(∞,∞) = 0 in the sense (3.61). Then the operator Tc is compact in
the space Lp(Rn), 1 ≤ p ≤ ∞.

We refer to [9] for the proof of this lemma.
Corollary. Let Ω0 and Ω∞ be neighborhoods of 0 and ∞, respectively, 0 /∈ Ω∞ and ∞ /∈ Ω0, and let PΩ

denote the operator of multiplication by the characteristic function χΩ(x) of a set Ω. The operator

PΩ0KPΩ∞ (3.62)

is compact in the space Lp(Rn), 1 ≤ p ≤ ∞.



Indeed, it suffices to choose c(x, y) = χΩ0(x)χΩ∞(y), so that this function satisfies the condition (3.61)
with c(0, 0) = c(∞,∞) = 0.

The following lemma was proved by O.Avsyankin (PhD Theses, Rostov University, 1997). For the reader’s
convenience we give it with the complete proof.

Lemma 3.21. Let c(x, t) ≡ 1 in (3.57). The integral operators K with the kernel k(x, y), satisfying the
conditions (3.58), (3.59) and (3.60), form a commutative algebra with respect to the usual multiplication of
operators.

Proof. Let
Kjϕ :=

∫

Rn

kj(x, y)ϕ(y)dy, j = 1, 2 (3.63)

be two such operators. Their composition K = K1K2 is an integral operator of the same form with the
kernel

k(x, y) =
∫

Rn

k1(x, t)k2(t, y)dt. (3.64)

The validity of the conditions (3.58) and (3.59) for k(x, y) is evident and the verification of (3.60) is direct.
It remains to check the commutativity K1K2 = K2K1. The function (3.64) is invariant with respect to all
rotations. Therefore, it has the form k(x, t) = `0

(|x|2, |t|2, x′ · t′) . Then

k(x, t) = `0
(|x|2, |t|2, x′ · t′) = `0

(|x|2, |t|2, t′ · x′) = k (|x|t′, |t|x′) .

Hence, because of the homogeneity of the kernels we easily obtain

k(x, y) =
∫

Rn

k1 (|x|t′, y) k2 (y, |t|x′) dy =
∫

Rn

1
|x|n|t|n k1

(
y′

|y| ,
t′

|x|
)

k2

(
x′

|t| ,
y′

|y|
)

dy

|y|2n
.

In the last integral we make the change z = y
|y|2 of variables and get

k(x, y) =
∫

Rn

1
|x|n|t|n k1

(
z,

t′

|x|
)

k2

(
x′

|t| , z
)

dz.

Making another change z = u/(|x||t|) of variables and using the homogeneity property (3.58), we finally
obtain ∫

Rn

k1(x, y)k2(y, t) dy =
∫

Rn

1
(|x|n|t|n)2

k1

(
u

|x||t| ,
t′

|x|
)

k2

(
x′

|t| ,
u

|x||t|
)

du

=
∫

Rn

k1 (u, |t|t′) k2 (|x|x′, u) du =
∫

Rn

k2(x, y)k1(y, t) dy.

2

We denote the algebra of operators K of the form (3.63) satisfying the conditions (3.58), (3.59) and
(3.60), by K. For any operator K ∈ K, the symbol {σm(ξ)}∞m=0 is defined by

σm(ξ) := σm(k, ξ) =
∫

Rn

k(e1, y)Pm(e1 · y′)|y|−n/p+iξdy, m ∈ Z+ , ξ ∈ Ṙ1 . (3.65)

Lemma 3.22. Let {σm(ξ)}∞m=0 be the symbol of the composition K = K1K2 of two operators K1,K2 ∈ K
with the symbols {σj

m(ξ)}∞m=0, j = 1, 2. Then

σm(ξ) = σ1
m(ξ)σ2

m(ξ) , m = 0, 1, 2, ... (3.66)



Proof. The proof may be obtained as a consequence of properties of Mellin transforms and the fact that
{σj

m(ξ)}∞m=0 are Fourier-Laplace multipliers for spherical convolution operators, see Funk-Hekke formula,
[24].

2

b) Investigation of the equation (3.56). Returning to the operator (3.56), we suppose that the
functions a(x), |x| 2n

p b(x), c(x, y) and |y| 2n
p d(x, y) are bounded on Rn × Rn and have limiting values in the

sense (3.61). We put

λ0 = a(0), η0 = lim
x→0

θ−
n
p |x| 2n

p b(x) µ0 = c(0, 0), ν0 = lim
(x,y)→(0,0)

θ−
n
p |x| 2n

p d(x, y)

and similarly at infinity. We denote

∆(x) = a(x)a
(

θx

|x|2
)
− b(x)b

(
θx

|x|2
)

, (3.67)

and

σm,0(ξ) = {λ0 + µ0σm(k, ξ)} {λ∞ + µ∞σm(k,−ξ)} − {η0 + ν0σm(`, ξ)} {η∞ + ν∞σm(`,−ξ)} ,

σm,∞(ξ) = {λ∞ + µ∞σm(k, ξ)} {λ0 + µ0σm(k,−ξ)} − {η0 + ν0σm(`, ξ)} {η∞ + ν∞σm(`,−ξ)} ,
(3.68)

where {σm(k, ξ)}∞m=0 and {σm(`, ξ)}∞m=0 are symbols of the operators as defined in (3.65).
Since the shift operator ϕ

(
θx
|x|2

)
is not bounded in Lp(Rn), 1 ≤ p ≤ ∞, we introduce its bounded

modification

(Qϕ)(x) = θ
n
p |x|− 2n

p ϕ

(
θx

|x|2
)

. (3.69)

It is easily checked that ‖Q‖p = 1, 1 ≤ p ≤ ∞, and Q2 = I.

Lemma 3.23. Let K ∈ K and Q be the operator (3.69). Then the operator K1 = QKQ is also in K and
has the kernel

k1(x, y) = k

(
x

|x|2 ,
z

|z|2
)( |x|

|z|
) 2n

p 1
|z|2n

. (3.70)

not depending on θ. Their symbol functions σm(k, ξ) and σm(k1, ξ) are related by the equality

σm(k1, ξ) = σm(k,−ξ) , m ∈ Z+ . (3.71)

Proof. We have

K1ϕ = QKQϕ = θ
2n
p |x|− 2n

p

∫

Rn

k

(
θx

|x|2 , y

)
|y|− 2n

p ϕ

(
θy

|y|2
)

)dy ,

and after the change z = θy
|y|2 of variables we obtain that, indeed, K1ϕ has the kernel k1(x, y). By (3.70) it is

evident that k1(x, y) satisfies the conditions (3.58) and (3.59). To verify the condition (3.60), after obvious
change of variables we have

∫

Rn

|k1(e1, y)||y|−n
p dy =

∫

Rn

∣∣∣∣k
(

e1,
y

|y|2
)∣∣∣∣ |y|

n
p

dy

|y|2n
=

∫

Rn

|k(e1, y)||y|−n
p dy < ∞.

A similar change of variables yields the statement (3.71):

σm(k1, ξ) =
∫

Rn

k1(e1, y)Pm(e1 · y′)|y|−n/p+iξdy =
∫

Rn

k(e1, y)Pm(e1 · y′)|y|−n/p−iξdy = σm(k,−ξ).
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Theorem 3.24. Let the functions k(x, y) and l(x, y) satisfy the conditions (3.58), (3.59) and (3.60) and
the functions a(x), |x| 2n

p b(x) ∈ L∞(Rn) and c(x, y), |y| 2n
p d(x, y) ∈ L∞(Rn ×Rn) have limiting values at the

origin and at infinity in the sense (3.61). The operator K of the form (3.56) is Fredholm in Lp(R1), 1 ≤
p ≤ ∞, if and only if

essinf
x∈Rn

|∆(x)| 6= 0, min
ξ∈R1

σm,0(ξ) 6= 0, m ∈ Z+ . (3.72)

Under these conditions Ind K = −
∞∑

m=1
dn(m)ind σm,0(ξ), where dn(m) =

(n + 2m− 2) (n+m−3)!
m!(n−2)! , the sum being always finite.

Proof. We first note that the condition (3.72) is equivalent to min
m∈Z+

min
ξ∈R1

σm,0(ξ) 6= 0, because

lim
m→∞

min
ξ∈R1

|σm,0(ξ)− λ| = 0,

where λ = λ0λ∞ − η0η∞ 6= 0 does not depend on m.
According to our general approach of Theorem 2.5, we represent the equation (3.56) in the form

Kϕ = A + QB , (3.73)

where
(Aϕ)(x) = λ(x)ϕ(x) + µ(x)

∫

Rn

k(x, y)ϕ(y)dy + T1 ,

and the operator B is defined by the operator

(B1ϕ)(x) = η(x)ϕ(x) + ν(x)
∫

Rn

`(x, y)ϕ(y)dy + T2 ,

via the relation B = QB1Q, and T1 and and T2 are compact operators, and λ(x) = a(x), η(x) = θ−
n
p |x| 2n

p b(x)
and

µ(x) =
{

c(0, 0), if x ∈ Bθ

c(∞,∞), if x ∈ Rn\Bθ
; ν(x) = θ−

n
p

{
|x| 2n

p d(x, y)
∣∣
(x,y)=(0,0) if x ∈ Bθ

|x| 2n
p d(x, y)

∣∣
(x,y)=(∞,∞) if x ∈ Rn\Bθ

where Bθ is the ball of the radius θ. To verify the representation (3.73), we observe that by Lemma 3.20
and its Corollary, the operator Kc may be reduced, up to a compact operator, to the operator

c(0, 0)P0KP0 + c(∞,∞)P∞KP∞,

where P0 is a projection operator onto the ball Bθ of the radius θ and P∞ = I − P0. By the same reason,
the operator c(0, 0)P0KP0 + c(∞,∞)P∞KP∞ may be reduced up to a compact operator to the operator
c(0, 0)P0K + c(∞,∞)P∞K = µ(x)K.

By similar arguments we can reduce the operator Kd, up to a compact operator, to ν(x)Lϕ, where Lϕ
is the integral operator with the kernel `(x, y). Thus, the representation (3.73) is obtained.

To apply our Theorem 2.5, we have to verify Axioms 1-4 of Subsection 2.1. We notice that Q(uv)(x) =
u

(
θx
|x|2

)
(Qv)(x) for any two functions u(x) and v(x) and then, after easy calculations obtain

A1ϕ = QAQϕ(x) = λ

(
θx

|x|2
)

ϕ(x) + µ

(
θx

|x|2
)

(K1ϕ)(x) ,

Bϕ = QBQϕ(x) = η

(
θx

|x|2
)

ϕ(x) + ν

(
θx

|x|2
)

(L1ϕ)(x) ,

where the kernels k1(x, y) and `1(x, y) are defined accordingly to (3.70).



Axioms 1-2 are satisfied by Lemma 3.20. The operator U from Axiom 3 may be taken as

Uϕ(x) = sign ln
|x|√

θ

so that UQ + QU = 0. Since the function c(x, y) = sign ln |x|√
θ
− sign ln |y|√

θ
has zero limiting values in

the sense (3.61): c(0, 0) = c(∞,∞) = 0, we obtain that the operator U quasicommutes with A and B.
Thus, Axiom 1-4 are all satisfied and we can apply Theorem 2.5. According to that theorem, we have
to deal with the symbol of the operator AA1 − BB1, which is a pair of function sequences {σm,0(ξ)}∞m=0

and {σm,∞(ξ)}∞m=0. By Lemma 3.71 we have σm,∞(ξ) = σm,0(−ξ) for any m ∈ Z+ and we arrive at the
conditions (3.72). Finally,

Ind K =
1
2

∞∑
m=1

dn(m)ind
σm,∞(ξ)
σm,0(ξ)

= −
∞∑

m=1

dn(m)ind σm,0(ξ) .
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[17] N.K. Karapetiants and S.G. Samko. Multidimensional integral operators with homogeneous kernels.
Fract. Calculus & Applied Analysis, 2(1):67–96, 1999.

[18] N.Ya. Krupnik. Banach algebras with symbol and singular integral operators. Operator theory: Advances
and Applications, 26. Basel-Boston: Birkhauser Verlag, 1987. 204 pages.

[19] G.S. Litvinchuk. Boundary Value Problems and Singular Integral Equations with Shift. (Russian).
Moscow: Nauka, 1977. 448 pages.

[20] L.G. Mikhailov. On some multi-dimensional integral equations with homogeneous kernels (Russian).
Dokl. Akad. Nauk SSSR, 176(2):263–265, 1967.

[21] L.G. Mikhailov. Multi-dimensional integral equations with homogeneous kernels (Russian). In Proc.
Symposium Continuum Mechanics and Related Topics of Analysis, 1971, vol.1, pages 182–191. Tbilisi:
Metsniereba, 1973.

[22] L.G. Mikhailov. The new class of singular integral equations. Math. Nachr., 76:91–107, 1977.
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