
Journal of Natural Geometry
2001, vol. 19, 1-26
MR 2001j:47055

N.K.Karapetiants and S.G.Samko

Singular integral equations on the real line

with homogeneous kernels and the inversion shift

Abstracts
Fredholmness criterion and formula for the index are given for a class of singular type integral equations

which are generated by singular integral operator, operators with kernels homogeneous of degree −1 and
the inversion shift operator Qϕ = ϕ

(
1
x

)
. The equation is studied in the weighted space Lp(R1, |x|γ) with

the power weight.

1 Introduction

Fredholmness of singular integral equations on the real line, perturbed by terms with
homogeneous kernels, is known, we refer for example to [4] or [1]. In this paper we consider
such equations with the shift α(x) = 1

x
which suits well for homogeneous kernels:

Kϕ := a(x)ϕ(x) +
b(x)

πi

∫ ∞

−∞

ϕ(t)dt

t− x
+ c(x)

∫ ∞

−∞
k(x, y)ϕ(y)dy

+a(x)ϕ

(
1

x

)
+

b(x)

πi

∫ ∞

−∞

ϕ(t)dt

t− 1
x

+ c(x)

∫ ∞

−∞
`

(
1

x
, y

)
ϕ(y)dy, x ∈ R1, (1.1)

where k(x, y) and `(x, y) are kernels homogeneous of degree −1, satisfying some standard
integrability conditions, see (2.3). The case when the equation (1.1) does not contain
singular terms, that is, b(x) ≡ b(x) ≡ 0, was considered in [6] in the case of equations
on R1 and in [3] in the case of equations on R1

+. Fredholmness of equations without the
shift and singular terms, that is, the case b(x) = a(x) = b(x) = c(x) ≡ 0 were investigated
long ago, see [7] and also the recent survey [5] on integral equations with homogeneous
kernels. Both in [6] and in this paper we apply the general approach to investigation of
Fredholmness of equations with involutive operators developed in [4], [6]. A possibility to
cover Fredholmness of the equation (1.1) in full is due to more delicate realization of that
general approach.

Applying the general approach of [4], [6], one may also cover equations of the form (1.1)
containing also terms with complex conjugation, but we do not dwell on such more general
situation.



Since from equation (1.1) we naturally pass to a system of equations without the shift
α(x) = 1

x
, in Section 2 we preliminarily give the Fredholmness results for systems of singular

equations perturbed by matrix terms with homogeneous kernels, which is a modified and
extended version of the results from [4]. The main results are given in Section 4.

2 Singular integral operators perturbed

by integral operators with homogeneous kernels

In this section we describe the nature of normal solvability and calculate the index of sin-
gular integral operators perturbed by non compact integral operators with a homogeneous
kernel of degree −1:

Nϕ ≡ a(x)ϕ(x) +
b(x)

πi

∫ ∞

−∞

ϕ(y) dy

y − x
+ c(x)

∫ ∞

−∞
k(x, y)ϕ(y) dy = f(x), x ∈ R1, (2.1)

where k(λx, λy) = λ−1k(x, y), λ > 0. We treat the operator (2.1) in the weighted space

Lγ
p(R

1) = {ϕ :

∫ ∞

−∞
|x|γ|ϕ(x)|p dx < ∞}, 1 < p < ∞, −1 < γ < p− 1. (2.2)

We assume that a(x), b(x), c(x) ∈ C(Ṙ1) and

∫ ∞

−∞
|k(±1, y)| dy

|y| 1+γ
p

< ∞, (2.3)

the latter guaranteering the boundedness of the last term on the left-hand side of (2.1)
in the space Lγ

p(R
1). Below we will have to impose also another condition on the kernel,

namely ∫ ∞

−∞

dy

|y| 1+γ
p

∣∣∣∣
∫ ∞

−∞

k(t, y)

t± 1
dt

∣∣∣∣ < ∞. (2.4)

2.1 Preliminaries on equations with a homogeneous kernel

a) Scalar case. Let

Kϕ : ≡ λϕ(x)−
n∑

j=1

cj(x)

∫ ∞

−∞
kj(x, y)ϕ(y) dy = f(x) , x ∈ R1, (2.5)

where the kernels kj(x, y) are homogeneous of order −1 : kj(tx, ty) = t−1kj(x, y), x, y ∈
R1, t > 0, and the coefficients cj(x) ∈ L∞(R1) are assumed to have values cj(±0) and
cj(±∞) understood in the following sense

lim
N→∞

esssup
0<x< 1

N

|cj(±x)− cj(±0)| = 0, lim
N→∞

esssup
x>N

|cj(±x)− cj(±∞)| = 0 (2.6)
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under the respective choice of the signs. Let

Kj
±±(z ) =

∫ ∞

0

kj (±1 ,±y)y z−1dy (2.7)

denote the Mellin transforms of the kernels in the correspondent quadrants.

Theorem 2.1. Let cj(x) ∈ L∞(R1) have the values cj(±0) and cj(±∞), j = 1, 2, ..., n
in the sense of the definition (2.6). Then the operator K is Fredholm in Lp(R

1, |x|γ), 1 ≤
p ≤ ∞, −1 < γ < p− 1, if and only if

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0 and det σ∞

(
iξ + 1− 1 + γ

p

)
6= 0 , ξ ∈ Ṙ1 , (2.8)

where

σ0(z) =




λ +
n∑

j=1

cj(+0)Kj
++(z)

n∑
j=1

cj(+0)Kj
+−(z)

n∑
j=1

cj(−0)Kj−+(z) λ +
n∑

j=1

cj(−0)Kj−−(z)




,

and

σ∞(z) =




λ +
n∑

j=1

cj(+∞)Kj
++(z)

n∑
j=1

cj(+∞)Kj
+−(z)

n∑
j=1

cj(−∞)Kj−+(z) λ +
n∑

j=1

cj(−∞)Kj−−(z)




.

Under the conditions (2.8)

IndLp(R1,|x|γ) K = ind
det σ∞(iξ + 1− 1+γ

p
)

det σ0(iξ + 1− 1+γ
p

)
. (2.9)

b) Matrix case. For further goals we give also a matrix version of Theorem 2.1 for
the case of systems of equations with homogeneous kernels:

Nϕ ≡ A(x)ϕ(x) + C(x)

∫ ∞

−∞
K(x, y)ϕ(y) dy = F (x), x ∈ R1, (2.10)

where ϕ = (ϕ1, ϕ2, ..., ϕm) and F = (f1, f2, ..., fm) are vector-functions, A(x), C(x) and
K(x, y) are (m×m)-matrices. We assume that the matrix kernel

K(x, y) = (kij(x, y))m
i,j=1

has the entries kij(x, y) satisfying the conditions (2.4) and for simplicity suppose that the
entries of the matrices A(x) and C(x) are continuous on Ṙ1.

Let
K±±(z) = (Kij,±±(z))m

i,j=1 (2.11)
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where

Kij,±±(z) =

∫ ∞

0

kij(±1,±y)yz−1dy. (2.12)

and

σ0(z) =




σ11
0 (z) σ12

0 (z)

σ21
0 (z) σ22

0 (z)


 , σ∞(z) =




σ11
∞(z) σ12

∞(z)

σ21
∞(z) σ22

∞(z)


 , (2.13)

where the (m×m)-blocs σkj
0 (z) and σkj

∞(z) have the form:

σ11
0 (z) = A(0) + C(0)K++(z), σ12

0 (z) = C(0)K+−(z),

σ21
0 (z) = C(0)K−+(z), σ22

0 (z) = A(0) + C(0)K−−(z)
(2.14)

and similarly for σkj
∞(z), k, j = 1, 2 with A(0) and C(0) replaced by A(∞) and C(∞),

respectively.

Theorem 2.2. Let the entries of the matrices A(x) and C(x) be in C(Ṙ1) and the
entries of the matrix K(x, y) satisfy the conditions (2.4). The operator of the form (2.10)
is Fredholm in the space Lm

p (R1; |x|γ), 1 ≤ p ≤ ∞, −1 < γ < p − 1, if and only if

det A(x) 6= 0, x ∈ Ṙ1 and

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0 , det σ∞

(
iξ + 1− 1 + γ

p

)
6= 0

for all ξ ∈ Ṙ1. Under these conditions

Ind N = ind
det σ∞

(
iξ + 1− 1+γ

p

)

det σ0

(
iξ + 1− 1+γ

p

) .

2.2 Some necessary conditions

Lemma 2.3. Let 1 < p < ∞, −1 < γ < p− 1 and assumptions (2.3), be satisfied. If the
operator (2.1) is Fredholm in the space Lγ

p(R
1), then its ”characteristic” part a(x)I +b(x)S

is also Fredholm in Lγ
p(R

1), so that the conditions

a(x)± b(x) 6= 0, x ∈ Ṙ1 (2.15)

are necessary for the operator (2.1) to be Fredholm in Lγ
p(R

1).

Proof. By homogeneity of the kernels of the integral operators in (2.1), we can introduce
the weight into the operator, so that one may consider the operator N in the space Lp(R

1)
instead of Lγ

p(R
1).

Let, on the contrary, the operator N be Fredholm, but a(x0) + b(x0) = 0.
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1. Let x0 = ∞, so that a(∞) + b(∞) = 0. Because of the stability property for
Fredholm operators, we can approximate our operator N in such a way that a(x) + b(x) is
a finite function supported on some interval (−m,m) and the operator N is still Fredholm.
Let ω(x) ∈ C∞(R1) be any smooth step-function, which is equal to zero in the interval
(m + 2,m + 3), to 1 in the intervals (−∞,m + 1) and (m + 4,∞) and has values between
0 and 1 in the intervals (m + 1,m + 2) and (m + 3,m + 4).

We have N = (a + b)P+ + (a− b)P− + cH, where P± = 1
2
(I ± S) and

Hϕ =

∫ ∞

−∞
k(x, y)ϕ(y) dy. (2.16)

Hence
N(1− ω)P+ = (a + b)(1− ω)P+ + cH(1− ω)P+ + T,

where T is a compact operator. Evidently, (a+b)(1−ω) ≡ 0. It is also clear that H(1−ω)
is a compact operator. Therefore, the operator N(1 − ω)P+ = T1 is also compact and we
obtain

N = N((1− ω + ω)P+ + P−) = N(ωP+ + P−) + T2

with a compact operator T2. Consequently, the operator ωP+ + P− is Fredholm operator,
which is not possible.

2. Let now x0 6= ∞ and for simplicity x0 = 0. The arguments are similar to those
above. Indeed, we can assume that a(x) + b(x) ≡ 0 in the interval

(− 1
m

, 1
m

)
and introduce

a smooth step-function β(x) ∈ C∞
0 (R1) such that β(x) ≡ 0 when |x| ≥ 1

2m
and |x| ≤ 1

16m

and β(x) ≡ 1 for 1
8m
≤ |x| ≤ 1

4m
. Then (a+ b)β ≡ 0 and NβP+ = T , where T is a compact

operator. Hence
N = N((1− β)P+ + P−) + T2

and we obtain that operator P− + (1− β)P+ is Fredholm, which is not possible. 2

2.3 Reduction to a system of pair convolution equations

As is well known, see for example [5], equations with homogeneous kernels satisfying the
condition (2.3) are easily reduced to convolution type equations by means of the direct
exponential change of variables. We may treat the same idea for the operator N . However,
this operator includes not only the homogeneous kernel satisfying the condition (2.3), but
also a singular homogeneous kernel 1

x−y
which does not satisfy such a condition. By this

reason, it is more convenient to exclude first the singular operator S, basing on Lemma
2.3.

Lemma 2.4. Let 1 < p < ∞,−1 < γ < p− 1. Under the assumptions (2.3)-(2.4) the
operator N is Fredholm in Lγ

p(R
1) simultaneously with the operator

(a2 − b2)I + acH − bcH1 , (2.17)

where H is the operator (2.16) and the operator

H1ϕ = SHϕ =

∫ ∞

−∞
k1(x, y)ϕ(y) dy

5



has the homogeneous kernel

k1(x, y) =
1

πi

∫ ∞

−∞

k(t, y)

t− x
dt =

1

πi

∫ ∞

−∞

k(t, sign y)

t|y| − x
dt . (2.18)

Proof. We have

(aI − bS)N = (a2 − b2)I + acH − bcH1 + T, (2.19)

where T is a compact operator. Then the statement of Lemma 2.4 follows from that of
Lemma 2.3. 2

Remark 2.5. The condition (2.4) imposed on the kernel k(x, y) means that the operator
H1 has the same nature as the operator H, that is, it belongs to the algebra of operators
H with a homogeneous kernel satisfying the condition (2.3). (It may be shown that there
exist kernels homogeneous of degree −1, satisfying the conditions (2.3), but not satisfying
the conditions (2.4)).

The main statement of this subsection is given by Theorem 2.7 below, in which we use
the following notation:

σ0(z) =




1 + λ0K++(z)− µ0K1
++(z) λ0K+−(z)− µ0K1

+−(z)

λ0K−+(z)− µ0K1
−+(z) 1 + λ0K−−(z)− µ0K1

−−(z)


 ,

and

σ∞(z) =




1 + λ∞K++(z)− µ∞K1
++(z) λ∞K+−(z)− µ∞K1

+−(z)

λ∞K−+(z)− µ∞K1
−+(z) 1 + λ∞K−−(z)− µ∞K1

−−(z)


 ,

where

λ0 =
a(0)c(0)

a2(0)− b2(0)
, µ0 =

b(0)c(0)

a2(0)− b2(0)
,

λ∞ =
a(∞)c(∞)

a2(∞)− b2(∞)
, µ∞ =

b(∞)c(∞)

a2(∞)− b2(∞)
,

and

K±±(z) =

∫ ∞

0

k(±1,±y)yz−1dy and K1
±±(z) =

∫ ∞

0

k1(±1,±y)yz−1dy (2.20)

are the Mellin transforms of the kernels k(±1,±y) and k1(±1,±y), the latter being defined
in (2.18).

Lemma 2.6. Under the condition (2.3), the Mellin transforms K±±(z) converge abso-
lutely for z = iξ + 1− 1+γ

p
, −∞ < ξ < ∞. If the condition (2.4) is also satisfied, then the

Mellin transforms K1
±±(z) converge absolutely for the same z.
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The functions K1
±±(z) are expressed in terms of the functions K±±(z) by means of the

formulas

K1
++(z) =

i

sin zπ
[K++(z) cos zπ +K−+(z)], (2.21)

K1
−+(z) = − i

sin zπ
[K−+(z) cos zπ +K++(z)], (2.22)

K1
+−(z) =

i

sin zπ
[K+−(z) cos zπ +K−−(z)], (2.23)

K1
−−(z) = − i

sin zπ
[K−−(z) cos zπ +K+−(z)]. (2.24)

Proof. The convergence of the Mellin transforms for z = iξ + 1 − 1+γ
p

is evident. Let

us verify, for instance, the first of the formulas (2.21) - (2.24). We have

K1
++(z) =

1

πi

∫ ∞

0

yz−1 dy

∫ ∞

−∞

k(t, 1)

yt− 1
dt =

1

πi

∫ ∞

−∞

k(t, 1)

t
dt

∫ ∞

0

yz−1

y − 1
t

dy.

Using the formula

∫ ∞

0

yz−1dy

y + a
=

π|a|z−1

sin πz

{
1, a > 0

−cos πz, a < 0
, (2.25)

see [2], N 3.222.2, we obtain

K1
++(z) = i ctg zπ

∫ ∞

0

t−zk(t, 1) dt + i cosec zπ

∫ ∞

0

t−zk(−t, 1) dt,

which coincides with the right hand side in (2.21) after easy transformations. 2

Theorem 2.7. Let a(x), b(x), c(x) ∈ C(Ṙ1) and let the conditions (2.3) and (2.4) be
satisfied. The operator N is Fredholm in the space Lγ

p(R
1), 1 < p < ∞ , −1 < γ < p− 1,

if and only if a(x)± b(x) 6= 0, x ∈ Ṙ1 and

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0, det σ∞

(
iξ + 1− 1 + γ

p

)
6= 0

for all ξ ∈ Ṙ1. Under these conditions

IndLp
γ

N = ind
a(x)− b(x)

a(x) + b(x)
+ ind

det σ∞
(
iξ + 1− 1+γ

p

)

det σ0

(
iξ + 1− 1+γ

p

) . (2.26)

Proof. By Lemma 2.4, we may deal with the operator (2.17) instead of the operator N .
Applying Theorem 2.1, after direct calculations we arrive at the statement of the theorem.

2
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2.4 Systems of singular integral equations
perturbed by integrals with homogeneous kernels

The result of the previous Subsection given in Theorem 2.7 may be extended to the matrix
case, that is, to the case of the operator

Nϕ ≡ A(x)ϕ(x) + B(x)(Sϕ)(x) + C(x)

∫ ∞

−∞
K(x, y)ϕ(y) dy = f(x) (2.27)

where ϕ = (ϕ1, ϕ2, . . . , ϕm), A(x), B(x), C(x) are (m×m)− matrices with entries contin-
uous on Ṙ1, and K(x, y) is a matrix kernel with entries satisfying the familiar conditions
(2.3) and (2.4), and S stands for the diagonal (m×m)-matrix with the singular operator
at the diagonal.

The arguments being analogous to those in the previous subsection, we only sketch
briefly the main points.

Similarly to Lemma 2.3 it is shown that Fredholmness of the matrix singular operator
AI + BS is necessary for that of the operator N . By this reason, we assume that the
matrices A±B are normal: det[A(x)±B(x)] 6= 0, x ∈ Ṙ1. The regularizer of the operator
AI + BS has the form R = A1I + B1S (see [8], p.414), where

A1 =
1

2

[
(A + B)−1 + (A−B)−1

]
= (A + B)−1A(A−B)−1, (2.28)

and

B1 =
1

2

[
(A + B)−1 − (A−B)−1

]
= −(A + B)−1B(A−B)−1 . (2.29)

Applying the regularizer R to the operator N and passing afterwards to the corresponding
equations separately on each half-axis, we arrive at the following system of 2m equations,
up to compact terms Tjϕ±, j = 1, 2, 3, 4,




ϕ+(x) + A1(x)C(x)
∫∞
0

K(x, y)ϕ+(y) dy+

+A1(x)C(x)
∫∞
0

K(x,−y)ϕ−(−y) dy + B1(x)C(x)
∫∞

0
K1(x, y)ϕ+(y) dy+

+B1(x)C(x)
∫∞
0

K1(x,−y)ϕ−(−y) dy + T1ϕ+ + T2ϕ− = f+(x), x > 0;

ϕ−(−x) + A1(−x)C(−x)
∫∞

0
K(−x, y)ϕ+(y) dy+

+A1(−x)C(−x)
∫∞

0
K(−x,−y)ϕ−(−y) dy + B1(−x)C(−x)

∫∞
0

K1(−x, y)ϕ+(y) dy+

+B1(−x)C(−x)
∫∞
0

K1(−x,−y)ϕ−(−y) dy + T3ϕ+ + T4ϕ− = f−(−x), x > 0,

where ϕ±(x) = 1
2
(1± signx) ϕ(x) and

K1(x, y) =
(
k1

ij(x, y)
)m

i,j=1

with k1
ij(x, y) calculated by the entries kij(x, y) via the formula (2.18). We denote

M1 = A1C = 1
2
[(A + B)−1 + (A−B)−1] C,

M2 = B1C = 1
2
[(A + B)−1 − (A−B)−1] C.

(2.30)
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The matrix-symbol of the obtained system may be written in terms of the matrices M1

and M2, according to (2.14), as

σ0(z) =




I + M1(0)K++(z) + M2(0)K1
++(z) M1(0)K+−(z) + M2(0)K1

+−(z)

M1(0)K−+(z) + M2(0)K1
−+(z) I + M1(0)K−−(z) + M2(0)K1

−−(z)


 ,

σ∞(z) =




I + M1(∞)K++(z) + M2(∞)K1
++(z) M1(∞)K+−(z) + M2(∞)K1

+−(z)

M1(∞)K−+(z) + M2(∞)K1
−+(z) I + M1(∞)K−−(z) + M2(∞)K1

−−(z)


 ,

representing a pair of (2m × 2m)-matrices. The (m ×m)-blocs K±±(z) and K1
±±(z) here

are the matrix symbols

{Krj,±±(z)}m
r,j=1 and

{K1
rj,±±(z)

}m

r,j=1

corresponding to the matrices K(x, y) = {krj(x, y)}m
r,j=1 and K1(x, y) =

{
k1

rj(x, y)
}m

r,j=1

where the entries k1
rj(x, y) are calculated by the entries krj(x, y) via the formula (2.18). It

is easy to see that the connections (2.21)-(2.24) remain valid when K±±(z) and K1
±±(z) are

matrices. Making use of those connections, we calculate the matrices (2.13) and obtain
that the (m×m)-blocs σkj

0 (z) and σkj
∞(z) have the form:

σ11
0 (z) = I + [M1(0) + ictg zπM2(0)]K++(z) +

i

sin zπ
M2(0)K−+(z) ,

σ12
0 (z) = [M1(0) + ictg zπM2(0)]K+−(z) +

i

sin zπ
M2(0)K−−(z) ,

σ21
0 (z) = [M1(0)− ictg zπM2(0)]K−+(z)− i

sin zπ
M2(0)K++(z) ,

σ22
0 (z) = I + [M1(0)− ictg zπM2(0)]K−−(z)− i

sin zπ
M2(0)K+−(z)

and similarly for σkj
∞(z), k, j = 1, 2, with M1(0) and M2(0) replaced by M1(∞) and M2(∞),

respectively.
Similarly to Theorem 2.7 we obtain the following result.

Theorem 2.8. Let the entries of the matrices A(x), B(x), C(x) be in C(Ṙ1) and the
entries of the matrix K(x, y) satisfy the conditions (2.3)-(2.4). The operator of the form
(2.27) is Fredholm in the space Lγ

p(R
1), 1 < p < ∞,−1 < γ < p − 1, if and only if

det[A(x)±B(x)] 6= 0, x ∈ Ṙ1 and

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0 , det σ∞

(
iξ + 1− 1 + γ

p

)
6= 0 (2.31)
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for all ξ ∈ Ṙ1. Under these conditions

IndLp
γ

N = ind
det[A(x)−B(x)]

det[A(x) + B(x)]
+ ind

det σ∞
(
iξ + 1− 1+γ

p

)

det σ0

(
iξ + 1− 1+γ

p

) . (2.32)

We shall also need a result similar to Theorem 2.8 in the situation when the matrix
singular operator is perturbed by several non-compact operators with homogeneous kernels
with different variable coefficients

Nϕ :≡ A(x)ϕ(x) + B(x)(Sϕ)(x) +
∑̀
j=1

Cj(x)

∫ ∞

−∞
Kj(x, y)ϕ(y) dy = f(x), (2.33)

where A(x), B(x), Cj(x) are (m×m)−matrices with entries continuous on Ṙ1, and Kj(x, y)
are matrix kernels with entries satisfying the conditions (2.3) and (2.4). The corresponding
theorem given below is not derived from Theorem 2.8, but its proof may be obtained in
the same way as that of Theorem 2.8.

As in (2.30), we introduce the matrices Mj,1 = A1Cj and Mj,2 = B1Cj, j = 1, ..., `,
where A1 and B1 are the matrices (2.28). Let σ0(z) and σ∞(z) be the matrices

σ0(z) =




σ11
0 (z) σ12

0 (z)

σ21
0 (z) σ22

0 (z)


 , σ∞(z) =




σ11
∞(z) σ12

∞(z)

σ21
∞(z) σ22

∞(z)


 , (2.34)

with the (m×m)-matrix entries

σ11
0 (z) = I +

∑̀
j=1

{
[Mj,1(0) + ictg zπMj,2(0)]Kj,++(z) +

i

sin zπ
Mj,2(0)Kj,−+(z)

}
, (2.35)

σ12
0 (z) =

∑̀
j=1

{
[Mj,1(0) + ictg zπMj,2(0)]Kj,+−(z) +

i

sin zπ
Mj,2(0)Kj,−−(z)

}
, (2.36)

σ21
0 (z) =

∑̀
j=1

{
[Mj,1(0)− ictg zπMj,2(0)]Kj,−+(z)− i

sin zπ
Mj,2(0)Kj,++(z)

}
, (2.37)

σ22
0 (z) = I +

∑̀
j=1

{
[Mj,1(0)− ictg zπMj,2(0)]Kj,−−(z)− i

sin zπ
Mj,2(0)Kj,+−(z)

}
(2.38)

and similarly for σkr
∞(z), k, r = 1, 2, with Mj,1(0) and Mj,2(0) replaced by Mj,1(∞) and

Mj,2(∞), respectively.

Theorem 2.9. Let the entries of the matrices A(x), B(x), Cj(x), j = 1, 2, ..., `, be
in C(Ṙ1) and the entries of the matrices Kj(x, y), j = 1, ..., `, satisfy the conditions
(2.3),(2.4). The operator of the form (2.33) is Fredholm in the space Lγ

p(R
1), 1 < p <

∞, −1 < γ < p − 1, if and only if det[A(x) ± B(x)] 6= 0, x ∈ Ṙ1, and the conditions
(2.31) are satisfied in which the entries of the matrices σ0(z) and σ∞(z) are given by the
formulas (2.35)-(2.38). Under these conditions the formula (2.32) for the index is valid.
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3 Equations with an involutive operator

We shall base ourselves on the following Theorem 3.10 on Fredholmness of equations with an
involutive operators in Banach spaces, see this theorem in the book [4] or its reformulation
in [6]. Let X be an abstract Banach space. We suppose that the following Axioms 1 and
2 are valid.
AXIOM 1. There exists a Fredholm operator U ∈ L(X) which anti-quasicommutes with

Q, that is,
UQ + QU = T (3.39)

where T is compact in X.
AXIOM 2. The operators A and B quasicommute with the operator U from the Axiom

1: AU = UA + T1, BU = UB + T2. where T1 and T2 are compact in X.

Theorem 3.10. Let A,B, Q ∈ L(X) and Q2 = I, Q 6= ±I. The operator K = A+QB
is Fredholm in X if the operator

K =

(
A QBQ
B QAQ

)
(3.40)

is Fredholm in X2 = X ×X. Under the additional assumption that Axioms 1 and 2 are
satisfied, Fredholmness of the operator K is also necessary for that of the operator K and

IndX K =
1

2
IndX2 K .

4 Investigation of the equation (1.1)

We consider operator (1.1) in the space Lγ
p(R

1), 1 < p < ∞, −1 < γ < p − 1. Let
ν = 2

p
(γ + 1). We suppose that

a(x), b(x), c(x), |x|νsign x a(x), |x|νsign x b(x), |x|νsign x c(x) ∈ C(Ṙ1) (4.1)

and the kernels k(x, y) and `(x, y) satisfy the integrability conditions (2.3), (2.4):

∫ ∞

−∞
|k(±1, y)| dy

|y| 1+γ
p

< ∞ and

∫ ∞

−∞

dy

|y| 1+γ
p

∣∣∣∣
∫ ∞

−∞

k(t, y)

t± 1
dt

∣∣∣∣ < ∞ (4.2)

and similarly for `(x, y).
To formulate Theorem 4.1 below, we use the following notation:

ã(x) = a

(
1

x

)
, b̃(x) = b

(
1

x

)
c̃(x) = c

(
1

x

)
, (4.3)

a1(x) = |x|−νsign x a

(
1

x

)
, b1(x) = |x|−νsign x b

(
1

x

)
, c1(x) = |x|−νsign x c

(
1

x

)
,

(4.4)
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∆(x) := [a(x) + b(x)][ã(x)− b̃(x)]− [a(x)− b(x)][ã(x) + b̃(x)] (4.5)

and

A(x) =




a(x) ã1(x)

a1(x) ã(x)


 , B(x) =




b(x) −b̃1(x)

b1(x) −b̃(x)


 , (4.6)

C(x) =




0 −b̃1(x)

0 −b̃(x)


 , D(x) =




c(x) c̃1(x)

c1(x) c̃(x)


 , (4.7)

and

A1(x) = [A(x)+B(x)]−1A(x)[A(x)−B(x)]−1, B1(x) = −[A(x)+B(x)]−1B(x)[A(x)−B(x)]−1,

under the assumption that the matrices A(x)±B(x) are invertible. We observe that

∆(x) = det [A(x) + B(x)], ∆̃(x) = det [A(x)−B(x)]. (4.8)

We also introduce the matrix

K(x, y) =




k11(x, y) k12(x, y)

k21(x, y) k22(x, y)


 , (4.9)

where k11(x, y) = k(x, y) and k21(x, y) = `(x, y) and

k22(x, y) =
1

y2

( |y|
|x|

)ν

k

(
1

x
,
1

y

)
, k12(x, y) =

1

y2

( |y|
|x|

)ν

`

(
1

x
,
1

y

)
, (4.10)

and the corresponding (4× 4)-matrix symbol


M++(z) M+−(z)

M−+(z) M−−(z)


 (4.11)

with the (2× 2)-blocks

M±±(z) =




K±±(z) L±±(z)

K±±(2− ν − z) L±±(2− ν − z)


 , (4.12)

where K±±(z) and L±±(z) are the Mellin transforms:

K±±(z) =

∫ ∞

0

yz−1k(±1,±y)dy, L±±(z) =

∫ ∞

0

yz−1`(±1,±y)dy,

and k(x, y) and `(x, y) being the initial kernels from (1.1).
For the posterior calculation of the blocks M±±(z) we observe that for z = iξ +1− 1+γ

p

we have

2− ν − z = −iξ + 1− 1 + γ

p
. (4.13)
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Let σ0(z) and σ∞(z) be the matrices (2.34) with the (2 × 2)-entries calculated by
formulas (2.35)-(2.38) with ` = 2. In our case we have

σ11
0 (z) = I − [α(z)B1(0) + iβ(z)A1(0)] C(0)

+A1(0)D(0)M++(z) + iB1(0)D(0) [ctg πz M++(z) + cosec πz M−+(z)] , (4.14)

σ12
0 (z) = [u(z)B1(0)− iv(z)A1(0)] C(0)

+A1(0)D(0)M+−(z) + iB1(0)D(0) [ctg πz M+−(z) + cosec πz M−−(z)] , (4.15)

σ21
0 (z) = [u(z)B1(0) + iv(z)A1(0)] C(0)

+A1(0)D(0)M−+(z)− iB1(0)D(0) [ctg πz M−+(z) + cosec πz M++(z)] , (4.16)

σ22
0 (z) = I − [α(z)B1(0)− iβ(z)A1(0)] C(0)

+A1(0)D(0)M−−(z)− iB1(0)D(0) [ctg πz M−−(z) + cosec πz M+−(z)] , (4.17)

where α(z), β(z), u(z) and v(z) are the functions

α(z) =
1 + cos νπ

sin zπ sin(z + ν)π
, β(z) =

sin νπ

sin zπ sin(z + ν)π
,

and

u(z) =
cos(z + ν)π + cos νπ

sin zπ sin(z + ν)π
, v(z) =

sin(z + ν)π + sin νπ

sin zπ sin(z + ν)π
.

and similarly for σ∞(z) with A1(0) replaced by A1(∞) etc.

Theorem 4.1. Let the kernels k(x, y) and `(x, y) satisfy the conditions (4.2). Under
assumptions (4.1) the operator K is Fredholm in the space Lγ

p(R
1), 1 < p < ∞,−1 < γ <

p− 1, if and only if

∆(x) 6= 0, x ∈ Ṙ1 and det σ0

(
iξ + 1− 1 + γ

p

)
6= 0, ξ ∈ Ṙ1. (4.18)

Under these conditions

IndLγ
p

K = ind ∆(x) − ind det σ0

(
iξ + 1− 1 + γ

p

)
. (4.19)

Proof. Since the shift operator in the form ϕ
(

1
x

)
is unbounded (in the space Lγ

p(R
1),

for example), we introduce the involutive operator Q by the formula

(Qϕ)(x) =
sign x

|x|ν ϕ

(
1

x

)
(4.20)

which gives a bounded and isometric operator: ‖Qϕ‖Lγ
p

= ‖ϕ‖Lγ
p
.
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We represent the operator (1.1) in the form K = A + QB, where

Aϕ = aϕ + bSϕ + cHϕ, Bϕ = a1ϕ + b1Sϕ + c1Lϕ (4.21)

and

Hϕ =

∫ ∞

−∞
k(x, y)ϕ(y)dy, Lϕ =

∫ ∞

−∞
`(x, y)ϕ(y)dy (4.22)

and the notation (4.4) is used.
To apply the general Theorem 3.10, we need to verify Axioms 1-2 . The most important

requirement of those axioms is the existence of a Fredholm operator U anti-commuting with
the involutive operator Q and commuting with the operators of the type A, B. In the case
when the operators (1.1) did not contain the singular operator S, we could take U as
an operator of multiplication by a piece-wise constant function with a jump at the point
x = 1 (as it was done in [6]). This is now impossible because of the presence of the singular
operator. This problem is now overcome by introduction of a special kind of the operator
U . Namely, let

Sαϕ =
1

πi

∫ ∞

−∞

( |t|
|x|

)α
ϕ(t)dt

t− x
(4.23)

be the weighted singular operator. We introduce the operator U in terms of the operator
Sα with α = ν−1

2
:

Uϕ =
x2 − 1

x2 + 1
ϕ(x) + ie−x2− 1

x2 (S
ν−1
2 ϕ)(x). (4.24)

The operator (4.24) is Fredholm in the space Lγ
p(R

1) and satisfies the relation UQ +
QU = 0, so that Axiom 1 is fulfilled.

Now we have to verify Axiom 2. To this end, we notice that all the coefficients involved
in (4.21) and (4.24) are continuous on C(Ṙ1), so that they commute, up to a compact
term, with the singular operator and with operators with a homogeneous kernel.

Then it remains to verify only the quasicommutation of the operator v0S
ν−1
2 with

the operators S and H and L, where v0(x) = exp
(−x2 − 1

x2

)
. For the operator S, the

corresponding commutant v0S
ν−1
2 S−Sv0S

ν−1
2 may be calculated, up to compact terms, by

means of the formulas (24.9′) and-(24.10′) from [4], p. 148):

(
v0S

ν−1
2 S − Sv0S

ν−1
2

)
ϕ = v0

(
S

ν−1
2 S − SS

ν−1
2

)
+ Tϕ

=
v0(x)

π
tg

(ν − 1)π

4

∫ ∞

−∞

sign x − sign t

t− x

[
sign t

sign x

∣∣∣∣
t

x

∣∣∣∣
ν−1
2

− 1

]
ϕ(t)dt + Tϕ (4.25)

where T is a compact operator. The same is true for the first term in (4.25), since it is an
operator with a kernel homogeneous of degree −1 and the coefficient v0(x) vanishes at the
points x = 0 and x = ∞, which provides the compactness of the operator, see for example
Theorem 2.9 from [5] on compactness of operators with homogeneous kernels in the case
of continuous coefficients vanishing at infinity and at the origin.
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As regards the quasicommutativity of the operator v0S
ν−1
2 with an operator H with a

homogeneous kernel, in the commutant v0S
ν−1
2 H −Hv0S

ν−1
2 even every term proves to be

a compact operator. Indeed,

v0S
ν−1
2 H = S

ν−1
2 v0H + T = T1

with a compact operator U , since v0H is compact.
Axioms 1-2 being satisfied, we may apply Theorem 3.10 which leads to the matrix

operator K =

(
A QBQ
B QAQ

)
. To calculate the operators A1 = QAQ and B1 = QBQ, we

observe that QSQ−1 = −Sν−1 , so that

A1ϕ = ãϕ− b̃Sν−1 + c̃H∗ϕ, B1ϕ = ã1ϕ− b̃1S
ν−1 + c̃1L∗ϕ,

where the notation (4.3) is used and

H∗ϕ =

∫ ∞

−∞
k12(x, y)ϕ(y)dy, L∗ϕ =

∫ ∞

−∞
k22(x, y)ϕ(y)dy,

where k12(x, y) and k22(x, y) are kernels (4.10).
Thus, we arrive at the matrix operator

K =




aI + bS + cH ã1I − b̃1S
ν−1 + c̃1L∗

a1I + b1S + c1L ãI − b̃Sν−1 + c̃H∗


 (4.26)

which may be rewritten as a matrix singular integral operator perturbed by two matrix
operators with kernels homogeneous of degree −1 in the form:

Kφ = A(x)φ(x)+
1

πi
B(x)

∫ ∞

−∞

φ(y) dy

y − x
+C(x)

∫ ∞

−∞
K0(x, y)φ(y) dy+D(x)

∫ ∞

−∞
K(x, y)φ(y) dy

(4.27)
where φ(x) = {ϕ1(x), ϕ2(x)}. The matrix kernel K(x, y) was defined in (4.9) while

K0(x, y) =




k0(x, y) 0

0 k0(x, y)


 , (4.28)

where k0(x, y) is the kernel

k0(x, y) =
1

πi

(
|y|
|x|

)ν−1

− 1

y − x
. (4.29)

Matrix singular operators of the type (4.27) were investigated in Section 1, see the
equation (2.35). We intend to apply Theorem 2.9 for which we have to verify the assump-
tions of that theorem. The conditions of Theorem 2.9 on the matrix coefficients A(x), B(x)
and C1(x) = C(x) and C2(x) = D(x) are satisfied because of the assumptions (4.1). It
remains to show that the entries of the matrices K0(x, y) and K(x, y) satisfy the conditions
(4.2). In the case of K0(x, y), its entry k0(x, y) is of special type and the conditions (4.2)
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are easily seen to be satisfied. In the case of the matrix K(x, y), the fulfillment of the
conditions (4.2) for the entries k(x, y) = k12(x, y) and `(x, y) = k21(x, y) was postulated in
the assumptions of the theorem. To check the conditions (4.2), for example, for the entry
k12(x, y), we remind that the second of the assumptions in (4.2) is a condition sufficient for
the composition SH to have the kernel satisfying the first of conditions in (4.2). Thus, to
verify (4.2), in the case under the consideration we have to check the first of the conditions
in (4.2) for the composition SH∗ where H∗ is the operator with the kernel k12(x, y). Since
SQ = −QSν−1, we have

SQHQ = −QSν−1HQ = Q(S − Sν−1)HQ−QSHQ.

On the right-hand side of this formula, for the term QSHQ the conditions from (4.2) is
valid by the assumption, while for the first term this condition is satisfied automatically,
because operators with homogeneous kernels satisfying the first of the conditions in (4.2)
form an algebra.

Therefore, all the assumptions of Theorem 2.9 are satisfied. Applying this theorem,
we calculate the entries σrj

0 (z) and σrj
∞(z) by formulas (2.35)-(2.38) and note that in those

formulas ` = 2 and the matrix symbols K1,±±(z) are given by (2.21), while K2,±±(z) are
generated by matrix (4.11). The matrix symbol K1,±±(z) corresponds to the case when the
homogeneous kernels are absent in (1.1) and this symbol is known, see [4], p. 145, formula
(23.17). Taking this calculation into account, after easy transformations we arrive at the
matrix symbols σ0(z) and σ∞(z) with the blocks defined in (4.14)-(4.17). The application
of Theorem 2.9 gives (4.18)-(4.19) if we take the relation

det σ∞

(
−iξ + 1− 1

p

)
= det σ0

(
iξ + 1− 1

p

)
(4.30)

into account. The latter may be verified directly. 2
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