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Singular integral equations on the real line
with homogeneous kernels and the inversion shift
Abstracts

Fredholmness criterion and formula for the index are given for a class of singular type integral equations
which are generated by singular integral operator, operators with kernels homogeneous of degree —1 and
the inversion shift operator Q¢ = ¢ (+). The equation is studied in the weighted space L,(R',|z|”) with
the power weight.

1 Introduction

Fredholmness of singular integral equations on the real line, perturbed by terms with
homogeneous kernels, is known, we refer for example to [4] or [1]. In this paper we consider
such equations with the shift a(z) = % which suits well for homogeneous kernels:
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where k(z,y) and £(z,y) are kernels homogeneous of degree —1, satisfying some standard
integrability conditions, see (2.3). The case when the equation (1.1) does not contain
singular terms, that is, b(z) = b(z) = 0, was considered in [6] in the case of equations
on R' and in [3] in the case of equations on R!. Fredholmness of equations without the
shift and singular terms, that is, the case b(x) = a(z) = b(z) = ¢(x) = 0 were investigated
long ago, see [7] and also the recent survey [5] on integral equations with homogeneous
kernels. Both in [6] and in this paper we apply the general approach to investigation of
Fredholmness of equations with involutive operators developed in [4], [6]. A possibility to
cover Fredholmness of the equation (1.1) in full is due to more delicate realization of that
general approach.

Applying the general approach of [4], [6], one may also cover equations of the form (1.1)
containing also terms with complex conjugation, but we do not dwell on such more general
situation.



Since from equation (1.1) we naturally pass to a system of equations without the shift
alz) = %, in Section 2 we preliminarily give the Fredholmness results for systems of singular
equations perturbed by matrix terms with homogeneous kernels, which is a modified and
extended version of the results from [4]. The main results are given in Section 4.

2 Singular integral operators perturbed
by integral operators with homogeneous kernels
In this section we describe the nature of normal solvability and calculate the index of sin-

gular integral operators perturbed by non compact integral operators with a homogeneous
kernel of degree —1:

Ne = a(e)p(z) + 20 | o) dy | | Mooy = s, weR, @1
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where k(Az, \y) = A 'k(z,y), A > 0. We treat the operator (2.1) in the weighted space

LI(RY) ={¢: / |z|"|¢(z)Pdx < o0}, 1<p<oo, —l<y<p-—1L1 (2.2)
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We assume that a(z), b(z), ¢(z) € C(R') and

0 d
/ (L)L < o0, (2.3)
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the latter guaranteering the boundedness of the last term on the left-hand side of (2.1)
in the space L;(Rl). Below we will have to impose also another condition on the kernel,

namely
< d * k(t,
/ | ‘ﬂv / (4,9) dt‘<oo. (2.4)
—00 y P
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2.1 Preliminaries on equations with a homogeneous kernel

a) Scalar case. Let

Ko o= dele) =Y 6@ [ ke di= @), s R (29)
=1 o0
where the kernels k;(x,y) are homogeneous of order —1 : k;(tz,ty) = t'k;j(x,y), z,y €

R, t > 0, and the coefficients ¢;(x) € Lo (R') are assumed to have values ¢;(£0) and
¢j(£00) understood in the following sense

lim esssup |c;(£x) — ¢;(£0)] =0,

N=oo gyl

lim esssup |cj(£x) — ¢j(£o0)] =0 (2.6)
N—oo  z>N



under the respective choice of the signs. Let

el = [ b1 dy (27)
0
denote the Mellin transforms of the kernels in the correspondent quadrants.
Theorem 2.1. Let ¢;(z) € Loo(R') have the values ¢;(£0) and c;(+o00), j =1,2,..

G
in the sense of the definition (2.6). Then the operator K is Fredholm in L,(R',|z|7), 1 <
p<oo, —1<~vy<p-—1, ifand only if
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b) Matrix case. For further goals we give also a matrix version of Theorem 2.1 for
the case of systems of equations with homogeneous kernels:

Ny = A(z)p(x) + C(x) /OO K(z,y)e(y)dy = F(z), =€ R, (2.10)

where ¢ = (¢1,¢92, ..., pm) and F = (f1, fa, ..., fm) are vector-functions, A(z),C(z) and
K(x,y) are (m x m)-matrices. We assume that the matrix kernel

K(l‘, y) = (k‘m‘(l’, y))zljzl

has the entries k;;(w,y) satisfying the conditions (2.4) and for simplicity suppose that the
entries of the matrices A(z) and C'(x) are continuous on R'.
Let

Kis(2) = (Kijax(2))],2, (2.11)



where

Kijrs(z) = /0 h ki (£1, £y)y* ' dy. (2.12)
and
05'(2) 05°(2) 00(2) 022(2)
oo(2) = , O(2) = , (2.13)
05'(2) 03°(2) 0%(2) 02(2)
where the (m x m)-blocs 047(z) and ¢ (z) have the form:
o8 (2) = A0) + COK 1+ (), o) = COK4 ()
(2.14)
a5 (2) = CO)K_(2), 05*(2) = A(0) + C(0)K__(2)

and similarly for o%(2), k,j = 1,2 with A(0) and C(0) replaced by A(cc) and C(c0),

respectively.

Theorem 2.2. Let the entries of the matrices A(x) and C(x) be in C(RY) and the
entries of the matriz K(x,y) satisfy the conditions (2.4). The operator of the form (2.10)
is Fredholm in the space L;”(Rl;\:cﬁ), 1 <p< oo, =1 <~ <p-—1,1if and only if
det A(z) #0, = € R and

1 1
det00<i§+1—ﬂ>7€0, detaoo(zf—i—l—ﬂ);éo
p p

for all € € R'. Under these conditions

det oo (z'g +1-— ”—7)

p

det o (z'g y1- 1+—7)

p

Ind N = ind

2.2 Some necessary conditions

Lemma 2.3. Let 1 <p < oo, —1<+vy<p—1 and assumptions (2.3), be satisfied. If the
operator (2.1) is Fredholm in the space L)(R'), then its "characteristic” part a(z)I +b(x)S
is also Fredholm in L)(R"), so that the conditions

a(z) £b(z) #0, ze€R (2.15)

are necessary for the operator (2.1) to be Fredholm in L} (R").

Proof. By homogeneity of the kernels of the integral operators in (2.1), we can introduce
the weight into the operator, so that one may consider the operator N in the space L,(R")
instead of L) (R").

Let, on the contrary, the operator N be Fredholm, but a(xg) + b(z) = 0.



1. Let xy = oo, so that a(oo) + b(co) = 0. Because of the stability property for
Fredholm operators, we can approximate our operator N in such a way that a(z) + b(x) is
a finite function supported on some interval (—m, m) and the operator N is still Fredholm.
Let w(z) € C*(R') be any smooth step-function, which is equal to zero in the interval
(m+2,m + 3), to 1 in the intervals (—oo, m + 1) and (m + 4, 00) and has values between
0 and 1 in the intervals (m + 1,m + 2) and (m + 3,m + 4).

We have N = (a 4+ b)P; + (a — b)P_ + cH, where Py = 3(I £ 5) and

Hyp = /OO k(z,y)e(y) dy. (2.16)

o0

Hence
N1-w)Py=(a+b)(l —w)Py +cH(1 —w)Py + T,

where T is a compact operator. Evidently, (a+b)(1—w) = 0. It is also clear that H(1 —w)
is a compact operator. Therefore, the operator N(1 — w)P, = T; is also compact and we
obtain

N=N(1-w+w)Py +P_)=NwPy +P_)+ T

with a compact operator T,. Consequently, the operator wP, + P_ is Fredholm operator,
which is not possible.
2. Let now zy # oo and for simplicity zyp = 0. The arguments are similar to those

above. Indeed, we can assume that a(x) + b(z) = 0 in the interval (—%, %) and introduce
a smooth step-function 3(z) € C§°(R') such that 3(z) = 0 when |z] > - and |z| < -

and 3(x) =1 for g~ < |z| < 4. Then (a+b)f = 0 and NGP, =T, where T is a compact
operator. Hence
N=N((1-p8)Py+P.)+ T

and we obtain that operator P_ + (1 — 3) Py is Fredholm, which is not possible. O

2.3 Reduction to a system of pair convolution equations

As is well known, see for example [5], equations with homogeneous kernels satisfying the
condition (2.3) are easily reduced to convolution type equations by means of the direct
exponential change of variables. We may treat the same idea for the operator N. However,
this operator includes not only the homogeneous kernel satisfying the condition (2.3), but
also a singular homogeneous kernel x—iy which does not satisfy such a condition. By this
reason, it is more convenient to exclude first the singular operator S, basing on Lemma
2.3.

Lemma 2.4. Let 1 < p <oo,—1 <~y <p—1. Under the assumptions (2.3)-(2.4) the
operator N is Fredholm in L;(Rl) simultaneously with the operator

(a®> = )] + acH — bcH' | (2.17)

where H is the operator (2.16) and the operator

H'¢=SHyp = / k' (z,y)e(y) dy

—0o0
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has the homogeneous kernel

kl(x,y):i/ W’y)dt:i/ Kt sign y) ) (2.18)
T o t—x T ) o tyl—x

o0

Proof. We have
(al —bS)N = (a* — b*)I +acH — bcH + T, (2.19)

where T is a compact operator. Then the statement of Lemma 2.4 follows from that of
Lemma 2.3. O

Remark 2.5. The condition (2.4) imposed on the kernel k(x,y) means that the operator
H' has the same nature as the operator H, that is, it belongs to the algebra of operators
H with a homogeneous kernel satisfying the condition (2.3). (It may be shown that there
exist kernels homogeneous of degree —1, satisfying the conditions (2.3), but not satisfying
the conditions (2.4)).

The main statement of this subsection is given by Theorem 2.7 below, in which we use
the following notation:

L+ MoK (2) = oK (2)  AoKi—(2) — oKL _(2)

oo(2) = ,
MNK_i(2) — oKL (2) 14+ XK__(2) — pokL_(2)
and
) L4+ Akt (2) — MOO/C}HF(Z) AocKs—(2) — Noo]c}r— (2)
h MoK (2) = poocKL (2) 14+ AK_(2) — pocKL_(2) |
where 0)c(0) H0)e(0)
N0 R0 T @0 -20)
~a(o0)c(00) _ b(oo)c(o0)
A= 2(o0) — (o) T a(o0) — (o)
and

Kii(z):/ k(+1,+y)y* 'dy and Kii(z):/ EY (£, dy)y* dy (2.20)
0 0

are the Mellin transforms of the kernels k(4-1, ) and k' (=1, £y), the latter being defined
in (2.18).

Lemma 2.6. Under the condition (2.3), the Mellin transforms K1+(z) converge abso-
lutely for z =il +1— HTV, —00 < & < oo. If the condition (2.4) is also satisfied, then the
Mellin transforms KL (z) converge absolutely for the same z.



The functions KL (z) are expressed in terms of the functions K1+ (z) by means of the

formulas .
i

KL(z) = pr— Ky (2) cos zm+K_y(2)], (2.21)
KL (z) = —Sm’i 4 (2) cos 27+ Ko (2] (2.22)
KL (2) = Smi [, (=) cos zm+ K ()], (2.23)
Kl () = — Sm" (=) cos 27+ K (2)] (2.24)

Proof. The convergence of the Mellin transforms for z =i + 1 — HT'Y is evident. Let
us verify, for instance, the first of the formulas (2.21) - (2.24). We have

I * k(t, 1 1 [ k(t1 %yl
IC1++(2):—,/O yZIdy/ <’>dt: (’>dt/0 i - dy.

m oyt —1 i oo y—3
Using the formula
oo zfld z—1 1
/ y y — 7T|CL| ) a > 0 , (225)
0o Y+a sin 7z —cosmz, a<0

see [2], N 3.222.2, we obtain
KL (2)=ictg z7r/ t*k(t, 1) dt + i cosec z7r/ t7k(—t,1)dt,
0 0

which coincides with the right hand side in (2.21) after easy transformations. 0

Theorem 2.7. Let a(z), b(z), c(z) € C(R') and let the conditions (2.3) and (2.4) be
satisfied. The operator N is Fredholm in the space L;(Rl), l<p<oo, -1l<y<p—1,

if and only if a(x) £ b(z) #0, = € R' and
1 1
det00<i§+1_ﬂ)7§0’ detgoo(i§+1_ﬂ)7é0
p p

for all € € R'. Under these conditions

- 1+
_b detaoo<2§+1——>
Indyy N = ind lz) = b@) | v/

m det o (25 1 1-1-_7) (2.26)

p

Proof. By Lemma 2.4, we may deal with the operator (2.17) instead of the operator V.

Applying Theorem 2.1, after direct calculations we arrive at the statement of the theorem.
O



2.4 Systems of singular integral equations
perturbed by integrals with homogeneous kernels

The result of the previous Subsection given in Theorem 2.7 may be extended to the matrix
case, that is, to the case of the operator

N = A(x)p(x) + B(z)(Sp)(x) + C(x) /Oo K(z,y)ply) dy = [f(x) (2.27)

where ¢ = (o1, P2, ..., 0m), A(x), B(z), C(x) are (m x m)— matrices with entries contin-
uous on k', and K(z,y) is a matrix kernel with entries satisfying the familiar conditions
(2.3) and (2.4), and S stands for the diagonal (m x m)-matrix with the singular operator
at the diagonal.

The arguments being analogous to those in the previous subsection, we only sketch
briefly the main points.

Similarly to Lemma 2.3 it is shown that Fredholmness of the matrix singular operator
Al + BS is necessary for that of the operator N. By this reason, we assume that the
matrices A+ B are normal: det[A(z)+ B(x)] # 0, z € R'. The regularizer of the operator
Al + BS has the form R = Ayl + B;S (see [8], p.414), where

A = % (A+B) +(A—B)'| = (A+ B) ' A(A— B), (2.28)
and
B, = % (A+B)"'—(A-B)'|=—-(A+B)"'B(A-B)™". (2.29)

Applying the regularizer R to the operator N and passing afterwards to the corresponding
equations separately on each half-axis, we arrive at the following system of 2m equations,
up to compact terms T4, j =1,2,3,4,

( oy (z) + Ai(2)C(2) [)° K(2,9)04 (y) dy+
+A1(2)C(2) [5° K (2, —y)p-(—y) dy + Bi(2)C(x) [~ K (2, y)¢-(y) dy+
+B1(2)C () f;° K' (2, —y)e-(=y) dy + Tipy + Top- = fo(z), >0
p-(—x) + Ai (= z) fo K(=z,y)e+(y) dy+
+A1 (= ) o K(=2,—y)e-(=y) dy + Bi(=2)C(~2) [ K' (=2, )0+ (y) dy+

(| +Bi(=2)C (=) [;" K (=2, —y)e-(—y) dy + Tsps + Tap— = f-(-2), x>0,
(1 + signz) ¢(x) and

Kl(xa y) = (kzlj(w7 y)):;=1
with kj;(x,y) calculated by the entries k;;(z,y) via the formula (2.18). We denote
M, =AC=35[(A+B)'+(A-B)]C,

where ¢4 (z) =1

(2.30)
M, =B, C=3[(A+B)"'—(A-B)|C.

8



The matrix-symbol of the obtained system may be written in terms of the matrices M;
and My, according to (2.14), as

I+ Mi(0)K1(2) + M2(0)K () Mi(0)K—(2) + M(0)KL_(2)

Mi(0)K_(2) + My(0)KL  (2) T+ My(0)K__(2) + My(0)KL_(2)

I+ Mi(00)Kys(2) + Ma(00)KL (2)  Mi(00)Ky—(2) + Ma(00)KL_(2)
Mi(00)K-i(2) + Ma(00)KL, (2) I+ Mi(00)K-—(2) + M2(00)KL_(2)

representing a pair of (2m x 2m)-matrices. The (m x m)-blocs K14 (z) and K1, (2) here
are the matrix symbols

{Krjaze(2)}5ey and {K}10(2)})

rj=1

corresponding to the matrices K(x,y) = {krj(m,y)};'szl and K'(z,y) = {k;j(m,y)}:jzl
where the entries k};(x,y) are calculated by the entries ky;(z,y) via the formula (2.18). It
is easy to see that the connections (2.21)-(2.24) remain valid when K14 (2) and K1, (2) are
matrices. Making use of those connections, we calculate the matrices (2.13) and obtain

that the (m x m)-blocs o’ (2) and 0%/ (z) have the form:

l

oy (2) = I+ [M(0) +ictg 2mMs(0)]KC4 4 (2) + Mz(0)K—+(2) ,

o?(2) = [M1(0) +ictg M (O)IC, () + = —Mo(0)K—()
73 (2) = [M1(0) et =M (O, (2) — = —Mp(0)KC. (=)

022(2) = 1 + [My(0) — ictg 2mMa(0)|K—_(2) — —

M(0)K+—(2)

sin 27
and similarly for 0% (2), k,j = 1,2, with M;(0) and My(0) replaced by M;(cc) and My(c0),
respectively.

Similarly to Theorem 2.7 we obtain the following result.

Theorem 2.8. Let the entries of the matrices A(z), B(x), C(x) be in C(R") and the
entries of the matriz K(x,y) satisfy the conditions (2.3)-(2.4). The operator of the form
(2.27) is Fredholm in the space Lg(Rl), l<p<oo,—1<~v<p-—1, if and only if
det[A(z) = B(z)] #0, =€ R' and

! !
det o <i§+1—ﬂ> 20, detoo (¢g+1—ﬂ) 20 (2.31)
p p



for all € € RY. Under these conditions

det oo (zf +1-— HTW>
+ ind
det[A(x) + B(x)] det o <Z§ L1 1+_7>

p

Indpp N = ind det|A(z) — B(x)]

(2.32)

We shall also need a result similar to Theorem 2.8 in the situation when the matrix
singular operator is perturbed by several non-compact operators with homogeneous kernels
with different variable coefficients

Nipi= A)elo) + BE)(SA@) + 3G [ Koy = f@). 239)

where A(z), B(z), Cj(z) are (mxm)— matrices with entries continuous on R', and K;(z, )
are matrix kernels with entries satisfying the conditions (2.3) and (2.4). The corresponding
theorem given below is not derived from Theorem 2.8, but its proof may be obtained in
the same way as that of Theorem 2.8.

As in (2.30), we introduce the matrices M;; = A;C; and M, = B1Cj,j = 1,...,¢,
where A; and B are the matrices (2.28). Let 0¢(z) and 0. (2) be the matrices

a5'(2) 0p*(2) 05c(2) 033(2)
oo(z) = . Onol(2) = , (2.34)
o3t (2) 05 (2) 05(2) 0%2(2)

with the (m X m)-matrix entries

?

)4
) = 1+ 3 {M3a(0) + ety smMa O (2) +

1

Mia0K; ()}, (239

sin z7

l

sin zm

l
oz =3 {[Mj,1<o> ety =M o(0))K 5 (2) +

1

M0k}, (230

<.
Il

i

ol (2) = {[M]-,l(O) —ictg 2mM;2(0)]IC; —4(2) — Mj’2(0),cj’++<z>} . (2.37)

sin zm

1

Mial0Ks ()} (239

sin zm

L
o) = 1+ 3 { [M3a(0) — ety smMza (O, (2) -

and similarly for o*7(2), k,r = 1,2, with M, (0) and M,4(0) replaced by M, ;(co) and
M; 2(00), respectively.

Theorem 2.9. Let the entries of the matrices A(x), B(x), Cj(x),j = 1,2,...,¢, be
in C(RY) and the entries of the matrices K;(x,y),j = 1,..,, satisfy the conditions
(2.8),(2.4). The operator of the form (2.33) is Fredholm in the space L](R'), 1 < p <
00, —1 <y <p—1, if and only if det[A(x) £ B(x)] # 0, € R', and the conditions
(2.31) are satisfied in which the entries of the matrices oo(z) and oo (2) are given by the
formulas (2.35)-(2.38). Under these conditions the formula (2.32) for the index is valid.

10



3 Equations with an involutive operator

We shall base ourselves on the following Theorem 3.10 on Fredholmness of equations with an
involutive operators in Banach spaces, see this theorem in the book [4] or its reformulation
in [6]. Let X be an abstract Banach space. We suppose that the following Axioms 1 and
2 are valid.
AXIOM 1. There exists a Fredholm operator U € L(X) which anti-quasicommutes with
Q, that is,
UQ+QU =T (3.39)

where T 1s compact in X.
AXIOM 2. The operators A and B quasicommute with the operator U from the Aziom
1. AU=UA+T,, BU=UB +1T5. where T} and Ty are compact in X .

Theorem 3.10. Let A, B,Q € L(X) and Q* = I1,Q # +1. The operator K = A+ QB
s Fredholm in X if the operator

A QBQ
K — ( hend ) (3.40)

is Fredholm in X? = X x X. Under the additional assumption that Azioms 1 and 2 are
satisfied, Fredholmness of the operator K is also necessary for that of the operator K and

1

4 Investigation of the equation (1.1)

We consider operator (1.1) in the space LY(R'),1 < p < oo, =1 < v < p — 1. Let
V= 1—27(7 + 1). We suppose that

a(z), b(x), c(x), |z|’sign z a(x), |z|’sign z b(z), |z|’sign z c¢(z) € C(R") (4.1)

and the kernels k(z,y) and ¢(x,y) satisfy the integrability conditions (2.3), (2.4):

) d * d >~ kit
/ |k3(i17y)|—1y+w<oo and / iyﬂ/ t(j;yl)dt

o0 ly| oo |y| 7 1V o0

< 00 (4.2)

and similarly for ¢(z,y).
To formulate Theorem 4.1 below, we use the following notation:

a(@:a(i), g(x):b(i> E(x):c(i), (4.3)

1 1 1
ar(z) = |z|Vsign x a (E) , by(z) = |z|Vsign z b (E) , ¢(x) = || Vsign x ¢ (E) ,
(4.4)

11



and -
a(z) ai(z) b(z) —bi(z)
Ax) = B(x) = (4.6)
ar(r) a(x) bi(z) —b(z)
0 —byi(z) c(x) c¢(x)
Clz) = N . D)= , (4.7)
0 —b(x) ci(z) ()
and

Ai(z) = [A(x)+B(z)] " A)[A(2)-B(z) ™, Bi(z) = —[A(z)+B(2)]"' B(z)[A(x)-B(x)] ™,
under the assumption that the matrices A(z) = B(x) are invertible. We observe that
A(z) = det [A(z) + B(x)], A(z) = det [A(z) — B(z)]. (4.8)
We also introduce the matrix
ki(z,y) kia(z,y)
K(z,y) = , (4.9)
koi(z,y)  koa(z,y)
where ki1(x,y) = k(z,y) and ko (z,y) = ¢(x,y) and

|y| v 11 1
(m k 2y) k12(ﬂ%y):E

Y11
(4) ¢(55).  wo
|| vy
and the corresponding (4 x 4)-matrix symbol

( Myi(2) Mi_(2) )
(4.11)
M_(2) M__(2)

1
2

koo (z,y) =
22(2, Y) y

with the (2 x 2)-blocks

( ’Cii(Z) Eii(Z) )
./\/lii(z) = s (4.12)
K::ti<2—l/—2) [,ii(2—y—z)

where K1y (2) and Li4(2) are the Mellin transforms:

Kii(z):/ yz_lk(:lzl,:i:y)dy, Eii(z):/ yz_lé(:lzl,:i:y)dy,
0 0

and k(z,y) and ¢(z,y) being the initial kernels from (1.1).

For the posterior calculation of the blocks M. (z) we observe that for z = i + 1 — HTW

we have L+
2 y—z=—ift+1- -7 (4.13)

p
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Let 0y(z) and 0. (2) be the matrices (2.34) with the (2 x 2)-entries calculated by
formulas (2.35)-(2.38) with ¢ = 2. In our case we have

0g' (2) = I — [o(2) B1(0) +iB(2) A1 (0)] C(0)
+A1(0)D(0)M 4 (2) +iB1(0)D(0) [ctg 72 M1 (2) + cosec Tz M_,(2)], (4.14)

09" (2) = [u(2) B(0) — iv(2) A1(0)] C(0)
+A1(0)D(0)My_(2) +iB1(0)D(0) [ctg 72 M4 _(2) + cosec Tz M__(2)], (4.15)

05 (2) = [u(2)B1(0) + iv(2) A1(0)] C(0)
+A1(0)D(0)M_,(2) — iB1(0)D(0) [ctg mz M_(2) + cosec 7z M, (z)], (4.16)

05°(2) = I — [a(2)B1(0) — iB(2) A1 (0)] C(0)
+A1(0)D(0)M__(z) —iB1(0)D(0) [ctg mz M__(2) 4 cosec mz M, _(2)], (4.17)
where «(z), 3(z),u(z) and v(z) are the functions

1+ cosvm sin v
a(z) = ——-— B = ——— :
sin zmsin(z + v)w sin zm sin(z + v)w

and . _
cos(z 4+ v)m + cosvm _sin(z +v)m +sinvr

u(z) = , v(z) =

sin zm sin(z + v)w

sin zwsin(z + v)m
and similarly for o, (z) with A;(0) replaced by A;(c0) etc.
Theorem 4.1. Let the kernels k(z,y) and ((x,y) satisfy the conditions (4.2). Under

assumptions (4.1) the operator K is Fredholm in the space Lg(Rl), l<p<oo,—-1<vy<
p — 1, if and only if

) 1 )
A(z) #0, x€ R and detog (25 +1-— ﬂ) #0, &e€R. (4.18)
p
Under these conditions
. ‘ . 14+~
Ind;y K = ind A(x) — ind detog (i +1———|. (4.19)
i p

Proof. Since the shift operator in the form ¢ (1) is unbounded (in the space LY(R"),
for example), we introduce the involutive operator @ by the formula

sign x 1
= — 4.20
Qo) = 2825 () (4.20)
which gives a bounded and isometric operator: ||Qepl|r; = [|¢||Ly-

13



We represent the operator (1.1) in the form K = A + @B, where

Ap=ap+bSp+cHp, Bp=ap+bSp+cLp (4.21)
and - -
Hy = / k(z,y)e(y)dy, Ly = / Uz, y)p(y)dy (4.22)

and the notation (4.4) is used.

To apply the general Theorem 3.10, we need to verify Axioms 1-2 . The most important
requirement of those axioms is the existence of a Fredholm operator U anti-commuting with
the involutive operator () and commuting with the operators of the type A, B. In the case
when the operators (1.1) did not contain the singular operator S, we could take U as
an operator of multiplication by a piece-wise constant function with a jump at the point
x =1 (as it was done in [6]). This is now impossible because of the presence of the singular
operator. This problem is now overcome by introduction of a special kind of the operator
U. Namely, let

LN <It|>o‘ p(t)dt (4.23)

i o m t—x

be the weighted singular operator. We introduce the operator U in terms of the operator
S with a = ”T_lz

2% —1
241

The operator (4.24) is Fredholm in the space LY(R') and satisfies the relation UQ +
QU =0, so that Axiom 1 is fulfilled.

Now we have to verify Axiom 2. To this end, we notice that all the coefficients involved
in (4.21) and (4.24) are continuous on C(R!), so that they commute, up to a compact
term, with the singular operator and with operators with a homogeneous kernel.

Then it remains to verify only the quasicommutation of the operator vyS “T5 with

the operators S and H and L, where vy(z) = exp (—:r2 — x—lg) For the operator S, the

Up = olz) + ie "2 (S" T )(x). (4.24)

corresponding commutant vy.S TS — SvpS = may be calculated, up to compact terms, by
means of the formulas (24.9") and-(24.10") from [4], p. 148):

<%§?S—S%§T)¢=%<§?S—S§?>+T¢

v—1
2

t
x

vo(z), (v—1m /°° sign x — signt | signt
s 4 oo t—x sign x

- 1] et)dt+Te  (4.25)

where T" is a compact operator. The same is true for the first term in (4.25), since it is an
operator with a kernel homogeneous of degree —1 and the coefficient vy(x) vanishes at the
points x = 0 and = oo, which provides the compactness of the operator, see for example
Theorem 2.9 from [5] on compactness of operators with homogeneous kernels in the case
of continuous coefficients vanishing at infinity and at the origin.
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As regards the quasicommutativity of the operator vyS “* with an operator H with a
. v—1 v—1
homogeneous kernel, in the commutant vgS 2 H — HvyS 2 even every term proves to be
a compact operator. Indeed,

ST H=S8%vH+T=T,

with a compact operator U, since voH is compact.
Axioms 1-2 being satisfied, we may apply Theorem 3.10 which leads to the matrix

operator K = ( g 858 > To calculate the operators A; = QAQ and B; = QBQ, we

observe that QSQ~' = —S¥~! | so that
Ay =ap — bS" ' +EH,p, Bip=a1p— 0,5 + ¢ L,

where the notation (4.3) is used and

o0

H*soz/_oo k1o, y)p(y)dy, L*soz/_ koo (, y)p(y)dy,

[e.e] [e.e]

where kio(x,y) and keo(z,y) are kernels (4.10).
Thus, we arrive at the matrix operator

al +bS+cH al—b,5""4+¢L.
K = (4.26)
Cl1]+[115+C1L EI—bS”_1+EH*

which may be rewritten as a matrix singular integral operator perturbed by two matrix
operators with kernels homogeneous of degree —1 in the form:

Ko = Ao+ [ 20Ysow) [* Ko ar@) [ Kot dy

o Y—
(4.27)
where ¢(z) = {p1(z), p2(x)}. The matrix kernel K (z,y) was defined in (4.9) while
ko(x,y) 0
Ko(z,y) = : (4.28)
0 ko(% y)

where ko(z,y) is the kernel

v—1
|yl _
oy () -1
olz,y) = — E— (4.29)

Matrix singular operators of the type (4.27) were investigated in Section 1, see the
equation (2.35). We intend to apply Theorem 2.9 for which we have to verify the assump-
tions of that theorem. The conditions of Theorem 2.9 on the matrix coefficients A(zx), B(x)
and Cy(z) = C(z) and Cy(x) = D(zx) are satisfied because of the assumptions (4.1). It
remains to show that the entries of the matrices Ko(z,y) and K (x,y) satisfy the conditions
(4.2). In the case of Ko(z,y), its entry ko(x,y) is of special type and the conditions (4.2)

15



are easily seen to be satisfied. In the case of the matrix K(z,y), the fulfillment of the
conditions (4.2) for the entries k(z,y) = ki2(z,y) and {(x,y) = ko1 (z,y) was postulated in
the assumptions of the theorem. To check the conditions (4.2), for example, for the entry
kio(z,y), we remind that the second of the assumptions in (4.2) is a condition sufficient for
the composition SH to have the kernel satisfying the first of conditions in (4.2). Thus, to
verify (4.2), in the case under the consideration we have to check the first of the conditions
in (4.2) for the composition SH, where H, is the operator with the kernel ki5(z,y). Since
SQ = —QS"!, we have

SQHQ = —QS" "HQ =Q(S - S HYHQ — QSHQ.

On the right-hand side of this formula, for the term QSHQ the conditions from (4.2) is
valid by the assumption, while for the first term this condition is satisfied automatically,
because operators with homogeneous kernels satisfying the first of the conditions in (4.2)
form an algebra.

Therefore, all the assumptions of Theorem 2.9 are satisfied. Applying this theorem,
we calculate the entries o (2) and 0%/ (z) by formulas (2.35)-(2.38) and note that in those
formulas ¢ = 2 and the matrix symbols K; ;14 (2) are given by (2.21), while ICy 44 (2) are
generated by matrix (4.11). The matrix symbol K; 4+ (2) corresponds to the case when the
homogeneous kernels are absent in (1.1) and this symbol is known, see [4], p. 145, formula
(23.17). Taking this calculation into account, after easy transformations we arrive at the
matrix symbols o¢(2) and 0, (z) with the blocks defined in (4.14)-(4.17). The application
of Theorem 2.9 gives (4.18)-(4.19) if we take the relation

det 0s (—z'g +1- 1) = det o (z’£ +1- 1) (4.30)
p p

into account. The latter may be verified directly. O
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