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Abstract
The detailed consideration of fractional order function spaces of the type Cλ(Sn−1) and
Hλ(Sn−1), λ > 0, is presented. The former is defined in terms of fractional differentiation
on the base of the space C(Sn−1), the latter is the Hölder type space. The averaged type
Hölder spaces Hλ(Sn−1) are also dealt with. It is shown that that in case when λ ≥ 1, all
these spaces coincide, or on the contrary are different, depending on the fact what kind of
definition of the differentiation of integer order is used: in terms invariant with respect to
rotations or in terms connected with differentiation with respect to Cartesian coordinates
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1 Introduction

The main goal of the paper is to compare different approaches to function spaces of frac-
tional smoothness on the unit sphere, constructed on the base of the space C(Sn−1), n ≥ 2.
The spaces Cλ(Sn−1) and the Hölder type spaces Hλ(Sn−1), λ > 0, are considered. When
λ > 1 (or λ > 2 in the case of averaged Hölder spaces), the crucial point is the choice
of the definition of differentiability of integer order for functions on the unit sphere. This
definition may be given following two principally different approaches:

I) in inner terms of the sphere,
II) in terms of continuation, for instance, the homogeneous continuation to Rh\{0}

and posterious differentiation with respect to Cartesian coordinates.
This will be explained in detail in Section 2. What should be emphasized immediately,

is the following. The space C1(Sn−1) defined by I) does not coincide with the same space
via the approach II). This happens because via I) we obtain functions representable by the



first order potential with a continuous density, and after the differentiation of this potential
with respect to Cartesian coordinates we arrive at a singular integral operator (in case
n ≥ 2), which does not preserve the space of continuous functions, as is known. Therefore,
the definition of fractional order function spaces of the type Cλ(Sn−1) or Hλ(Sn−1) in
case λ ≥ 1 depends on the choice of the notions of differentiation used. We pay a special
attention to the Hölder type spaces Hλ(Sn−1) in case of integer λ.

The paper represents a development and refinement of the results given in the preprint-
type publication [22], see also the brief communication [23].

Section 2 contains exact settings of the problems under consideration and formulations
of the final statements. In particular, the coincidence of the usual and averaged Hölder
spaces is formulated there, and it is also stated that the ”inner” and ”outer” definitions of
the space C1(Sn−1) gives different spaces, indeed. (Roughly speaking, ”inner” definitions
are those which are invariant with respect to rotations). Section 3 includes some prelim-
inaries and auxiliary results, while in Section 4 there are given the proofs of the main
statements.

N o t a t i o n
We use the standard notation of harmonic analysis, see e.g. Stein [19] or Stein and

Weiss [20]; in particular, Ymµ(σ), σ ∈ Sn−1, denote the basis spherical harmonics on the

unit sphere Sn−1 in Rn, |Sn−1| = 2π
n
2

Γ(n
2 )

is its area;

e1 = (1, 0, ..., 0), ... , en = (0, ..., 0, 1);
an operator K invariant with respect to rotations is called spherical convolution operator;
its action on spherical harmonics Ymµ(σ) is reduced to multiplication by some numbers km;
the sequence {km}∞m=0 is known as a Laplace-Fourier multiplier;
in the case of a ”nice” multiplier, the spherical convolution operator has the form Kϕ =∫

Sn−1 k(x · σ)dσ, x ∈ Sn−1;
δ is the Beltrami-Laplace differentiation operator on the unit sphere with the Laplace-
Fourier multiplier {m(m + n− 2)}∞m=0;
δα is defined by the multiplier {[m(m + n− 2)]α}∞m=0;
fmµ = (f, Ymµ) , (f, g) =

∫
Sn−1 f(σ)g(σ) dσ;

C∞(Sn−1) stands for the class of functions f(σ), σ ∈ Sn−1, such that f
(

x
|x|

)
∈ C∞(Rn\{0});

j = (j1, ..., jn) denotes a multi-index with integer components, |j| = j1 + ... + jn;

Dkf = |x| ∂
∂xk

f
(

x
|x|

)
, k = 1, ..., n, denote the differentiation operators preserving the order

of homogeneity; D = (D1, ..., Dn), Dj = Dj1
1 · · ·Djn

n ;
[λ] is the entire part of the number λ > 0;
notation X −→ Y means that X is continuously embedded into Y .

2 Formulation of the main statements

We start with the space C1(Sn−1). It is possible to define it by many ways. Along the
approach I) (see Introduction), the following variants of definition are possible:

1) to suppose existence of δ
1
2 in the strong sense, that is, C1(Sn−1) may be defined as
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a closure of C∞(Sn−1) with respect to the norm ‖f‖C + ‖δ 1
2 f‖C ;

2) to close C∞(Sn−1) with respect to the norm ‖f‖C + ‖Df‖C , where D is any operator
invariant with respect to rotations, whose multiplier {dm}∞m=0 admits the asymptotics

dm = am + a0 +
a1

m
+ ... +

a[n+1
2

]

m[n+1
2

]
+ O

(
1

m
n
2
+ε

)
, a 6= 0; (2.1)

3) to suppose that there exists δ
1
2 f (or Df , where D has a multiplier with the asymptotics

(2.1)) in the weak sense, that is, there exists a function g(σ) ∈ C(Sn−1) such that (g, ω) =

(f, δ
1
2 ω) for all ω ∈ C∞(Sn−1);

4) to suppose that there exist continuous limiting values limr→1
d
dr

Prf of the radial
derivative of harmonic continuation of the function f , Pr being the Poisson operator

(Prf)(x′) =
1

cn

∫

Sn−1

1− r2

|rx′ − σ|n f(σ) dσ, r = |x|, x′ =
x

|x| ∈ Sn−1; (2.2)

5) to define the space C1(Sn−1) as a set of functions representable by the first order
potential of a continuous function:

f(x) = K1ϕ =
1

γn−1(1)

∫

Sn−1

ϕ(σ)dσ

|x− σ|n−2
, ϕ(σ) ∈ C(Sn−1), n ≥ 3, (2.3)

where x ∈ Sn−1, and γn−1(1) is the known normalizing constant, see (2.12); in the case
n = 2 this potential is introduced as

K1ϕ =
1

π

∫

S1

ϕ(σ)ln
1

|x− σ| dσ =
1

2π

∫

S1

ϕ(σ)ln
1

2(1− x · σ)
dσ , (2.4)

6) to define C1(Sn−1) as the set of functions for which there converges the spherical
hypersingular integral of order 1:

D1f =
1

γn−1(−1)
lim
ε→0

(C(Sn−1))

∫

|x′−σ|>ε

f(σ)− f(x′)
|x′ − σ|n dσ ∈ C(Sn−1) (2.5)

known as Riesz spherical differentiation operator (of order 1), see (2.22) below; we refer
also to Lemma 3.13 in connection with the approach 6).

As regards the approach II), one may suggest the following definitions:

7) to suppose that the homogeneous continuation f
(

x
|x|

)
of a function f(σ), σ ∈ Sn−1

has usual partial derivatives, continuous in Rn\{0};
8) to suppose that the same derivatives exist in the weak sense, which means that there

exist continuous functions gk(σ) ∈ C(Sn−1), such that

(f,Dkω) = (n− 1)(Akf, ω)− (gk, ω) (2.6)

where
(Akf)(σ) = σkf(σ) (2.7)

(we justify the interpretation (2.6) of weak derivatives Dkf below at the end of this section);
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9) local approach is possible: to suppose that the ”projection” of a function f(x), x ∈
Sn−1, onto the tangent plane is differentiable in a neighborhood of the point x, for any
x ∈ Sn−1.

One can also treat C1(Sn−1) by considering differentiability along geodesic lines (as in
Nikol’skii and Lizorkin [11]), but we do not dwell on this approach here

By elementary arguments it is shown that the classes C1(Sn−1), defined by the defini-
tions 7) and 9) coincide.

Definition 2.1. By Wλ,N with λ ∈ R1, N = 1, 2, 3, ... we denote the class of spherical
Laplace-Fourier multipliers {km}∞m=0, which have the following asymptotics at infinity

km =
N∑

i=0

cim
−λ−i + O

(
m−λ−N−ε

)
, c0 6= 0,

for some ε > 0.
An easily verified sufficient condition for {km}∞m=0 to be in Wλ,N is that km has the

form

km =
a(m)

mλ
, m = 1, 2, 3, ... (2.8)

where the function a(r) is defined for all r > 0 and a
(

a
r

) ∈ CN([0, δ]) for some δ > 0.

Theorem A. The following spaces
1) the closure of C∞(Sn−1) with respect to the norm ‖f‖C + ‖δ 1

2 f‖C;
2) the closure of C∞(Sn−1) with respect to the norm ‖f‖C+‖Df‖C, where D is any spherical
convolution operator with a multiplier in W1,N , N > n

2
;

3) the space of functions f ∈ C(Sn−1) which have δ
1
2 f(or Df) in the weak sense, that

is, there exists g ∈ C(Sn−1) such that (g, ω) = (f, δ
1
2 ω) for all ω ∈ C∞(Sn−1), ‖f‖ =

‖f‖C + ‖g‖C ;
4)

{
f ∈ C(Sn−1) : g(σ) = limr→1

(
d
dr

Prf
)
(σ) ∈ C(Sn−1)

}
, ‖f‖ = ‖f‖C + ‖g‖C ;

5) {f(x) : f(x) = K1ϕ, ϕ ∈ C(Sn−1)} , ‖f‖ = ‖ϕ‖C ;
6) {f(x) : ‖f‖ = ‖f‖C + ‖D1f‖C < ∞} ;
coincide up to equivalence of norms.

Remark 2.2. The equivalence of the spaces 3) and 4) may be treated in the form:
for f ∈ C(Sn−1), the following statements are equivalent: a) there exists a function g ∈
C(Sn−1) such that mfmµ = gmµ, and b) there exists a function g ∈ C(Sn−1) such that
limr→1

∥∥Prf−f
1−r

− g
∥∥ = 0. This equivalence was proved in Butzer and Johnen [4], p. 245.

Theorem B. The spaces of functions f(σ) ∈ C(Sn−1), for which
7) ‖f‖ = ‖f‖C +

∑n
k=1 ‖Dkf‖C < ∞, and

8) there exist functions gk ∈ C(Sn−1) satisfying the relation (2.6), ‖f‖ = ‖f‖C +∑n
k=0 ‖gk‖C,

coincide up to equivalence of norms.

Theorems A and B allow us to give the following definitions below.
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Definition 2.3. By C1(Sn−1) we denote any of the spaces 1) - 6) and by C1(Sn−1) - any
of the spaces 7)-8). Similarly, Cr(Sn−1), r = 1, 2, 3, ... will denote the space of functions

on Sn−1 with homogeneous continuation f
(

x
|x|

)
continuously differentiable up to the order

r:

Cr(Sn−1) =

{
f ∈ C(Sn−1) : Dj f

(
x

|x|
)
∈ C

(
{x :

1

2
≤ |x| ≤ 2}

)}
. (2.9)

Theorem C. C1(Sn−1) 6= C1(Sn−1). Moreover, C1(Sn−1) * C1(Sn−1) and C1(Sn−1) *
C1(Sn−1).

Definition 2.4. By Cλ(Sn−1), λ > 0 we denote the closure of C∞(Sn−1) with respect

to the norm ‖f‖C + ‖δ λ
2 f‖C.

Remark 2.5. The definition of the space Cλ(Sn−1) remains equivalent if we replace

the operator δ
λ
2 by any spherical convolution operator Dλ in the class Wλ,N , N > n

2
. This

may be shown as in the proof of the part 1) ←→ 2) of Theorem A.

The space Cλ(Sn−1) is related to the range of the spherical Riesz potentials (|x| = 1):

Kλϕ =
1

γn−1(λ)

∫

Sn−1

ϕ(σ)dσ

|x− σ|n−1−λ
, λ > 0, λ 6= n− 1, n + 1, n + 3, ... (2.10)

Kλϕ =
1

γn−1(λ)

∫

Sn−1

ln
√

2
|x−σ|

|x− σ|n−1−λ
ϕ(σ)dσ, λ = n− 1, n + 1, n + 3, ... (2.11)

where the normalizing constant γn−1(λ) is given by the formula

γn−1(λ) =
2λπ

n−1
2 Γ

(
λ
2

)

Γ
(

n−1−λ
2

) (2.12)

when λ− n 6= −1, 1, 3, ... and γn−1(λ) = (−1)k2λ−1π
n−1

2 Γ
(

λ
2

)
k!, when λ = n− 1− 2k, k =

0, 1, 2, ..., see Samko [17], Ch. 6 . It is also known that in the case λ 6= n − 1 + 2k, k =
0, 1, 2, ..., the Laplace-Fourier multiplier of the operator Kλ is equal to

{
kλ

m

}∞
m=0

=

{
Γ

(
m + n−1−λ

2

)

Γ
(
m + n−1+λ

2

)
}∞

m=0

∈ Wλ,N . (2.13)

In the case when λ = n − 1 + 2k, k = 0, 1, 2, ... the multiplier has same expression for all
m ≥ k, but for a finite number of indices m = 1, 2, ..., k the expression is different:

kλ
m =

(−1)k−m

(k −m)!(n + k + m− 2)!
[ψ(n + k + m− 1)

+ψ(k −m + 1)− ψ(k + 1)− ψ

(
k +

n− 1

2

)
− ln 2

]
, m = 0, 1, 2, ..., k. (2.14)
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In particular, when n = 2 and λ = 1, one has

{
kλ

m

}∞
m=0

=

{
1
m

, m = 1, 2, 3, ...
ln 2 , m = 0 .

(2.15)

The inclusion into Wλ,N in (2.13) is valid for an arbitrary integer N , which is easily

obtained by means of the asymptotic relation for Γ(z+a)
Γ(z+b)

, see e.g. Luke [9], p. 20 (Russian

ed.).
We note that

kλ
m 6= 0 for all m = 0, 1, 2, ... and λ > 0.

This is obvious in the case (2.13), while in the case (2.14) it suffices to observe that the
expression in the brackets in (2.14) has the form (−1)n ln 2 + a rational number. The
last statement can be easily obtained by means of the known properties of the ψ-function,
see Gradstein and Ryzhik [7], N 8.365.4 and N 8.366.3.

Sometimes there are considered other spherical potential operators, the kernels of which
may be expressed in terms of some special functions, but which have ”nice” multipliers,
see for instance Samko [17], Ch. 6, Section 2.3. For example, spherical potential operators

Kλϕ =
1

Γ(λ)

∫ 1

0

(
ln

1

r

)λ−1

(Prϕ)(x)dr, λ > 0, (2.16)

and

Kλϕ =
1

Γ(λ)

∫ 1

0

(1− r)λ−1(Prϕ)(x)dr, λ > 0, (2.17)

where Prϕ is spherical Poisson integral (2.2), have the Fourier-Laplace multipliers equal to

kλ
m =

1

(m + 1)λ
in the case of Kλ and kλ

m =
Γ(m + 1)

Γ(m + 1 + λ)
in the case of Kλ. (2.18)

Theorem D. For any λ > 0

Cλ(Sn−1) = Kλ
[
C(Sn−1)

]
= Kλ

[
C(Sn−1)

]
= Kλ

[
C(Sn−1)

]
; (2.19)

and a function f(x) ∈ C(Sn−1) is in Cλ(Sn−1) if and only if there exists a function ϕ(x) ∈
C(Sn−1) such that

kλ
mfmµ = ϕmµ for all m = 1, 2, 3, ... (2.20)

where km is one of the multipliers (2.18).
In the case 0 < λ < 2, the space Cλ(Sn−1) may be also characterized as the subspace of

functions f(x) ∈ C(Sn−1) for which there exists the limit of the type (2.5):

Dλf = lim
ε→0

(C(Sn−1))

Dλ
εf (2.21)

where

Dλ
εf =

1

γn−1(−λ)

∫

|x′−σ|>ε

f(σ)− f(x′)
|x′ − σ|n−1+λ

dσ, x ∈ Sn−1. (2.22)
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Definition 2.6. By Hλ(Sn−1), 0 < λ ≤ 1, we denote the space of functions f(x)
satisfying the usual Hölder condition on the sphere:

‖f‖Hλ := ‖f‖C + sup
t>0

ω(f, t)

tλ
< ∞, (2.23)

where
ω(f, t) = sup

|x−σ|≤t; x,σ∈Sn−1

|f(x)− f(σ)|. (2.24)

We shall also deal with the averaged Hölder condition. Let Sh be the the averaged shift
operator :

(Shf)(x) =
1

|Sn−2| sinn−2 h

∫

x·σ=cos h

f(σ)dσ, n ≥ 3, (2.25)

known also as spherical means, see Berens, Butzer and Pawelke [3] and Pawelke [14],

which in the case n = 2 should be replaced by (Shf)(x) =
f(x+

h )+f(x−h )

2
, where x±h =

(x1 cos h± x2 sin h, x1 cos h∓ x2 sin h).
Let

ω∗(f, t) = sup
0<h≤t

sup
x∈Sn−1

|f(x)− (Shf)(x)| (2.26)

so that ω∗(f, t) ≤ ω(f, t).

Definition 2.7. By Hλ
∗ (Sn−1), 0 < λ ≤ 2, we denote the Hölder type space of functions

f(x) for which

‖f‖Hλ∗ := ‖f‖C + sup
t>0

ω∗(f, t)

tλ
< ∞. (2.27)

The spaces Hλ(Sn−1) and Hλ
∗ (Sn−1) of arbitrary order λ > 0 may be introduced via

subsequent differentiation. This may be done in two different ways according to the ap-
proaches I) and II), see Introduction. Basing on Definitions 2.3 and 2.4, we introduce the
following definition.

Definition 2.8. Let λ > 0. 1). By Hλ(Sn−1) we denote the space of functions in
C[λ](Sn−1) such that

δ
[λ]
2 f ∈ Hλ−[λ](Sn−1), if λ 6= 1, 2, 3, ... (2.28)

and δ
λ−1

2 f ∈ H1(Sn−1), if λ = 1, 2, 3, ....
2). We say that f(x) ∈ Hλ(Sn−1), if f(x) ∈ C [λ](Sn−1) and Djf ∈ Hλ−[λ](Sn−1) for

all the multi-indices j with |j| ≤ [λ], λ 6= 1, 2, 3, ...; in case λ = 1, 2, 3, ... we require that
Djf ∈ H1(Sn−1) for all |j| ≤ λ− 1.

By this definition, Hλ(Sn−1) = Hλ(Sn−1) = Hλ(Sn−1) in the case 0 < λ < 1.

Remark 2.9. It may be shown that in Definition 2.8 the requirement (2.28) is equiv-
alent to D[λ]f ∈ Hλ−[λ](Sn−1), where D[λ] is any spherical convolution operator with the
multiplier {km} in the class Wλ,N , N > n

2
.

The ”averaged” Hölder spaces for λ > 2 are introduced by the following definition.
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Definition 2.10. Let λ > 0. 1). By Hλ
∗(S

n−1) we denote the space of functions f(x)

in C2[λ
2 ](Sn−1) such that

δ[
λ
2 ]f ∈ H

λ−2[λ
2 ]∗ (Sn−1), λ 6= 2, 4, 6, ... (2.29)

which should be replaced by δ
λ−2

2 f ∈ H2
∗ (S

n−1) when λ = 2, 4, 6, ....

2). By Hλ
∗(S

n−1) we denote the space of functions f(x) ∈ C2[λ
2 ](Sn−1) for which Djf ∈

H
λ−2[λ

2 ]∗ (Sn−1) for all the multi-indices j with |j| ≤ 2
[

λ
2

]
, λ 6= 2, 4, 6, ... with a similar

change in the case when λ = 2, 4, 6, ...
Norms in the spaces Hλ

∗(S
n−1) and Hλ

∗(S
n−1) are introduced in the natural way.

Theorem E. Let λ > 0, λ 6= 1, 2, 3, ... Then

Cλ(Sn−1) −→ Hλ(Sn−1), Cλ(Sn−1) 6= Hλ(Sn−1) (2.30)

and
Hλ(Sn−1) = Hλ(Sn−1) = Hλ

∗(S
n−1) = Hλ

∗(S
n−1), (2.31)

up to equivalence of norms in (2.31). When λ = 1, 2, 3, ..., the spaces Hλ(Sn−1) and
Hλ(Sn−1) are different from each other, and are not embedded one into another, but

Hλ(Sn−1) −→ Hλ
∗(S

n−1).

Finally, the following lemma gives a justification of the definition (2.6) for weak deriva-
tives.

Lemma 2.11. Let f
(

x
|x|

)
∈ C1(Rn\{0}). Then

(f, Dkω) = (n− 1)(Akf, ω)− (Dkf, ω), ω ∈ C∞(Sn−1), k = 1, ..., n. (2.32)

Proof. We have
∫

Sn−1

(Dkω)(σ)f(σ) dσ = (n− 1)

∫

|x|<1

f

(
x

|x|
)

∂

∂xk

[
ω

(
x

|x|
)]

dx

= (n− 1)

{∫

|x|<1

∂

∂xk

[
f

(
x

|x|
)

ω

(
x

|x|
)]

dx−
∫

|x|<1

∂

∂xk

[
f

(
x

|x|
)]

ω

(
x

|x|
)

dx

}
.

Applying the Gauss-Ostrogradski formula, we arrive at the relation (2.32). 2

3 Preliminaries and auxiliary statements

a). Differentiability of spherical means with respect to the parameter. We find
it convenient to introduce another notation for spherical means (2.25) in the following way:

(Ttf)(x) =
1

|Sn−2|(1− t2)
n−2

2

∫

x·σ=t

f(σ)dσ, |x| = 1, −1 < t < 1 (3.1)
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when n ≥ 3, and similarly for n = 2. Obviously, Ttf = Sarccos tf and Shf = Tcos hf.
Spherical means in the form (3.1) were essentially used in Samko [16], see also [17], Chapter
4. We are now interested in the knowledge of the behaviour of ∂

∂t
Ttfas t → 1. As is

well known, the operator Tt is invariant with respect to rotations and its Laplace-Fourier
multiplier is the generalized Legendre polynomial with respect to the parameter t:

(TtYm)(x) = Pm(t)Ym(x), m = 0, 1, 2, ..., x ∈ Sn−1 (3.2)

where Pm(t) = C
n−2

2
m (t)

C
n−2

2
m (1)

in the case n ≥ 3, C
n−2

2
m (t) being the Gegenbauer polynomial, and

Pm(t) is the Chebyshev polynomial in the case n = 2. We observe the formula

(Ttf, ϕ) = (f, Ttϕ) (3.3)

for all f, ϕ ∈ C(Sn−1).

Lemma 3.1. Let f ∈ C(Sn−1) be differentiable in the sense 7) (see Section 2). The
formula is valid

∂

∂t
Ttf =

1

1− t2
x · (Tt grad f) (x), |x| = 1, (3.4)

where grad f = (D1f, ..., Dnf) and Tt grad f = (Tt D1f, ..., Tt Dnf).
This formula was proved in [16], p.166, in the form

∂

∂t
Ttf =

1

1− t2

n∑

k=1

[
xk

|x|(TtDkf)(x)− tTtxk(Dkf)(x)

]
,

where the last sum in reality disappears, since
∑n

k=1 tTtxk(Dkf)(x) = Tt(x · grad f(x)) =
0, |x| = 0, by the Euler equation for homogeneous functions.

The next lemma provides another formula for differentiation of the means with respect
to the parameter.

Lemma 3.2. Let f ∈ C(Sn−1) be differentiable in the sense 7). Then

∂

∂t
Ttf =

(n− 1)tTtf −
∑n

k=1 DkTtAkf

1− t2
, (3.5)

where (Akf)(x) = xkf(x), |x| = 1.

Proof. We differentiate the equality in (3.3) with respect to the parameter t, taking
ϕ(σ) ∈ C∞(Sn−1) and applying formula (3.4), which yields

d

dt
(Ttf, ϕ) = (f,

∂

∂t
Ttϕ) =

1

1− t2

n∑

k=1

(Akf, TtDkϕ). (3.6)

Hence, by (3.3) and (2.32),

d

dt
(Ttf, ϕ) =

1

1− t2

n∑

k=1

[(n− 1)(Akf, TtAkϕ)− (DkTAkf, ϕ)]

9



Obviously,
n∑

k=1

AkTtAkf = tTtf. (3.7)

Therefore,

d

dt
(Ttf, ϕ) =

1

1− t2

(
(n− 1)tTtf −

n∑

k=1

DkTtAkf, ϕ

)
(3.8)

and then to obtain (3.4), it remains to refer to Remark 3.3 given below. 2

Remark 3.3. Let ft(σ), ft(σ) ∈ C((−1, 1) × Sn−1). If d
dt

(ft, ϕ) = (gt, ϕ) for all ϕ ∈
C∞(Sn−1), then ft(σ) is differentiable in t and ∂

∂t
ft(σ) = gt(σ).

The proof is obvious.
Corollary. For functions f differentiable in the sense 7), the relation is valid

n∑

k=1

(AkTtDk + DkTtAk)f = (n− 1)tTtf. (3.9)

Indeed, (3.9) is obtained by comparison of (3.4) and (3.5).
In the next lemma we extend the formula (3.4) to the case when the information about

the usual differentiability is replaced by the weak one.

Lemma 3.4. Let f ∈ C(Sn−1) have weak first order derivative gk = Dkf, k = 1, ..., n,
in the sense (2.6). Then

∂

∂t
Ttf =

1

1− t2

n∑

k=1

AkTtgk. (3.10)

Proof. Let ϕ(x) ∈ C∞(Sn−1). By (3.3) and (3.5), we obtain

d

dt
(Ttf, ϕ) =

(n− 1)t

1− t2
(f, Ttϕ)− 1

1− t2

n∑

k=1

(f,DkTtAkϕ).

Since TtAkϕ ∈ C∞(Sn−1), by the definition in (2.6) and the property (3.7) we have

d

dt
(Ttf, ϕ) =

1

1− t2

n∑

k=1

(gk, TtAkϕ)

whence (3.10) follows in view of Remark 3.3 and arbitrariness of ϕ ∈ C∞(Sn−1). 2

Lemma 3.5. Let f ∈ C(Sn−1) have weak first order derivative gk = Dkf, k = 1, ..., n,
in the sense (2.6). Then the same is true for the functions Ajf, j = 1, ..., n.

The proof is direct.
We need below also the following formulas (see Samko [16], p. 167, or [17], Ch.4, Lemma

4.13): ∫

Sn−1

f(x′ · σ)ϕ(σ) dσ =
2π

n−1
2

Γ
(

n−1
2

)
∫ 1

−1

f(t)(Ttϕ)(x′)(1− t2)
n−3

2 dt, (3.11)
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(Ttσk)(x
′) = t

xk

|x| , (Ttσ
2
k)(x

′) =
1

n
− 1

n
P2(t)

(
1− n

x2
k

|x|2
)

, (3.12)

where x′ = x
|x| ∈ Sn−1 and P2(t) is the generalized Legendre polynomial, see (3.2), of order

2.
b) On continuity moduli. Besides the continuity moduli ω(f, t) and ω∗(f, t), the

following continuity modulus is also known to be considered on the sphere:

ωρ(f, t) = sup
x,y∈Sn−1

ρ(x,y)≤t

|f(x)− f(y)|,

where ρ(x, y) is the distance between the points x, y ∈ Sn−1 measured along the geodesic
line passing through these points. The inequalities are valid

ωρ(f, t) ≤ ω(f, t) ≤ ωρ(f, kt), k =
π

2
, (3.13)

which is obtained from the bounds 1 ≤ ρ(x,y)
|x−y| ≤ k. Evidently,

ω∗(f, t) ≤ ω(f, t). (3.14)

The following properties of the moduli ω, ω∗ and ωρ are known:

ωρ(f, λt) ≤ (1 + λ)ωρ(f, t), (3.15)

ω(f, λt) ≤ (1 + kλ)ω(f, t), (3.16)

ω∗(f, λt) ≤ A(1 + λ)2ω∗(f, t), (3.17)

where λ > 0 and A > 0 is some absolute constant not depending on λ and f . The
inequality (3.15) follows from its validity for periodic functions of one variable, see Lizorkin
and Nikol’skii [11]; (3.16) is derived from (3.15) in view of (3.13), while (3.17) was proved
in Pawelke [14].

c) Identity approximations on the sphere. The spherical convolution operator

fε(x) =

∫

Sn−1

kε(x · σ) f(σ) dσ, |x| = 1, (3.18)

is known to be called the identity approximation in the space X of functions on Sn−1, if
limε→0 ‖fε − f‖X = 0.

The following statement is known, see Berens, Butzer and Pawelke [3], p.210.

Lemma 3.6. Let the kernel kε(t) satisfy the conditions

a) |Sn−2| ∫ 1

−1
kε(t)(1− t2)

n−3
2 dt = 1, for all 0 < ε < ε0,

b)
∫ 1

−1
|kε(t)|(1− t2)

n−3
2 dt ≤ M < ∞, 0 < ε < ε0, where M does not depend on ε,

c) limε→0

∫ 1−δ

−1
|kε(t)|(1− t2)

n−3
2 dt = 0 for any 0 < δ < 1.

Then fε is an identity approximation in the spaces X = Lp(S
n−1), 1 ≤ p < ∞, and

X = C(Sn−1) and ‖fε‖X ≤ M‖f‖X .

11



Corollary 1. Let f(x) ∈ C(Sn−1). Under the conditions a)-c) of Lemma 3.6,

lim
ε→0

C(Sn−1)

|Sn−2|
∫ 1

−1

kε(t)(Ttf)(x)(1− t2)
n−3

2 dt = f(x) (3.19)

for any f(x) ∈ C(Sn−1).
Corollary 2. Let ϕ(t) ∈ C([−1, 1]). Under the conditions a)-c) of Lemma 3.6,

lim
ε→0

|Sn−2|
∫ 1

−1

kε(t)ϕ(t)(1− t2)
n−3

2 dt = ϕ(1). (3.20)

To obtain (3.20), it suffices to note that

lim
ε→0

∫

Sn−1

kε(e1 · σ)ψ(σ) dσ = ψ(e1) (3.21)

for any ψ(σ) ∈ C(Sn−1), because of (3.11) and (3.19).
A well known example of the approximating kernel is the Jackson kernel

kε(t) = ks
ε(t) =

1

κν

Ds
ν(arccos t), Ds

ν(u) =

(
sin `

2
u

sin u
2

)2s

(3.22)

where ν = 1
ε
, s = 1, 2, 3, ..., ` = 2, 3, 4, ..., ν = s(`− 1) and the normalizing constant

κν = |Sn−2|
∫ π

0

Ds
ν(u) sinn−2 u du

is chosen in correspondence with the condition a) of Lemma 3.6.
Everywhere below kε(t) will be the Jackson kernel (3.22).
For the integrals

Jr
ν =

1

κν

∫ π

0

urDs
ν(u) sinn−2 u du, r ≥ 0,

the estimate
Jr

ν ≤
c

νmin(r,2s−n+1)
, r 6= 2s− n + 1 (3.23)

is known, see Lizorkin and Nikol’skii [8], p. 216-217.
The following statement is well known (Djafarov [6], Lizorkin and Nikol’skii [11], Berens,

Butzer and Pawelke [3]) as Jackson type theorems.

Lemma 3.7. Let f(x) ∈ C(Sn−1) and fε(x) be the approximation (3.18) with the
Jackson kernel. Then

|f(x)− fε(x)| ≤ Aω(f, ε), 2s > n, (3.24)

|f(x)− fε(x)| ≤ Aω∗(f, ε), 2s > n + 1, (3.25)

where the constant A > 0 does not depend on ε and f(x).
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Proof. Inequalities (3.24)-(3.25) are known in various versions, see references above,
but we present the proof for the completeness of the presentation. By the condition a) of
Lemma 3.6, we have

f(x)− fε(x) =

∫

Sn−1

ks
ε(x · σ)[f(x)− f(σ)] dσ (3.26)

so that

|f(x)− fε(x)| ≤
∫

Sn−1

ks
ε(x · σ)ω(f, |x− σ|) dσ.

Since |x− σ| = 2(1− x · σ) for x, σ ∈ Sn−1, by (3.11) we obtain

|f(x)− fε(x)| ≤ |Sn−2|
∫ 1

−1

ks
ε(t)ω(f,

√
2
√

1− t)(1− t2)
n−3

2 dt.

Hence, in view of (3.16)

|f(x)− fε(x)| ≤ |Sn−2| ω(f, ε)(I1
ε + I2

ε ) (3.27)

where

I1
ε =

∫ 1

−1

ks
ε(t)(1− t2)

n−3
2 dt =

1

κν

∫ π

0

Ds
ν(u) sinn−2u du =

1

|Sn−2| ,

I1
ε =

k
√

2

ε

∫ 1

−1

ks
ε(t)(1− t)

1
2 (1− t2)

n−3
2 dt =

2kν

κν

∫ π

0

Ds
ν(u) sin

u

2
sinn−2u du ≤ const,

the latter boundedness with respect to ε following from (3.23). Then (3.24) follows from
(3.27).

To prove (3.25), we we use the formula (3.11) directly in (3.26), which gives:

f(x)− fε(x) =
|Sn−2|
κν

∫ π

0

Ds
ν(u) [f(x)− (Suf)(x)] sinn−2 u du. (3.28)

Hence

|f(x)− fε(x)| ≤ |Sn−2|
κν

∫ π

0

Ds
ν(u)ω∗(f, u) sinn−2 u du. (3.29)

Making use of (3.17), we arrive at

|f(x)− fε(x)| ≤ c

κν

ω∗(f, ε)

∫ π

0

Ds
ν(u)

(u

ε
+ 1

)2

sinn−2 u du. (3.30)

Then application of the estimate (3.23) with 2s > n + 1 completes the proof. 2

For spherical polynomials Pm =
∑m

k=1 Yk(x
′), the following Bernstein type inequality is

known:
‖δ 1

2 Pm‖C(Sn−1) ≤ c(n)m‖Pm‖C(Sn−1) (3.31)

where c(n) is a constant depending only on the dimension n, see Pawelke [14], Nikol’skii
and Lizorkin [12] and others for Bernstein type inequalities on the sphere, or Rustamov
[15], p. 23, just in the form (3.31).
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Following the standard arguments known in the approximation theory (see e.g. Dau-
gavet [5], p. 76), the following lemma is proved by means of the Bernstein inequality
(3.31).

Lemma 3.8. Let g(x) ∈ C(Sn−1) and Ek(g) be the best approximation of g in C(Sn−1)
of order k. If for some integer ` = 1, 2, 3, ... there converges the series

∑∞
k=1 k`−1Ek(g),

then δ
`
2 g ∈ C(Sn−1) and

Em(δ
`
2 g) ≤ c(n, `)

[
m`Em(g) +

∞∑

k=m+1

k`−1Ek(g)

]

where the constant c(n, `) does not depend on m = 1, 2, 3, ... and the function g.

d) On spherical convolution whose multiplier has a power behaviour at in-
finity.

Lemma 3.9. Let {km}∞m=0 ∈ Wλ,N , λ > 0, λ > n − 1 + 2r, r = 0, 1, 2, ..., λ + N > n
2
.

Then there exists a kernel k(t) ∈ L1([−1, 1]; (1− t2)
n−3

2 ) such that the operator

Kϕ =

∫

Sn−1

k(x · σ)ϕ(σ)dσ

has the spherical multiplier {km} . If N + λ > n − 1, 0 < λ < n − 1 , then k(t) has the
form

k(t) = (1− t)
λ−n+1

2 `(t) (3.32)

where `(t) ∈ C([−1, 1]) and `(1) = 2
λ+1−n

2

γn−1(λ)
c0 with c0 = limm→∞ mλkm .

Statements of the type of Lemma 3.9 are well known, see Askey and Wainger [1] and
[2] for more general situation; the proof of this statement just in the form of Lemma 3.9
may be found in Vakulov [21] or Samko [17], Lemma 6.21.

Corollary. If {km}∞m=0 ∈ Wλ,N with λ ≥ 0, λ 6= n−1+2k, k = 0, 1, 2, ..., and λ+N > n
2
,

then the operator K is bounded in C(Sn−1).

We shall need also the following lemma.

Lemma 3.10. 1). Let {km}∞m=0 ∈ Wλ,N and km 6= 0 for all m = 0, 1, 2, ... Then{
1

km

}∞
m=0

∈ W−λ,N .

2). Let {km}∞m=0 ∈ Wλ,N and {`m}∞m=0 ∈ Wµ,N . Then {km`m}∞m=0 ∈ Wλ+µ,N .

Proof. The statement 2) is obvious. To see 1), it suffices to observe that km =
c0m

λ (1 + Am) with Am = c1
c0

1
m

+ ... + cN−1

c0
1

mN−1 + cN−1

c0
O

(
1

mN

)
so that in the fraction

1
1+Am

we have |Am| < 1 for large values of m. 2

e) On spherical Riesz potential from L∞(Sn−1) into Hλ(Sn−1). In the proof of
Lemma 3.11 below we follow Sobolev [18], where a similar statement was proved for regions
in Rn.
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Lemma 3.11. The integral

Jλ,µ,ν(x, y) =

∫

Sn−1

(|x− σ|+ |y − σ|)λ

|x− σ|µ|y − σ|ν dσ, (3.33)

where x, y ∈ Sn−1 and 0 < µ < n− 1, 0 < ν < n− 1, λ ∈ R1, admits the estimate

Jλ,µ,ν(x, y) ≤ A




|x− y|−γ, γ > 0
ln 2

|x−y| , γ = 0

1, γ < 0

(3.34)

where γ = µ + ν − λ− n + 1 and A does not depend on x and y.

Proof. The change of variables σ = x− τ |x− y| yields

Jλ,µ,ν(x, y) = |x− y|−γ

∫

S( x
|x−y| ,

1
|x−y|)

(|τ |+ |τ − e|)λ

|τ |µ|τ − e|ν dτ (3.35)

where S(x, r) stands for the sphere of the radius r centered at x and we denoted e = x−y
|x−y|

for brevity. We split the sphere S
(

x
|x−y| ,

1
|x−y|

)
into two parts

S∗ = B(0, 2)
⋂

S

(
x

|x− y| ,
1

|x− y|
)

and S∗∗ = S

(
x

|x− y| ,
1

|x− y|
)∖

S∗

where B(0, 2) is the ball of the radius 2 centered at the origin. In the representation

Jλ,µ,ν(x, y) = |x− y|−γ

[∫

S∗
· · · dσ +

∫

S∗∗
· · · dσ

]
= |x− y|−γ(J1 + J2)

the integral J1 is bounded since the integrand is bounded beyond the singular points
τ = 0 and τ = e, at which the singularities are weak. In the integral J2 the integrand is
equivalent to |τ |λ−µ−ν , so that J2 ≤ c

∫
S∗∗ |τ |λ−µ−νdτ. Hence, after the inverse change of

variables τ = σ
|x−y| − x

|x−y| we obtain

J2 ≤ c|x− y|γ
∫

S∗(x,y)

dσ

|x− σ|µ+ν−λ
(3.36)

where S∗(x, y) = {σ : |σ| = 1, |x− σ| ≥ 2|x− y|}. The inequality is valid:

Λ(x, y) :=

∫

S∗(x,y)

dσ

|x− σ|n−1−α
≤




|x− y|α, α < 0
ln 2

|x−y| , α = 0

1, α > 0

(3.37)

Indeed, let ξ = ωx(σ) be any rotation on the sphere such that ωx(e1) = x, x ∈ Sn−1. Then

Λ(x, y) = 2
α−n+1

2

∫
|ξ|=1

1−ξ−1>2|x−y|2

(1− ξ1)
α−n+1

2 dξ
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and then the required bounds for Λ(x, y) are obtained by passing to the integration over
the corresponding part of the ball in Rn−1 and easy estimations. 2

Lemma 3.12. The operator Kλ, 0 < λ < 1, is bounded from L∞(Sn−1) into Hλ(Sn−1).

Proof. By the inequality

∣∣∣∣
1

aα
− 1

bα

∣∣∣∣ ≤ k
|a− b|(a + b)α−1

(ab)α
, (3.38)

where a > 0, b > 0, and k > 0 does not depend on a and b, we have

∣∣(Kλf)(x)− (Kλf)(y)
∣∣ ≤ c‖f‖

L∞ |x− y|
∫

Sn−1

(|x− σ|+ |y − σ|)n−2−λ

|x− σ|n−1−λ|y − σ|n−1−λ
dσ.

Then the application of Lemma 3.11 completes the proof. 2

Corollary. Kλ(C(Sn−1)) −→ Hλ(Sn−1) and Kλ(C(Sn−1)) 6= Hλ(Sn−1), 0 < λ < 1.

f) Spherical hypersingular integrals. The spherical hypersingular operator (2.21)
has the Laplace-Fourier expansion

(Dλf)(x) =
∑
m,µ

[
Γ

(
m + n−1+λ

2

)

Γ
(
m + n−1−λ

2

) − Γ
(

n−1+λ
2

)

Γ
(

n−1−λ
2

)
]

fmµYmµ(x),

see Samko [17], Lemma 6.26. As is known (Pavlov and Samko [13]; Samko [17], Theorem
6.32), the operator inverse to the spherical Riesz potential operator Kα is constructed in
terms of the hypersingular operator, see Lemma 3.13 below, in which X = Lp(S

n−1), 1 ≤
p < ∞ or X = C(Sn−1) and

c =

{
Γ(n−1+λ

2 )
Γ(n−1−λ

2 )
, if n ≥ 3 or n = 2 and λ 6= 1

1
ln 2

, if n = 2 and λ = 1 .
(3.39)

Lemma 3.13. Let 0 < λ < 2 and

Bλf = cf(x) + lim
ε→0
(X)

Dλ
εf

where Dλ
εf is the truncated integral (2.22). Then

BλKλϕ = ϕ, ϕ ∈ X. (3.40)

Moreover, f(x) ∈ Kλ(X), if and only if f ∈ X and there exists the limit lim ε→0
(X)

Dλ
εf .

g) Spherical Riesz-type transformation. We introduce the singular integral over
the unit sphere

Rkϕ =

∫

Sn−1

xk − σk

|x− σ|n ϕ(σ)dσ, |x| = 1, k = 1, 2, ..., n, (3.41)
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similar to the well known Riesz transformation in Rn. This integral, treated as the limit
of the corresponding integral over Sn−1

ε (x) = {σ ∈ Sn−1 : |σ − x| > ε}, may be also
represented as

Rkϕ = |Sn−2|xkϕ(x) +

∫

Sn−1

xk − σk

|x− σ|n
(

ϕ(σ)− ϕ(x)

)
dσ, |x| = 1, (3.42)

where the integral converges absolutely, for example when ϕ(x) ∈ Hλ(Sn−1).

Lemma 3.14. The operator Rk is bounded in Hλ(Sn−1), 0 < λ < 1, and from H1(Sn−1)

into H̃1(Sn−1) = {f ∈ C(Sn−1) : ω(f, t) ≤ Atln 2
t
}. It is not bounded in C(Sn−1): there

exists a function ψ0 ∈ C(Sn−1) such that Rkψ0 6∈ C(Sn−1).
The statement of the lemma is known: the boundedness within the framework of the

spaces Hλ is even known in the general case of singular integrals over a Lyapunov manifold,
see for example Mikhlin [10], p.56.

h) On differentiation of the spherical Riesz potential. Let K1ϕ be the Riesz
potential (2.3) of order 1 and let (K1ϕ)(x′) be its homogeneous continuation to Rn.

Lemma 3.15. Let ϕ ∈ C(Sn−1). Then the formula is valid

|x| ∂

∂xi

(K1ϕ)(x′) =
2− n

γn−1(1)
Riϕ +

2− n

2
x′i(K

1ϕ)(x′), i = 1, ..., n, n ≥ 3, (3.43)

where Ri is the spherical Riesz singular operator (3.41). In the case n = 2 the corresponding
relation involves the Hilbert transform:

|x| ∂

∂x1

(K1ϕ)(x′) =
sin ψ

2π

∫ π

−π

ϕ̃(θ) dθ

tg ψ−θ
2

(3.44)

with x = (cosψ, sin ψ), σ = (cosθ, sin θ) and ϕ̃(θ) = ϕ(cosθ, sin θ).

Proof. The direct differentiation gives

∂

∂xi

1∣∣∣σ − x
|x|

∣∣∣
n−2 =

n− 2

|x|3
|x|2σi − xi(x · σ)∣∣∣σ − x

|x|

∣∣∣
n . (3.45)

Therefore, the differentiation under the integral sign gives the relation

|x| ∂

∂xi

(K1ϕ)(x′) =
2− n

γn−1(1)

∫

Sn−1

x′i(x · σ)− σi

|x′ − σ|n ϕ(σ)d σ (3.46)

which is nothing else but (3.43). However, this differentiation under the integral sign needs
justification, because we arrive at the singular integral. We give this justification in the
Appendix A. 2

17



4 Proofs of the main statements

Proof of Theorem A.

Proof. To prove the equivalence 1)←→ 2), we have to show the equivalence of norms
defined in 1) and 2) on functions in C∞(Sn−1). Let {dm}∞m=0 ∈ W−1,N , N > n

2
, be the

multiplier of the operator D and let a = limm→∞ dm

m
. The multiplier of the difference δ

1
2− 1

a
D

is in W0,N−1. Then this difference is the identity operator plus an operator bounded in
C(Sn−1) by Corollary to Lemma 3.9, whence the required equivalence becomes obvious.

The equivalence of the spaces 2)-4) will be given in the following direction: 2) −→ 4)−→
3)−→ 2). Let f be in the space defined by 2) and D an operator with the multiplier km = m.
By 2), there exists a function g ∈ C(Sn−1) and a sequence fk ∈ C∞(Sn−1) such that
‖f−fk‖C +‖g−Dfk‖C → 0 as k →∞. Hence we conclude that the harmonic continuation
(2.2) of the function g has the form (Prg)(x) =

∑
m,µ mrmfmµYmµ(x), x ∈ Sn−1. Then

d
dr

Prf =
∑

m,µ mrm−1fmµYmµ(x) = 1
r
Prg. Therefore, there exists limr→1

d
dr

Prf ∈ C(Sn−1).
The conclusion 2)−→ 4) has been proved.

To prove 4)−→ 3), we suppose that there exists g(x) = limr→1
d
dr

Prf ∈ C(Sn−1). Then
for ω(σ) ∈ C∞(Sn−1) we have

(g, ω) = lim
r→1

(
d

dr
Prf, ω

)
= lim

r→1

(
f,

d

dr
Prω

)
. (4.1)

The relation d
dr

Prω = 1
r
PrDω, where D is the operator with the multiplier dm = m, is

evidently valid for ω(σ) ∈ C∞(Sn−1). Therefore, (g, ω) = (f,Dω), that is, 4)−→ 3).
Finally, to prove the passage 3)−→ 2), we assume that there exists the weak derivative

g = Df in the sense 3). Let us show that Dfε → g, where fε(σ) is the approximation
(3.18) with the Jackson kernel (3.22). Since Dxk(x · σ) = Dσk(x · σ) for any nice function
k(t), we have

Dfε =

∫

Sn−1

Dxkε(x · σ)f(σ)dσ =

∫

Sn−1

f(σ)Dσkε(x · σ)dσ =

∫

Sn−1

kε(x · σ)Df(σ)dσ

the last passage being made by the definition 3) itself, with the inclusion kε(x · σ) ∈
C∞(Sn−1) for all x ∈ Sn−1 taken into account. Therefore, 3)−→ 2).

To complete the proof, it remains to show the equivalence 2)←→ 5) ←→ 6). This
equivalence is a particular case of Theorem D when λ = 1 and we observe that the proof
of Theorem D is independent of the proof of our theorem. 2

Proof of Theorem B.

Proof. The passage 7)−→8) is valid by Lemma 2.11. Let us prove that 8)−→7). Let
f(x) be a function having the weak derivatives gi = Dif, i = 1, ..., n, in the sense of the
definition 8) and let fε(x) be its approximation (3.18) with the Jackson kernel. Since the
space C1(Sn−1) with the norm defined by 7) is complete, it suffices to prove that

lim
ε→0

∥∥∥∥
∂fε

∂xi

− gi

∥∥∥∥
C(Sn−1)

= 0.
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To calculate
∂fε

∂xi

=

∫

Sn−1

∂

∂xi

kε(x
′ · σ)f(σ) dσ, x′ =

x

|x| ,

we observe that |x| ∂
∂xi

kε(x
′ · σ) = k′ε(x

′ · σ)[σi − x′i(x
′ · σ)] and similarly for |σ| ∂

∂σi
kε(x

′ · σ),
so that

|x| ∂

∂xi

kε(x
′ · σ) = −|σ| ∂

∂σi

kε(x
′ · σ) + k′ε(x

′ · σ)(1− x′ · σ′)(x′i + σ′i).

Therefore,

|x| ∂

∂xi

fε(x
′) = −

∫

Sn−1

f(σ)
∂

∂σi

kε(x
′ · σ) dσ

+

∫

Sn−1

k′ε(x
′ · σ)(σi + x′i)(1− x′ · σ)f(σ) dσ := −Lε(x

′) + Iε(x
′). (4.2)

To the term Lε(x
′) the relation (2.32) is applicable, which is easy and will be considered

at the end of the proof. The main point is to calculate limε→0 Iε(x
′). We shall prove that

lim
ε→0

Iε(x
′) = (n− 1)x′kf(x′). (4.3)

We have

Iε(x
′) = x′i

∫

Sn−1

k′ε(x
′ · σ)(1− x′ · σ)f(σ) dσ

+

∫

Sn−1

σik
′
ε(x

′ · σ)(1− x′ · σ)f(σ) dσ := I1,ε(x
′) + I2,ε(x

′).

For I1,ε(x
′), by (3.11) we have

I1,ε(x
′) = x′i|Sn−2|

∫ 1

−1

dkε(t)

dt
(1− t)

n−1
2 (1 + t)

n−3
2 (Ttf)(x′) dt.

Integrating by parts and making use of formula (3.10), we obtain

I1,ε(x
′) = x′i|Sn−2|n− 1

2

∫ 1

−1

kε(t)(1− t2)
n−3

2 Ttf(x′) dt

+ x′i|Sn−2|n− 3

2

∫ 1

−1

kε(t)(1− t)2(1− t2)
n−5

2 Ttf(x′) dt

− x′i |Sn−2|
n∑

j=1

x′j

∫ 1

−1

kε(t)(1− t)(1− t2)
n−5

2 Ttgj(x
′) dt = : Aε(x

′)+Bε(x
′)+Cε(x

′), (4.4)

with zero non-integral terms. The latter is obvious when n > 3, while in the cases n = 2
and n = 3 one may refer to the property kε(t) ≤ c(1− t) (with c depending on ε).

By Corollary 1 to Lemma 3.6, we see that

lim
ε→0

Aε(x
′) =

n− 1

2
x′if(x′). (4.5)
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We wish to show that
lim
ε→0

Bε(x
′) = lim

ε→0
Cε(x

′) = 0. (4.6)

For Bε(x
′) we have

|Bε(x
′)| ≤ c‖f‖C(Sn−1)

1

κν

∫ 1

−1

Ds
ν(arccos t)(1− t)2(1− t2)

n−5
2 dt

=
c1

κν

∫ π

0

Ds
ν(u) sinn−4 u(1− cos u)2du ≤ c2

κν

∫ π

0

u2Ds
ν(u) sinn−2 udu. (4.7)

Making use of the estimate from (3.23), we see that |Bε(x
′)| ≤ c3ε

min(2,2s−n+1).
To show that limε→0 Cε(x

′) = 0, we consider the functionals

Vεϕ =

∫ 1

−1

kε(t)(1− t)(1− t2)
n−5

2 ϕ(t)dt

generated by this term. We wish to show that

lim
ε→0

Vεϕ = 0 (4.8)

for any
ϕ(t) ∈ C0([−1, 1]) = {ϕ(t) : ϕ(t) ∈ C([−1, 1]), ϕ(1) = 0}.

The functionals Vεϕ are uniformly bounded in C([−1, 1]):

|Vεϕ| ≤ c

κν

‖ϕ‖C

∫ π

0

Ds
ν(u)sinn−2u du ≤ c‖ϕ‖C

in view of (3.23). Then by the Banach-Steinhauss theorem, it suffices to check the passage
(4.8) on a dense set C∞

0 ([−1, 1]). For such functions we have

|Vεϕ| ≤
∫ 1

−1

kε(t)(1− t2)
n−3

2

∣∣∣∣
ϕ(t)− ϕ(−1)1−t

2

1 + t

∣∣∣∣ dt

+
1

2
|ϕ(−1)|

∫ 1

−1

kε(t)(1− t)2(1− t2)
n−5

2 dt.

The first term tends to zero by the property (3.20). The tendency to zero of the second
term was in fact shown in (4.7).

To apply (4.8) in the case of the term Cε(x
′), we have to show that the function

ϕ(t) =
n∑

j=1

x′j(Ttgj)(x
′) (4.9)

tends to zero as t → 1. Evidently, limt→1 ϕ(t) =
∑n

j=1 x′jgj(x
′). The equality

∑n
j=1 x′jgj(x

′) =
0 is a consequence of the Euler equation for homogeneous functions. Its justification for
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our case when the derivatives gj are treated in the weak sense, is easily done via (2.6).
Then (4.8) is applicable and we get limε→0 Cε(x

′) = 0. Then from (4.4), (4.5) and (4.6)

lim
ε→0

I1,ε(x
′) =

n− 1

2
x′kf(x′). (4.10)

In a similar way, with Lemma 3.5 taken into account, one may obtain also that

lim
ε→0

I2,ε(x
′) =

n− 1

2
x′kf(x′). (4.11)

Hence (4.3) follows.
Returning to (4.2), we apply the passage (2.6) in the term Lε(x

′) and make use of (4.3),
which yields

lim
ε→0

|x| ∂

∂xi

fε(x
′) = lim

ε→0

∫

Sn−1

[−(n− 1)σif(σ) + gi(σ)] kε(x
′ · σ) dσ (4.12)

+(n− 1)x′kf(x′).

Applying Lemma 3.6, we obtain that limε→0 Difε(x
′) = gi(x

′). The theorem has been
proved. 2

Proof of Theorem C.

Proof. We start proving that C1(Sn−1) * C1(Sn−1). Suppose that on the contrary,

C1(Sn−1) ⊆ C1(Sn−1). (4.13)

By the statement 5) of Theorem A, any f(x) ∈ C1(Sn−1) is representable as

f(x) = K1ϕ, ϕ ∈ C(Sn−1), (4.14)

where K1 is the Riesz potential operator (2.3) of order 1. We apply Lemma 3.15. From
the assumption made in (4.13) and formula (3.43) it follows that Riϕ ∈ C(Sn−1) for any
ϕ ∈ C(Sn−1) which is not possible by Lemma 3.14. Therefore, (4.13) cannot be valid.

Inversely, let us show that

C1(Sn−1) * C1(Sn−1). (4.15)

By Theorem A and Lemma 3.13, the space C1(Sn−1) is characterized by the condition that
there exists the limit

D1f = lim
ε→0
(C)

D1
εf. (4.16)

So to prove (4.15), we show that there exists a function f ∈ C1(Sn−1) for which the limit
(4.16) is not in C(Sn−1).

To this end, we observe that the hypersingular integral D1f of a function f ∈ C1(Sn−1)
may be represented in the form

D1f = lim
ε→0

n∑
i=1

∫

Sn−1
ε (x′)

σi − x′i
|x′ − σ|n

∫ 1

0

(
∂

∂σi

f ∗
)

(x′ + u(σ − x′))dudσ (4.17)
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where Sn−1
ε (x′) = {σ ∈ Sn−1 : |σ−x′| ≤ ε} and we denoted f ∗(x) = f

(
x
|x|

)
. To get (4.17),

it suffices to apply the Taylor formula to the difference f(σ) − f(x) in the hypersingular
integral D1f .

Let g(t) be a differentiable function of a single variable t ∈ [−1, 1] with the value

g(0) = 0. We take f(x′) as f(x′) = g
(

x1

|x|

)
, meaning to choose g(t) later in such a way

that D1f 6∈ C(Sn−1).
From (4.17) after some calculation we arrive at the following representation for (D1f)(x),

|x| = 1 :

(D1f)(x) = lim
ε→0

∫

Sn−1
ε

σ1 − x′1
|x′ − σ|n dσ

∫ 1

0

2− u|x− σ|2
|x + u(σ − x)|3 g′

(
x1 + u(σ1 − x1)

|x + u(σ1 − x)|
)

du

+x1

∫

Sn−1

dσ

|x− σ|n−2

∫ 1

0

1
2
− u

|x + u(σ − x)|3 g′
(

x1 + u(σ1 − x1)

|x1 + u(σ1 − x1)|
)

du := A(x) + B(x).

The term B(x) is a function continuous on Sn−1. To treat the term A(x) as x → en, we
observe that

∫ 1

0

2− u|en − σ|2
|en + u(σ − en)|3 g′

(
uσ1

|en + u(σ1 − en)|
)

du = 2
g(σ1)

σ1

,

because

2
d

du

(
uσ1

|en + u(σ1 − en)|
)

=
2− u|en − σ|2
|en + u(σ − en)|3 .

Therefore,

A(en) = 2 lim
ε→0

∫

|σ−en|>ε

g(σ1)

|σ − en|n dσ . (4.18)

It remains to show that it is possible to choose a differentiable function g(t) in such a way
that the singular integral A(en) does not exists. This is shown in Appendix B. 2

Proof of Theorem D.

Proof. To prove the coincidence (2.19), we observe that the space

Kλ(C) = Kλ(C) = Kλ(C) (4.19)

is the closure of C∞(Sn−1) with respect to the norm

‖f‖Kλ(C) = ‖f‖C + ‖Bλf‖C ,

where Bλ is the inverse to any of the potential operators Kλ, Kλ or Kλ (We do not need
to know the construction itself of the inverse operator; it suffices to know the behaviour
of its Fourier multiplier at infinity). The coincidence (4.19) follows from the fact that
the operators Kλ, Kλ and Kλ differ one from another by a factor which is a continuous
operator boundedly invertible in the space C(Sn−1), the latter being a consequence of
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”nice” behaviour at infinity of quotients of the Fourier multipliers of the operators Kλ, Kλ

and Kλ. The reference to Lemmas 3.9 and 3.10 is also relevant.
Now, to prove that the space Cλ(Sn−1) coincides with the range (4.19), we refer to the

same reason: by Definition 2.4, the space Cλ(Sn−1) is the closure of C∞(Sn−1) with respect

to the norm ‖f‖Cλ = ‖f‖C + ‖δ λ
2 f‖C . Therefore, it remains to show the equivalence of

norms, which again may be obtained via the investigation of the quotients of multipliers.
The relation (2.19) being proved, the last statement of the theorem follows immediately

by Lemma 3.13.
The description in (2.20) in terms of the coefficients is obtained in the standard way.

Let f(x) ∈ Cλ(Sn−1). Then f(x) = Kλϕ with ϕ ∈ C(Sn−1), by (2.19). Therefore,
fmµ = kλ

mϕmµ, where kλ
m is the Fourier multiplier of the potential Kλ.

2

Proof of Theorem E.

Proof. In the case 0 < λ < 1, the statements in (2.30) have already been obtained, see
Corollary to Lemma 3.12.

Let λ > 1. To obtain the imbedding in (2.30), we observe that according to Theorem
A and Remark 2.9, we may construct a spherical differentiation operator Dk equivalent
to the operator δ

k
2 , with the multiplier in the class Wk, N, N ≥ [

n−1
2

]
, which reduces

the order of the potential, that is, DkKλ = Kλ−k. Taking k = [λ], we easily arrive at the
required statement by reducing to the case λ− [λ] < 1.

The equalities in (2.31) are easy in the case 0 < λ < 1. The first equality fulfills by
definition. Further, the imbedding Hλ(Sn−1) −→ Hλ

∗ (Sn−1) is obvious by (3.14). The
inverse imbedding follows from Jackson type statement (3.25) for the averaged continuity
modulus ω∗(f, t) and the Bernstein type theorem (see Berens, Butzer and Pawelke [3], p.
216) for the usual continuity modulus ω(f, t).

Let λ > 1. The proof of the equalities in (2.31) will be given according to the following
scheme:

Hλ
∗(S

n−1) −→ Hλ(Sn−1) −→ Hλ(Sn−1) −→ Hλ
∗(S

n−1) −→ Hλ
∗(S

n−1). (4.20)

When 1 < λ < 2, the imbedding Hλ
∗(S

n−1) −→ Hλ(Sn−1) follows from Lemma 3.8. Indeed,
let f ∈ Hλ

∗(S
n−1) so that ω∗(f, t) ≤ tλ. Then, as is known, (see e.g. Lizorkin and Nikol’skii

[8], p.209), Em(f) ≤ c
mλ , 1 < λ < 2, and by Lemma 3.8,

Em(δ
1
2 f) ≤ c

[
1

mλ
+

∞∑

k=m+1

1

kλ

]
.

Therefore, Em(δ
1
2 f) ≤ c

mλ−1 and by the Bernstein type theorem (Lizorkin and Nikol’skii

[8], p. 216) we obtain δ
1
2 f ∈ Hλ−1(Sn−1). The proof for λ > 2 follows by induction.

Passing to the second imbedding in (4.20), we take f ∈ Hλ(Sn−1) and 1 < λ < 2. Taking
Remark 2.5 into account, we have B1f ∈ Hλ−1(Sn−1) where B1 is the operator inverse to

the operator K1 (It has the multiplier
Γ(m+n

2 )
Γ(m+n

2
−1)

, with the corresponding modification in
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the case n = 2,m = 0). Therefore, f = K1ϕ with ϕ = B1f ∈ Hλ−1(Sn−1) (see Lemma
3.13). Making use of formula (3.43) and Lemma 3.14, we obtain

∥∥∥∥
∂

∂xk

f

∥∥∥∥
(λ)

≤ c‖B1f‖(λ),

where ‖f‖(λ) = supx,σ∈Sn−1
|f(x)−f(σ)|
|x−σ|λ . Therefore, Hλ(Sn−1) −→ Hλ(Sn−1), 1 < λ < 2.

When λ > 2, the idea of consideration is the same, so we omit the details, only sketching
main points. In the case 2 < λ < 3 we have to estimate the partial derivatives of order 2.
Suppose that f ∈ Hλ(Sn−1). Then

f = K [λ]ϕ with ϕ ∈ Hλ−[λ](Sn−1) (4.21)

where [λ] = 2 in the considered case.
From (4.21) and (3.46) we have

|x|2 ∂2

∂x2
k

f =
3− n

γn−1(2)
|x|2 ∂

∂xk

∫

Sn−1

x′k
|x|(x

′ · σ)− σk

|x|
|x′ − σ|n−1

ϕ(σ) dσ

and similarly to the previous case we arrive at some singular operator bounded in Hλ(Sn−1).
The case of mixed derivatives is similar, with easier calculations.

When 3 < λ < 4, similar actions for |x|3 ∂3

∂x3
i
f lead also to a singular operator, etc.

Now, the second embedding in (4.20) being over, we have to prove the next step:

Hλ(Sn−1) −→ Hλ
∗(S

n−1) .

We consider the case 1 < λ < 2, the general case λ > 2 may be treated by induction. Let
f ∈ Hλ(Sn−1). The space Hλ

∗(S
n−1) being defined in terms of the shift (3.1), we consider

the difference

f(x)− Ttf(x) =
1

|Sn−2|
∫

Sx
n−2

[
f(x)− f(xt + τ

√
1− t2)

]
dτ (4.22)

where Sn−2
x = {τ ∈ Sn−1 : τ · x = 0} . Since f ∈ Hλ(Sn−1), there exist

Dkf = |x| ∂

∂xk

f

(
x

|x|
)

and Dkf ∈ Hλ(Sn−1), k = 1, ..., n,

which enables us to use the Taylor formula, as in (4.17), and we obtain

f(x)− Ttf(x) =

√
1− t

|Sn−2|
n∑

k=1

∫

Sn−2
x

(
x′k
√

1− t− τk

√
1 + t

)
dτ

∫ 1

0

(Dkf)[θ′x′,t(u, τ)]

|θx′,t(u, τ)| du,

(4.23)
where the vector θx′,t(u, τ) is defined by

θx′,t(u, τ) = x′ +
√

1− t u
(
x′
√

1− t− τ
√

1 + t)
)
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and as usual, θ′x′,t(u, τ) =
θx′,t(u,τ)

|θx′,t(u,τ)| .

We represent further the difference (4.23) as

f(x)−Ttf(x) =

√
1− t

|Sn−2|
n∑

k=1

∫

Sn−2
x

(
x′k
√

1− t− τk

√
1 + t)

)
dτ

∫ 1

0

Dkf [θ′x′,t(u, τ)]−Dkf(x′)

|θx′,t(u, τ)| du

(4.24)

− 1

|Sn−2|

{
n∑

k=1

Dkf(x′)
∫

Sn−2
x

(x′kt + τk

√
1− t2) dτ

∫ 1

0

du

|θx′,t(u, τ)|

−
∫

Sn−2
x

∫ 1

0

dudτ

|θx′,t(u, τ)|
n∑

k=1

x′kDkf(x′)

}
.

Since x′ · τ = 0, we obtain

|θx′,t(u, τ)| =
√

2(1− t)u2 + 2(1− t)u + 1 and

∫ 1

0

du

|θx′,t(u, τ)| =
1√

1− t
ln

√
2 +

√
1− t√

2−√1− t
.

Taking also into account that

(Ttσk)(x
′) =

1

|Sn−2|
∫

Sn−2
x

(x′kt + τk

√
1− t2) dτ = t · x′k

by the first of the formulas (3.12) and making use of the Euler equation x · grad f(x′) = 0
for functions homogeneous of degree 0, from (4.24) we obtain the representation

f(x)−Ttf(x) =

√
1− t

|Sn−2|
n∑

k=1

∫

Sn−2
x

(
x′k
√

1− t− τk

√
1 + t)

)
dτ

∫ 1

0

Dkf [θ′x′,t(u, τ)]−Dkf(x′)

|θx′,t(u, τ)| du.

(4.25)
Since the derivatives Dkf satisfy the Hölder condition of order λ− 1, we get

|f(x)− Ttf(x)| ≤ c(1− t)
λ
2

ln
√

2+
√

1−t√
2−√1−t√
1− t

∫

Sn−2
x

∣∣∣x′k
√

1− t− τk

√
1 + t)

∣∣∣
1+λ

dτ.

Hence the estimate
|f(x)− Shf(x)| ≤ chλ

easily follows, which implies ω∗(f, h) ≤ chλ.
The final imbedding Hλ

∗(S
n−1) −→ Hλ

∗(S
n−1) in (4.20) is obvious since

δmf = |x|2
n∑

k=1

∂2

∂x2
k

[
· · ·

[
|x|2

n∑
i=1

∂2

∂x2
i

f

]
· · ·

]
.

It remains to consider the integer values of λ. When λ = 1, 2, 3, ..., the spaces Hλ(Sn−1)
and Hλ

∗(S
n−1) do not coincide with each other because of Theorem C, and Hλ(Sn−1) "

Hλ
∗(S

n−1) and also Hλ(Sn−1) " Hλ
∗(S

n−1), since the arising corresponding singular opera-
tors are unbounded in C(Sn−1).
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The embedding H1(Sn−1) −→ H1
∗ (S

n−1) is easily derived from (3.14). The embedding
H2m+1(Sn−1) −→ H2m+1(Sn−1) follows by induction.

2

Appendix A. Justification of formula (3.46).
Because of the singular integral at which we arrive after the differentiation under the

integral sign in (3.46), it is convenient to deal with the weak interpretation of the derivative
∂

∂xi
, which is possible by Theorem B. By the relation (2.32),

(
|x| ∂

∂xi

(K1ϕ)(x′), ψ
)

= (n− 1)
(
x′iK

1ϕ, ψ
)− (

ϕ,K1Diψ
)

(4.26)

where ψ ∈ C∞(Sn−1). Since

∫

Sn−1

f(σ)dσ = (n + γ)

∫

B(0,1)

f(y)dy (4.27)

for any function homogeneous of degree γ, we obtain

(K1Diψ)(x′) =
n− 1

γn−1(1)
lim
ε→0

∫

B\Kε

∂
∂yi

ψ
(

y
|y|

)

∣∣∣ y
|y| − x′

∣∣∣
n−2 dy

where B = B(0, 1) and Kε = B(0, 1)
⋂

Vε where Vε =
{

y :
∣∣∣ y
|y| − x′

∣∣∣ ≤ ε
}

is a conic

neighborhood of the point x′. Hence

(K1Diψ)(x′) =
n− 1

γn−1(1)
lim
ε→0





∫

B\Kε

∂

∂yi




ψ
(

y
|y|

)

∣∣∣ y
|y| − x′

∣∣∣
n−2


 dy

−
∫

B\Kε

∂

∂yi


 1∣∣∣ y

|y| − x′
∣∣∣
n−2


 ψ

(
y

|y|
)

dy





.

Making use of the Gauss-Ostrogradski formula, we obtain

(K1Diψ)(x′) =
n− 1

γn−1(1)
lim
ε→0

∫

Sn−1
ε

σiψ(σ)

|σ − x′|n−2 dσ

+ lim
ε→0





∫

K̃ε

cos(−→n , σi)∣∣∣ y
|y| − x′

∣∣∣
n−2ψ

(
y

|y|
)

dy −
∫

B\Kε

∂

∂yi


 1∣∣∣ y

|y| − x′
∣∣∣
n−2


 ψ

(
y

|y|
)

dy




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where Sn−1
ε = {σ ∈ Sn−1 : |σ − x′| ≥ ε} and K̃ε = {y ∈ B : |y − x′| = ε} and −→n is the

normal vector to the cone surface K̃ε. Then from (4.26), with (3.45) taken into account,
we conclude that

(
|x| ∂

∂xi

(K1ϕ)(x′), ψ
)

=
1

γn−1(1)
lim
ε→0

{
(n− 2)

(
ϕ,

∫

Sn−1
ε

x′i − σi(σ · x′)
|σ − x′|n ψ(σ) dσ

)
(4.28)

− (n− 1)


ϕ,

∫

K̃ε

cos
(−→n , yk

|y|

)

∣∣∣x− y
|y|

∣∣∣
n−2 ψ(y) dSy




}
.

We have to show that in reality the second term disappears. We denote

Nεψ :=
n− 1

γn−1(1)

∫

K̃ε

cos
(−→n , yk

|y|

)

∣∣∣x− y
|y|

∣∣∣
n−2 ψ(y) dSy.

Since ψ is bounded and
∣∣∣cos

(−→n , yk

|y|

)∣∣∣ ≤ 1, we obtain that

|Nεψ| ≤ c

∫

K̃ε

1∣∣∣x− y
|y|

∣∣∣
n−2 dSy = c

∫

K̃ε

1

εn−2
dSy = c1ε → 0

as ε → 0. Then from (4.28) we arrive at (3.46).

Appendix B. The integral A(en) has the form

A(en) = lim
ε→0

∫
|σ−en|≥ε

σn≥0

g(σ1)

|σ − en|n dσ +

∫

σn≥0

g(σ1)

|σ + en|n dσ.

The second term here always exists, whatever the continuous function g(t) is. As regards
the first term, we project it onto the (n− 1)-dimensional unit ball Bn−1(0, 1) which is the
base of the semisphere {σ : σ ∈ Sn−1, σn ≥ 0}, according to the formula:

∫

Sn−1,σn≥0

f(σ) dσ =

∫

Bn−1(0,1)

f(y,
√

1− |y|2)√
1− |y|2 dy (4.29)

where y = (y1, y2, ..., yn−1) ∈ Rn−1, and obtain the integral

lim
ε→0

1

2
n
2

∫

0≤σn≤1−ε

g(σ1)

(1− σn)
n
2

dσ =
1

2
n
2

lim
ε→0

∫

Bn−1(0,1)

g(y1) dy(
1−

√
1− |y|2

)n
2 √

1− |y|2

=
1

2
n
2

lim
δ→0+

∫

δ≤|y|≤1

g(y1)
(
1 +

√
1− |y|2

)n
2

|y|n
√

1− |y|2 dy .
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Then it is clear that it suffices to show that there exists a differentiable function g(y1)
such that the singular integral

lim
δ→0+

∫

δ≤|y|≤1

g(y1)

|y|n dy

does not exist, which is already easily reduced to the one-dimensional case. Indeed,

lim
δ→0+

∫

δ≤|y|≤1

g(y1)

|y|n = lim
δ→0+

∫ 1

−1

g(y1)dy1

∫

δ≤|ỹ|2+y2
1≤1

dỹ

(|ỹ|2 + y2
1)

n
2

where ỹ = (y2, ...yn−1). An easy calculation of the inner integral yields

lim
δ→0+

∫

δ≤|y|≤1

g(y1)

|y|n dy = lim
δ→0+

∫

δ≤|y1|≤1

g(y1)A(y1)

y2
1

dy1

where the function A(t) = |Sn−3| ∫ 1

|t| ξ(1 − ξ2)
n−4

2 dξ is non vanishing and having the

bounded derivative near the origin. (We take n ≥ 3, the remaining case n = 2 being
easier).

We take the differentiable function g(t) as g(t) = th(t) with h(t) = 1
ln 2

|t|
for 0 ≤ |t| ≤ 1

and h(t) = 1
ln 3

|t|
for −1 ≤ |t| ≤ 0, so that g(t) ∈ C1([−1, 1]) and the singular integral

∫ 1

−1
h(t)dt

t
diverges.
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