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In the paper [1] , we gave a new formula for the inversion of the Riesz potential operator
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~n() being the well known normalizing constant. The following theorem was proved.
Theorem A. Let 0 < Ra < 2m, m = 1,2,... ,a # 2,4,6,... Then the inversion of

the Riesz potential operator f = I%p, ¢ € L,(R"),1 < p < 5=, can be written in the form
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f(z), and in the sense of L,-convergence or almost everywhere, if f € 1*(L,).

In particular, in the case 0 < Ra < 2 the inversion of the Riesz potential operator [%¢

may be taken in the form

with ¢y, = ( . The limit in (1) exists in the usual sense, for "nice” functions
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We use this opportunity to note a misprint in the formula (7.21) in [1]: the factor ”T“
there should be replaced by ™2 as in (2).

We wish to prove the following theorem.

Theorem. The formula (1) is nothing else, but
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where A is the Laplace operator.
Proof. We use notation from [1]. The formula (1) was obtained in [1] as a realization
of the general inversion formula

p(r) = lim €n1+a /R Qo (%) fl@—y)dy , (4)
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see (7.19) in [1]. Therefore, the only point we have to prove is that the function (5) is
nothing else but

do(z) = Lm)w (( L ) R (6)
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In view of the relations (7.18) and (7.6) from [1] we have
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G (&) being the Fourier transform of the function (1 4 |z|?)~2. Since
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where K, (r) is the McDonald function, we get
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because of the property K, (r) = K_,(r) of the McDonald function.
Applying now the relation (7) in the reverse order with a replaced by n — 2m + «, we

arrive at
9l—m— 5

Ga(§) = |€|2mGn—2m+a(x) .
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After easy calculation of the constant factor here and the passage to Fourier pre-images,
we arrive at the formula (6), which was required.

Remark. The formula (3) is suggestive in the sense that it provides a clear idea of
the direct realization of the approximative inverses construction to many potential type
operators, especially to those which are negative fractional powers of differential operators.
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In other words, the formula (2) prompts another idea to construct effectively fractional
powers of differential operators.

Let us consider two examples: the Bessel potential operator and the heat parabolic
operator. The first is defined as

B = | Gz —y)e(y)dy,
Rn

Go(z) being the kernel (5), while the second is known to be defined as
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(see f.e. [2], Sections 27 and 28), where R = {(z,t) : x € R",t € R}} and W(y,7) =

|2
(471'7')_56_% is the Gauss-Weierstrass kernel.
The inversion of the Bessel potential operator B*¢p = f and that of the heat fractional
operator H%p = f may be given in the form
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respectively, where

B(y,e) = (I—-A)™ ('y‘n+a_2mG2m“(y)> and C(y,7,e) = (a% _ Ay)m (M) |
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A, being the Laplace operator applied in the space variable y € R".

One can now write down easily similar formulas for fractional powers of the wave
operator, for that of the Schrédinger operator and so on.

The formulas (8)-(10) are easily justified on nice functions (f.e. on functions from the
corresponding Lizorkin-type test function spaces). Their justification within the framework
of the L,-spaces will be given in another paper.
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