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FUNCTIONS THAT HAVE NO FIRST

ORDER DERIVATIVE MIGHT HAVE

FRACTIONAL DERIVATIVES OF ALL
ORDERS LESS THAN ONE

A question of classical mathematical analysis — the existence of a contin-
uous non-differentiable function — is treated here in a detailed setting. We
consider this question within the framework of fractional derivatives and show
that there exist continuous functions f(z) which nowhere have an ordinary
first order derivative, but have continuous fractional derivatives of any order
v<l1.

We begin with notation in Section 1 because there exist different forms
of fractional integration and differentiation which do not necessarily coincide
with each other. We use Riemann-Liouville, Liouville, Marchaud and Weyl
fractional differentiation.

~ In the introductory Section 2 we specify the setting of the problem un-
der consideration and give some comments. Section 3 contains statements of
some known results we need. In Section 4 we deal with the Weyl, Liouville and
Marchaud fractional derivatives of the well-known continuous but nowhere dif-
ferentiable Weierstrass function. Section 5 is devoted to the Riemann-Liouville
derivatives of this function.

In Section 6 we consider the Riemann-Liouville derivatives of the Riemann
function that is almost everywhere nondifferentiable. Section 7 contains some
generalizations, an Open Question for further research and Summary of re-
sults.
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1 Notation

We shall deal with the following well known (see [11], [9]) forms of fractional
integration and differentiation:

a) an integral ﬁ f:(:z: —t)""1f(t)dt, = > a, with Rv > 0, is known as
the Riemann-Liouville integral of order v. It is applied to functions defined for
z > a. This integral defines integration to an arbitrary order and is sometimes
denoted by the symbol ,D.” f(x). The subscripts a and z are included in this
case to avoid ambiguities in applications. We find it convenient to omit the
subscript = on the operator (the operator itself cannot depend on z) and write

1

DZ* £2) = 155

/I(a: —t)* 1 f(t)dt, = > a. 1)

An alternative natation for (1) is IY f(z).
To define DY f(z) with Rv > 0, we write v = m — p, where m is the least
integer greater than Rv. We have then

am 1 T
v —_nmn-P — _f\p-1
by definition. If we restrict v to be in (0,1), then m =1 and
DY f(&) = 4 /I( )" f(B)dt, x> 2)
= 0= wydz J, P Eoa (

b) Liouville fractional integration of order v > 0:
1 x 1 .
I"f(:z:):—/ =) f(t)dt, —o0 <z < 00, 3
o) 0 3)

for functions defined on the whole line;
b’) the corresponding Liouville fractional differentiation of order 0 < v < 1:

w1 d [T f()dt
D1 = iy | oo “

We emphasize that the operators (3) and (4) can be applied to 27-periodic
functions ¢ (non-vanishing at infinity) if foh ¢(z) dzr = 0 and the integrals in
(3) and (4) are interpreted as conventionally convergent in the following sense:

z t)dt z t)dt
[, Pt -
—o0 (I - t) n=1,2,3,.. Jr—2nw (I - t)
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under the obligatory assumption foh w(t) dt = 0. See details and justification
in [11], Section 19, Subsections 2 and 4.
c) Weyl fractional integration of order v > 0 for periodic functions:

2
IV f(z) = % /0 U (t)f(z - t)dt (6)
where
vin o eint = cos(nt —vm/2)
v¥(¢) —n;m Gy = 2; — (7)
so that for Fourier series
fO)~ Y faet™ @)
we have
I(l/)f(t) ~ ZI (,in)-l/fneint (9)

The strokes in (7) and (9) indicate that the term with n = 0 is omitted. This
is the original definition due to H. Weyl [12]; see details in [16] and [11], section
19;

c') Weyl fractional differentiation of order 0 < v < 1 for periodic functions:

27
d 1d (1-v)

@) pipy — G- 0y _ B
DY f(z) = L 10 f(@) = g [ WOV nd (10)

so that for (8) we have
p® f(t) ~ ZI (in)"f,,ei"t (11)

Remark 1 Sometimes the Liouville fractional integral

i@ - [ T@-t i - @)

is called the Weyl fractional integral. This is a historical misunderstanding.
Liouville was the first who considered fractional integration just in the form



FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE 143

(3), see [8], page 8, whereas Weyl dealt with periodic functions and the conver-
gence of (3') for periodic functions should be interpreted very specifically, as in
(5). (See details in [11], Section 19). So, though paying homage to Weyl’s pro-
found ideas, we consider it more correct to name both (3) and (3') as Liouville
fractional integrals (See also [10], pages xxvii-xxvili in this connection).

d) Marchaud fractional differentiation of order 0 < v < 1:
v _ v * flz) - flz-1)
D f(:r)—l_‘(l_u)/0 e dt (12)

which coincides with (4) for sufficiently good functions (see Lemma 3 below).
Observe the use of D instead of D.

2 Introduction

The problem raised in the title may be generalized in the following way:

Problem 7o find a continuous function f(z) which has fractional derivatives
of all orders 0 < v < vy, but has no derivative of order vy (o may be either
an integer or a non-integer).

We shall discuss this generalization at the end of the paper, while in the
main body of the paper we deal with the case 1y = 1.

As we shall see, the solution of this problem depends, in a sense, on the
type of fractional differentiation involved. But, what is much more important,
it depends on terms under which the “non-existence” of the derivative of order
vy is treated. The typical situations for this “non-existence” are the following:

A) The derivative of order vy does not exist at a finite number of points;
B) It does not exist on a set of measure zero;

C) It does not exist almost everywhere;

D) It does not exist at any point.

The case A) is the simplest one. The Problem in this case is in fact close
to the following Open Question formulated by Prof. A. Erdélyi at the Ist
Conference on Fractional Calculus, 1974, University of New Haven, USA (see
[10], page 376):

(i) Let f(t) be continuous for ¢ > a and let S be the set of all those non-
negative v for which the fractional derivative DY f exists and is contin-
uous. Does S have a largest element.
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(ii) This problem is the same as that above, except the word “continuous”
in italics above is replaced by “locally integrable”.

The answer to (i) and (ii) is given in [11], page 456, and is in general
negative: for f(z) = zfInz, § > 0, we have S = [0,(3) and S = [0, + 1)
respectively to the cases of continuity or integrability of DY f. In the latter
case we have S = [0,4 + 1) for f(z) = z#, B > 0, also.

So, in the case vy = 1, the solution of the problem I treated in the sense A)
is immediate: f(z) = zlnz for z > 0, f(0) = 0. This function is continuous
and even Holderian of any order less than one. It has no derivative at the point
z = 0 but it has the Riemann-Liouville fractional derivatives Dj f of orders
v < 1, all of them being continuous everywhere including the point £ = 0.
This follows from the well-known fact that any function f(z) Holderian of
order A and vanishing at £ = a has continuous fractional derivatives DY f of
any order v < X (see (7], page 239, Lemma 13.1). This also follows from the
direct expression (see [11], page 41, formula (2.50)):

1—v

Dg(zlnz) = F(:ETT)W)(I) —Y(2-v)+Inz] (13)

where 1(z) is the Psi-function.

Similarly, the function f(z) = []}_o(z — ax) In|z — ax|, = > a = ag where
a=ay < a < ---< ay, is an example of a continuous function which has no
ordinary first order derivative at a finite number of points, but has fractional
order derivatives D f of order less than one (as a Lipschitzian function).

The series f(z) = 3 oo, 2 (z—1)In*(z— L) whereln*(z— 1) = In(z - 1)

n=1 n!
ifx > % and ln+(1: — %) =0ifzr < %, is an example of a function which has
continuous fractional derivatives D§ f of orders v < 1, but has no finite first
order derivative at a countable set of points z =1,1/2,1/3,... (The approach
B)).
So, in the sequel, we shall consider the Problem stated above only in the
senses C) and D). For this purpose it seems to be natural to appeal to the

classical Riemann and Weierstrass functions:

0 2
cosn g
R(z) = Z > (14)
n=1
[e 9}
Wa(z) = Z g et (15)
n=0

where @ > 0 and ¢ > 1.
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We shall also consider the functions

=, sinnz
S(z) = Z n2 (14')
n=1
and
. COS T
o) =Y =2 (147)

n=1

which have better behaviour than (15).

It is usually ascribed to Riemann that he considered the function R(z) as
nowhere differentiable. It was G.H. Hardy [6], see also [7], who first gave an
exact proof of the following assertions:

1. The function R(x) has no finite derivative at all points T such that z /2%
is irrational.

2. It has no finite derivative for all rational z/27 of the form Z = 42'_7_‘1 or

z _ 2m+1 ; :
T = Gnis, m and n being integers.

We note that the existence of finite first order derivative of the function
R(z) at some points was proved by J. Gerver [4], see also [5]. In particular,
he showed that R'(z) = —1/2 at the points of the form = = W%. He also
showed, in addition to Hardy’s results, that R(z) has no finite derivative at
the points ¢ = w22+l n > 1. We also mention the papers [12]-[13] by A.
Smith who considered the remaining cases.

As regards the Weierstrass function W, (z), 0 < a <1, it is well known
that it is continuous (and even satisfying the Holder condition, see Lemma 1
below), but nowhere differentiable if ¢ > 1, see [6] or [7].

3 Preliminaries

We say that f(z) satisfies the Holder condition of order A, 0 < A < 1, on
[a,b], —00 < a < b< oo, or f € Ha,b)) if |f(z + h) — f(z)| < c|h|* with
¢ not depending on h and z; z,z + h € [a,b]. In the case A = 1 the function
f(z) is also called Lipschitzian.

We will need the following known facts.

Lemma 1 The Weierstrass function Wy(x), 0 < a < 1, satisfies the Holder
condition of order a if ® < 1 and of any order A <1 ifa = 1.
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The proof of this statement may be found in [6], page 103, for an arbitrary
¢ > 1 and in [15], page 47, Theorem (4.9) and page 44, Theorem (3.4), for an
integer ¢, where it is given for W,(z) with cos(¢™z) instead of exp(ig™z).

Lemma 2 Let f(x) be a 2w-periodic function and let f(z) € H*([0,27]), 0 <
A < 1. Then f(x) has the Weyl fractional derivatives of all orders v < A and

D™ f(z) € H**([0,2n)).

See the proof in [11], page 365, Corollary of Theorem 19.7.
Lemma 2' Let f(z) € H*([a,b]), 0 < A < 1. Then f(z) has the Riemann-
Liouville fractional derivatives of all orders v < A\ and

f(a)
I'(l1 —v){z—a)

D f = - +¥(z)

where Y(z) € H*7*([a, b]).
See [11], page 239, Lemma 13.1, and page 242, Corollary of Lemma 13.2.

In the case of functions defined on the whole real line the following version
of Lemma 2’ holds.

Lemma 2" Let |f(z)| < e(1+|z])", v <v, and |f(z + k) — f(z)| < A B> for
allz € R! and h > 0. Then f(z) has the Marchaud fractional derivative of any

2A)\ 1

v W < A—v . == -
order v < A and |D” fx+ h) - D" f(z)| < Bh with B s -

PROOF. Since ¥ < v and A > v, the integral (12) converges absolutely.
Therefore, D” f(z) exists. Now,

h xr — x h —
|D"f(x+h)—D"f(a:)|§/0 faih) - fleth b,

I'(l1-v)

M@ - fa=0l,, [T e - @)
+/O dt+/h dt

t1+u t1+u

*|fath-t)~ fz-1)
v/ a

t1+u

whence the second assertion of the lemma follows.
Lemma 3 Let f(x) satisfy the assumptions of Lemma 2. Then all the forms
(4), (10) and (12} of fractional differentiation of f(z), (i.e. that of Liou-

ville, Weyl and Marchaud) coincide with each other: DY f(z) = DW f(z) =
D" f(z), 0 <v < 1.
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See [11], page 358, eq. (19.39).
Lemma 4 If Y07 |fn| < 0o, then the Weyl integration (6) can be applied
termwise and IV) f(z) = E':oz_oo(in)_"fn exp(inz).

The proof is easily derived from the definition.

Lemma 5 Let fi(t) € C([a,b]), k=1,2,3,...,—00 < a < b < o0o. If the se-
ries 3o, fa(t) converges uniformly on [a,b], then IX (332, fx) = S ey 14 fx
and the series in the right hand side converges uniformly on [a,b] as well.

PrROOF. We have

dt.

> f(®)

k=m+1

< ﬁ/ﬂx(z-t)"“

Hence, if | 302 4y fi(t)| < €, we have A < ﬁf—;%s, which proves the lemma.

AE

If = IX(fx)
k=1

Lemma 6 Let g(z) = [ f(t)dt. If f(t) € LP([a,b]), —00 < a < b < 00, for
all p > 1, then |g(z + h) — g(z)| < c|h|'™¢ for all z, z + h € [a,b], however
small € > 0 is, ¢ = ¢(p) not depending on x and h.

Proof is obvious.

We shall also need the following entire function

oo k
z
E.5(z)=Y ——_ a>0, 16
o)=Y e © (16)
known as the Mittag-LefHler function [2], page 210. It is known that
d -Ea,— z)+ 1"ﬁ-Ea, z
& Buple) = 8-1(2) + (1 = B)Ea 5(2) (17)
z az

The function E; g(z) has the representation

1-8,Az
z!=Fe
Eig(Az) = ———

o L(B-1) Jo
where z > 0 and A may be complex, which may be verified by the termwise
integration of the series expansion of e**. By analytic continuation, we can
derive the analogous representation for 0 < 3 < 1:

82" Mdt B> 1, (18)

Az

B p(Az) = — 1~ ﬁzl—ﬁe“/ P21 — e M)dt, 0 < B < 1.
0

@) " TO) (19
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It is known that the Riemann-Liouville fractional integral of an exponential
function can be expressed in terms of the Mittag-Leffler function E; g ([11],
page 173, eq.8):

IY(e*®) = e*(z — a)VE1 14, (AT — Xa), T > a, (20)

which is, in fact, the reformulation of (18).

4 The Weierstrass function and its Weyl, Liouville or
Marchaud fractional derivatives

We begin with the consideration of the Marchaud derivative of the Weier-
strass function Wj(z) (=Weyl or Liouville derivative in the case of an integer
g). In the next section we shall deal with the Riemann-Liouville derivative
D% Wi(z), z > a, too. However, we would like to emphasize that for a func-
tion defined and studied on the whole line it is more natural to investigate its
Liouville, Weyl or Marchaud derivative than that of Riemann-Liouville which
is “tied” to a fixed point z = a.

Theorem 1 For any q > 1 the Weierstrass function W1(z) has the Marchaud
fractional derivative of any order v < 1:

oo
D W, (.’L‘) = Z q—n(l—u)eiq"z (21)

n=0

which is continuous and even satisfies the Holder condition of any order A <
1 — v, but Wi(z) nowhere has the first order derivative. In the case of integer
qg=2,3,4,... the function Wi(x) has also Liouville and Weyl derivatives ({)
and (10) which coincide with (21).

PROOF. The fact that £ W;(z) exists nowhere is well known. As for the
fractional derivatives we consider first the case of an integer g.

1. The case of an integer g. In this case the proof is simpler because
Wi (z) proves to be a 2m-periodic function. We consider the Weyl derivative.
By the definition (10) and Lemma 4 we have D®) W (z) = %I(l“’) Wi(z) =
vt % o g ") exp(ig™x). Here the termwise differentiation is possible
since the series obtained after differentiation converges absolutely and uni-
formly. Therefore, we arrive at (21). From (21) we see that D) W, (x) is
a bounded continuous function as a sum of uniformly convergent series. To

show that
D@ W, (z) e H, A<1—v, (22)
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we refer to the 2m-periodocity of Wy(z) and to the fact that Wy(z) € H!=¢
with an arbitrary small € > 0, by Lemma 1. Then, by Lemma, 2 the assertion
(22) holds. It remains to refer to Lemma 3.

I1. The case of an arbitrary q > 1. To manage with this case we use
the Marchaud derivative (12) and consider the following truncated Marchaud
derivative: D  f = F(l"_u) fN f(:);{&r—t) dt. We have

£

v 4 - —n_iq"z N 1- eiq“t
Din Wi(@) = 5y D ge e dt (23)
n=0 €

(The termwise integration in obtaining (23) is obviously justified). We have
the estimate:

N inm
/ BMdtchnu (24)

where ¢ does not depend on ¢, N and n. Really,

N |1—exp(—iq"t)|dt< * 1 — cosq™t| dt+ | sin ¢"t| dt
R tl+u — o tl+u o t1+"

Hence, the change of the variable ¢™t = u yields (25) with

o0
c= / [1 - cosu + |sinulju~!""du.
0

00 —n nv

Since the series ) ", ¢~ "¢™ converges, by (24) we may pass to the limit
in (23) termwise, which gives

lim D v Wi(z) = Y io: —ngigtz /00 I—L(—iq"t) dt
(28 Den @) = r—yy 249 A

N=>oo

(25)
We use the formula

% 1 — exp(—izt) ra-v,. .,
/0 o dt = > (iz)”, O<v <1, (26)

which is easily obtained by integration by parts and using the known relation
Jotr et dt = T(v)/(—ixz)¥, see e.g. [11], page 138, eq.(7.6). By (26)
and(25) we have D* Wi(z) = Y oo ¢ "(i¢q")" exp(ig"z) which coincides with
(21). The Holder property for D W) follows from Lemma 1 and Lemma 2.
The theorem is proved.

Remark 2 We remind that in Theorem 1 the Liouville derivative ({) should
be interpreted in accordance with (5).
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5 Riemann-Liouville derivatives of the Weierstrass func-
tion
The Riemann-Liouville derivative (2) even of a very good function f(z) is

infinite at the point z = a, if f(a) # 0. By this reason, considering the
Riemann-Liouville derivative on [a, c0), we shall deal with the function

W(z) = Wi(z) - Wi(a) = ) _ g (0" — ") (27)
n=0

In the theorem below E) ;_,(z) is the Mittag-Leffler function, see (16).

Theorem 2 The Weierstrass function W(z), £ > a, has continuous and
bounded fractional Riemann-Liouville derivatives of all orders v < 1, which
can be calculated by the formula DY W(z) = Y a0 q "“An(z), where

1

An(z) = (z — a)~" expliaq™) [El'l-"(""n("” ~) - s u)} (28)

or
_exp(igz) |1 - exp(—ig"(z — a)) v /q"(I““) 1—e®
Al =Ta=y) [ @—ar T v 9)
so that
[An(z)| < g™ (30)

with ¢ not depending on x and n.

PROOF. Since the series in (27) converges uniformly on [a, 00), by Lemma 5
we have I' "YW (zx) = 300 g "I} ~¥(e¥"* — ¢'9"*). Hence, by (20) we obtain

oo Cn 1
1—-v . 1—v —n _ta - n
L "W(z) = (z —a) Zq e** [El,g_,,(zq (r—a))— Te—7)|;
n=0 (31)
The formal termwise differentiation of (31) yields
d 1-v = -n
LW =Y e ) (32)
n=0

with

An(z) = emq"% {(a: —a)'™ [El,z_y(iq"(r —a)) - F—(gl_—l,)} } "3
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To justify the differentiation we shall prove that the series in the right hand side
of (32) converges uniformly. Differentiating in (33) and applying the formula
(17), we arrive at (28) after casy calculations. Applying the representation
(19) in the right hand side of (28), we obtain (29).

Since the integral fooo ¢~ 17¥|1 — exp(—tt)| dt converges, the estimate (30)
follows from (29). By (30) the series (32) converges uniformly "and then
D% W(z) is continuous and bounded. The theorem is proved.

6 Fractional derivatives of the functions (14’) and (14")
and of the Riemann function

I. Functions (14’) and (14”). We consider the functions S(z) and C(z)
first. The function (14”) is known ([3], page 433) as an elementary function:

cosnzx 22 7w 72
Z > =I———2—|x|+?, =27 <z < 27, (34)
n=1

which may be obtained either by direct expansion of the right-hand side into

sinnr __

Fourier series or by the integration of the well known relation Y > | -
=2, for 0 < z < 2 (see [15], page 5), with the formula }°0° , n~? = 7?/6
taken into account. We also remark that (34) may be rewritten as

o0

cosnz 2 T
E] 3 =7 Bg(g), 0<x<2m, (35)
n=

where By(z) is the Bernoulli polynomial of second degree. We remark that
the relations (34)-(35) are particular cases of Fourier series expansions for the
Bernoulli polynomials:

o0
2 m
cosnz _ (_1)—1+m/2(_”)__3m(i ), if m is even

n=1
and oo
Z smnx _ (*]_)—l+[m/2]_(2_ﬂ-) Bm(%), if m is Odd,

nm m!

n=l1
see e.g. [11], page 348, eq.(19.8) and (19.10).
As regards the function (14’), it has the following integral representation:

oo . T
sin nzx 1
T log———dt, 0<z<2m, 36
7; n? /0 o8 2| sint/2| =T=em (36)
which follows from the known relation Y 7 | <=nt — _log2|sint/2],0 < t <

2m, see [15], page 5.
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Theorem 3 Functions C(z) and S(z) have the Riemann-Liouville fractional
derivatives Dy C(x) and Dg S(x) of any order 0 < v < 1, which are continuous
for all x > 0 and £ > 0, respectively. For 0 < x < 27 they may be calculated
as

, [e=cosnz) 1 Py(x)
Da (; n? ) - 6r(3—-v) zv (37)
with Py(z) = 322 ~ 37(2 — v)z + 72(2 — v)(1 — v), and
v [ ~sinnz ) 1 * log|2sint/2|
Dy (; — )-—F(I—V)/o e (38)

The first order derivatives of C(z) and S(z) ezist and are continuous for all
x > 0 except the points x = 2mm, m=1,2,3,...

PrOOF. The existence of the first order derivatives is seen directly from (34)
and (36); in particular, we see from (36) that £ S(x) = ~ log 2|sinz/2| does
not exist at the points z = 2mm.

To consider the fractional derivatives we begin with the values 0 < = < 27.
From (34) we have D§ C(z) = 4 D§(=?) — Z D§(z) + eri Dg (1) which yields
(37) and proves the continuity of Dg C(z) for 0 < z < 27. As for Df S(z), we
have from (36)

D§ S(z) = D Iy f(z) (39)

where f(z) = —log?2|sint/2| and I} f(z) = fOI f(t)dt. By the index law we
have from (39): Dy S(x) = I3~" f(x) which coincides with (38).

It remains to make sure that Dg S(z) and Dy C(z) are continuous for all
z. We remark that C(z) is a continuous periodic function. So, by (34) it
is a continuous piece-wise differentiable function and, therefore, Lipschitzian.
Then, by Lemma 2’ its fractional derivative D§ S(z) is continuous (and even
Holderian or order 1 — v) beyond the point = = 0.

Now, by’(36) and Lemma 6 the function S(z) is Holderian of order 1 —
€, € > 0. Since S(0) = 0, by Lemma 2’ wehave D§ f € H!7¢7%, 0 <e < 1—v.
The theorem is proved.

Remark 3 As follows from the proof of Theorem 8, the fractional derivatives
of the functions C(z) — n2/6 and S(z) are not only continuous, but even
Holderian: D C(z) — grfmyer € HY7¥([0,0]), D% S(z) € H*~<([0,b]),
whatever smalle 15, 0 <e <1 —v; b>0.
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4
II. Riemann’s function. The case of the function (1) is more difficult
and we can manage here only with orders 0 < v < 1/2 of fractional differenti-
ation. The following theorem is valid.

Theorem 4 Let 0 < v < 1/2. The fractional derivative DY R(z) of Liouville,
that of Weyl D) R(x) and that of Marchaud D” R(x) do exist, are continuous
and coincide with each other. They may be calculated by the formula

D" Rz) =Y W (40)

However, if v > 3/4, the Weyl derivative D) R(z) does not ezist at least for

all irrational values of W"m 7
——
PrOOF. We shall show that
R(z) € HY?([0,2x]). (41)

Following [15], page 47, proof of Theorem (4.9), we have

Rz 1 h) — R@)| = 2|y Sn(nletnh/24 vm/2)sin(n?h/2)

n2

S 3

n=1 n=N+1

2 =2|P+ Q| (42)

where N = [(2/h)*/?] is the largest integer such that N2h/2 <1, h > 0. So,
N1k
IPI< Y 5 = Nh/2< (h/2)"? (43)

and o . .
RIS Y —<y= @7
Taking h < 1/6, we have [(2/h)Y/2] > (2/h)}/2 —1 > (1/h)1/2, so that
QI < A2 (44)

Therefore, (43) and (44) prove (41) via (42).
In view of (41) and Lemmas 2 and 3 we see that the three fractional
derivatives exist for v < 1/2 and are equal. To prove (40) we remark that for




154 B. Ross, S. SAMKO AND E. LOVE

the real form of Fourier series f(z) ~ Y . (ancosnz + b, sinnz) the Weyl
definition (11) of a fractional derivative is the following:

p® flz) ~ i n"la, cos(nz + vn/2) + b, sin(nz + v /2)] (45)

n=1

which is easily derived from (11). So

o 2 o 2
. cosnc cos(n’z + v /2)
D (Z n2 > ~ Z n2—2v ‘ (46)
n=1 n=1

Since the series in (46) converges absolutely and uniformly (for 0 < v < 1/2),
the sign ~ in (46) may be replaced by = and we arrive at (40).
To show that D) R(x) does not exist almost everywhere if v > 3/4, we
refer to the following result due to G.H. Hardy ([6], page 323):
2 -
Neither of the functions > o. | w, p Su;#, where 3 < 5/2, is
differentiable for any irrational multiple of «.

(e o] . 2
By (46) I*")R(z) = 3 %””_/2) So, D™ R(z) = £10-Y) R(x)

n=1

does not exist at irrational multiples of m by the above Hardy’s result since
4—2v < 5/2if v > 3/4. The theorem is proved.

7 On Problem stated in Section 2.

Here we discuss shortly the Problem formulated in Section 2 for arbitrary vyg,
not necessarily vy = 1. This is just the Weierstrass function W, (z) defined
in (15) which is a solution of this problem. The theorem below generalizes
Theorem 1. We use here the standard extension of fractional derivatives (4),
(10) and (12) to the case of orders v > 1, see [11], page 95, 348 and 118,
respectively. When v is an integer, either of these derivatives is an ordinary
derivative of order v.

Theorem 5 For any q > 1 the Weierstrass function Wy, (z), vy > 0, has the
Marchoud and Liouville (and Weyl, if q is an integre) fractional derivative of
any order v < vy. They coincide with each other and are equal to

o0
D" W,,(z) =" > _ ¢ ™ exp(ig"z). (47)

n=>0

Besides, D¥ W, (z) is Holderian oforder A\ < vy—v. However, W, (z) nowhere
has the Liouville fractional derivative of order vy.
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ProoOF. The assertion on the existence of the derivative of order v < 1y and
the relation (47) are obtained following the same lines as those of Theorem 1.
We remark that (47) means that

D" W,,O(.'l:) =1 UO—U(x) (48)

for all —o0o < v < 15, 0 < yp < oo, the series in the right-hand side being
absolutely convergent. To demonstrate that W,,(z) nowhere has fractional
Liouville derivative of order vy, we remark that D*° = % D~! (independently
of the sign of vy — 1). Then, D*® W, (z) = d% D*~ W, (z), if exists, should
coincide, by (48), with i”““l%WI (z), which is impossible.

Remark 4 The results similar to those stated in this paper for the Weterstrass
function (15) are valid for its real valued version Wo(z) = 300 ) ¢~ cos(q™z)

Remark 5 The following generalization

00

Z exak exp(ibkz), e = %1, (49)

n=0
of the Weierstrass function, with some restrictions on a and b, can be similarly
studied. (See [1], page 361, concerning the nowhere diflerentiability of the
function (49)).

Finally, we put as open the following question inspired by Theorem 4.

Open question. Does the Riemann function > . ; %’;‘2 have continuous
fractional derivatives of order 1/2 < v <3/47

For reader’s convenience we give the following
Summary of results

1. The Weierstrass function Wi(z) has continuous Liouville fractional
derivatives D*W; of any order v < 1, but nowhere has the first order deriva-
tive.

2. The Weierstrass function Wi(z) — Wi(a) for all z > a has continuous
Riemann-Liouville fractional derivatives D%[W{(z) — Wy (a)] of any order v <
1, but nowhere has the first order derivative.

3. The functions C(z) and S(z) have continuous Riemann-Liouville frac-
tional derivatives D{C(z) and D§S(z), z > 0, while the first order derivatives
do not exist at points x = 2mr. -

4. Riemann’s function R(z) has continuous Liouville fractional derivatives
of any order v < 1/2, but fractional derivatives of order v > 3/4 do not erist
almost everywhere.
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5. The Weierstrass function W,,(x), v > 0, has continuous Liouville
fractional derivatives of any order v < vy, but nowhere has the derivative of
order vyq.

The above results are given in Theorems 1-5, respectively, where more
detailed statements can also be found.

References

[1] N. K. Bari, A Treatise on trigonometric series, Pergamon Press, The
Macmillan Company, v. 1, 1964.

[2] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher
transcendental functions, New York-Toronto-London, McGraw-Hill Book

Company, Inc., v. 3, 1953,

[3] G. M. Fikhtengoltz, The Fundamentals of Mathematical Analysis, Perg-
amon Press, v. 2, 1965.

[4] J. Gerver, The differentiability of the Riemann function at certain rational
multiples of m, Amer. Journ. of Math., 92 (1970), 33-55.

[5] J. Gerver, More on the differentiability of the Riemann function, Amer.
J. Math., 93 (1971), 33-41.

6] G .H. Hardy, Weierstrass’ non-differentiable function, Trans. Amer.
Math. Soc., 17 (1916), 301-325.

[7] G .H. Hardy, Collected papers, Oxford: Clarendon Press, 1966.

[8] J. Liouville, Mémoire sur quelques questions de géométrie et de
mécanique, et sur un noveau genre de calcul pour résoudre ces questions,
J. L’Ecole Roy. Polytechn., 13 (1832), sect. 21, 1-69.

[9] K. S. Miller and B. Ross, An introduction to the fractional calculus and
fractional differential equations, A Wiley-Interscience Publication, John
Wiley & Sons, Inc., New York, 1993.

[10] B. Ross, (Ed.) Fractional Calculus and its Applications, Lect. Notes in
Math. (Springer Verlag), v. 457, 1975.

[11] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Deriva-
tives. Theory and Applications, Gordon & Breach Sci. Publishers,
London- New York, 1993.




FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE 157

[12] A. Smith, The differentiability of Riemann’s function, Proc. Amer. Math.
Soc., 34 (1972), 463-468.

[13] A.Smith, Correction to “The differentiability of Riemann function”, Proc.
Amer. Math. Soc., 89 (1983), 567-568.

[14] H. Weyl, Bemerkungen zum begriff des Differentialquotienten gebroch-
ener Ordnung, Vierteljahresschrift der Naturforschenden Gesellschaft in
Ziirich, 62 (1917), no 1-2, 296-302.

[15] A. Zygmund, Trigonometric series, Cambridge University Press, Cam-
bridge, v. 1, 1959.

[16] A. Zygmund, Trigonometric series, Cambridge University Press, Cam-
bridge, Vol. 2, 1959.




