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FUNCTIONS THAT HAVE NO FIRST 
ORDER DERIVATIVE MIGHT HAVE 

FRACTIONAL DERIVATIVES OF ALL 
ORDERS LESS THAN ONE 

A question of classical mathematical analysis - the existence of a contin- 
uous non-differentiable function - is treated here in a detailed setting. We 
consider this question within the framework of fractional derivatives and show 
that there exist continuous functions f(x) which nowhere have an ordinary 
first order derivative, but have continuous fractional derivatives of any order 
U < l. 

We begin with notation in Section 1 because there exist different forms 
of fractional integration and differentiation which do not necessarily coincide 
with each other. We use Riemann-Liouville, Liouville, Marchaud and Weyl 
fractional differentiation. 

In the introductory Section 2 we specify the setting of the problem un- 
der consideration and give some comments. Section 3 contains statements of 

, _ . - , X  .--, . .. .- - - l  some known results we need. In Section 4 we deal with the Weyl, Liouville and 
-.- -. 

" - r  
-y -:-==---.X'- F ,- -2.j Marchaud fractional derivatives of the well-known continuous but nowhere dif- 

ferentiable Weierstrass function. Section 5 is devoted to  the Riemann-Liouville 
derivatives of this function. 

In Section 6 we consider the Riemann-Liouville derivatives of the Riemann 
function thtit is almost everywhere nondifferentiable. Section 7 contains some 
generalizations, an Open Question for further research and Summary of re- 
sults. 
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FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE 

1 Notation 
1 
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We shall deal with the following well known (see [ll.], [g]) forms of fractional 
. , . .  integration and differentiation: 

a) an integral J;(x - t)"-' f ( t )dt ,  X > a, with %v > 0, is known as 
the Riemann-Liouuille integral of order v. It is applied to functions defined for 
X > a. This integral defines integration to an arbitrary order and is sometimes 
denoted by the symbol ,D;" f (X). The subscripts a and X are included in this 
case to avoid ambiguities in applications. We find it convenient to omit the 
subscript X on the operator (the operator itself cannot depend on X) and write 

J ,  - t lY-lf(t) dt, x > a. D," f (x)  = - (1) 

An alternative notation for (1) is I," f (X). 
To define D: f (X) with %v > 0, we write v = m - p, where m is the least 

integer greater than %v. We have then 

by definition. If we restrict v to  be in (0, l ) ,  then m = 1 and 

(X - t)-" f (t) dt, X > a 

b) Liouville fractional integration of order v > 0: 

I" f (X) = / (X - t)"-l f (t) dt, -m < X < m, 
r ( v )  -m 

for functions defined on the whole line; 
b') the corresponding Liouville fractional differentiation of order 0 < v < 1: 

We emphasize that the operators (3) and (4) can be applied to PT-periodic 
functions cp (non-vanishing at infinity) if JbZ" cp(x) dx = 0 and the integrals in 
(3) and (4) are interpreted as conventionally convergent in the following sense: 

cp(t)dt 1, (X - t)l-" 
= lim 

n-cc JZ dt 
n = 1 . 2 . 3 .  . z-2na (5 - tI1-" 
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under the obligatory assumption ip(t) dt = 0. See details and justification 
in [ l l ] ,  Section 19, Subsections 2 and 4. 

--.-.- --<. . > _. _^I_$ .. V'. .- . c) Weyl fractzonal zntegratzon of order U > 0 for periodic functions: 

where 

so that for Fourier series 

we have 

I"' f ( t )  - C' (in)-u fneint 

The strokes in ( 7 )  and ( 9 )  indicate that the term with n = 0 is omitted. This 
is the original definition due to H. Weyl [12]; see details in [l61 and [ l l ] ,  section 
19; 

c') Weyl fractional differentiation of order 0 < U < 1 for periodic functions: 

so that for ( 8 )  we have 

D(") f ( t )  - C' (in)"  fneant 

Remark 1 Sometimes the Liouville fractional integral 

is called the Weyl fractional integral. This is a historical misunderstanding. 
Liouville was the first who considered fractional integration just in the form 
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(3'), see [8], page 8, whereas Weyl dealt with periodic functions and the conver- 
gence of (3') for periodic functions should be interpreted very specifically, as in 

_ --- .----.,.----- j - _ ..._+ (5). (See details in [ l l ] ,  Section 19). So, though paying homage to Weyl's pro- 
found ideas, we consider it more correct to name both (3) and (3') as Liouville 
fractional integrals (See also [10], pages xxvii-xxviii in this connection). 

d) Marchaud fractional differentiation of order 0 < V < l: 

which coincides with (4) for sufficiently good functions (see Lemma 3 below). 
Observe the use of D instead of D. 

2 Introduction 

The problem raised in the title may be generalized in the following way: 

Problem To find a continuous function f (X) which has fractional derivatives 
of all orders 0 < v < WO, but has no derivative of order v0 (vo may be either 
an integer or  a non-integer). 

We shall discuss this generalization a t  the end of the paper, while in the 
main body of the paper we deal with the case uo = 1. 

As we shall see, the solution of this problem depends, in a sense, on the 
type of fractional differentiation involved. But, what is much more important, 
it depends on terms under which the "non-existence" of the derivative of order 
v0 is treated. The typical situations for this "non-existence" are the following: 

A) The derivative of order v0 does not exist at a finite number of points; 

B) It  does not exist on a set of measure zero; 

C) It  does not exist almost everywhere; 

D) I t  does not exist a t  any point. 

The c&e A) is the simplest one. The Problem in this case is in fact close 
to the following Open Question formulated by Prof. A. Erd6lyi at the 1st 
Conference on Fractional Calculus, 1974, University of New Haven, USA (see 
[10], page 376): 

(i) Let f( t )  be continuous for t 2 a and let S be the set of all those non- 
negative v for which the fractional derivative D," f exists and is contin- 
uous. Does S have a largest element. 
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(ii) This problem is the same as that above, except the word "continuous" 
in italics above is replaced by "locally integrable". 

................... . . . . .  . . . . .  . . .  

The answer to (i) and (ii) is given in [l:[], page 456, and is in general 
negative: for f (X) = x4 1n X, p > 0, we have S = [O, P) and S = [0, p + l )  
respectively to the cases of continuity or integrability of D: f .  In the latter 
case we have S = [0, p + 1) for f (X) = xP, /3 > 0, also. 

..-.- 
So, in the case v0 = l, the solution of the problem I treated in the sense A) 

. .. . . . . . . . . .  -iC--&.-.-*--- 
, . ,--:;-.d-z,.>-*.G= 6.. \ *.. -- - -L~-%~J 
>-.,-I .-_______, 

is immediate: f (X) = X ln X for X > 0, f (0) = 0. This function is continuous 
....... .>......-..>...-....-.*,*.,.L m- - ............ :-;'- ..... . . . . . . .  . . . . . . . . . . . . . . . . . .  . . .  and even Holderian of any order less than one. I t  has no derivative a t  the point 
. . . . .  ........ . . *- .. ........ . -/.. , _ . . . . . . . .  . . .  

X = O but it has the Riemann-Liouville fractional derivatives D: f of orders 
. . . .  . . . . . . . .  ............. i ..... T ..i . . . .  -. -*.___. 

. . . .  ..<. .-. . -,- . s + z  . . _ _ I _  
v < 1, all of them being continuous everywhere including the point X = 0. 
This follows from the well-known fact that any function f (X) Holderian of 
order X and vanishing at X = a has continuous fractional derivatives D: f of 
any order v < X (see (71, page 239, Lemma 13.1). This also follows from the 
direct expression (see [ll], page 41, formula (2.50)): 

where $(X) is the Psi-function. 
Similarly, the function f (X) = n L o ( x  - ak) In [ X  - akl, X > a = a0 where 

a = a0 < a1 < . . < an, is an example of a continuous function which has no 
ordinary first order derivative at a finite number of points, but has fractional 
order derivatives D: f of order less than one (as a Lipschitzian function). 

The series f (X) = $(X - i )  ln+(x - i )  where lnf (X - k)  = ln(x - i )  
if X > i and ln+(x - i) = O if X 5 i ,  is an example of a function which has 
continuous fractional derivatives D," f of orders v < 1, but has no finite first 

. - . .  - 1 . .  . . . .  . . . .  • order derivative a t  a countable set of points X = 1,1/2,1/3,. (The approach . . .  - . . . . S . . .  . . . . .  ... - . . . . . . .  ............. :.,:,.<-::.: 2.-.7.. .. :v: .........?..A.. . . . . . . . .  . . . . . . . . .  
, .. 

B)). 
. .,,; ><:+,; -:: xs$:.:.x~-y 

% ,Y.3;~:,=..w.~~ 
So, in the sequel, we shall consider the Problem stated above only in the 

.,+$p,\&*=~*~y:.~~;5 ... ., ................. senses C) and D). For this purpose it seems to be natural to appeal to the . . . .  - ........ . . . L . . . .  

classical Riemann and Weierstrass functions: 

. . . .  ;. .... <.Q; c-.<: . . ........... . . . _ : . . . . .  ,.\.. .. . . . . . . . . . . . . . . .  . ' , '~ 

where CY > 0 and q > 1. 
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We shall also consider the functions 

m sin nx 

n= l 

and 

which have better behaviour than (15). 
I t  is usually ascribed to Riemann that he considered the function R(x) as 

nowhere differentiable. It was G.H. Hardy [6], see also [7], who first gave an 
exact proof of the following assertions: 

1. The function R(x) has no finite derivative at all points X such that x / 2 ~  
i s  irrational. 

2. It has no finite derivative for all rational x / 2 ~  of the form f = -& or 
- = S, m and n being integers. 

We note that the existence of finite first order derivative of the function 
R(x) at some points was proved by J. Gerver [4], see also [5]. In particular, 
he showed that R1(x) = -112 at the points of the form X = T*. He also 
showed, in addition to Hardy's results, that R(x) has no finite derivative a t  
the points X = X-, n > 1. We also mention the papers [12]-[l31 by A. 
Smith who considered the remaining cases. 

As regards the Weierstrass function W,(x), 0 < cu < 1, it is well known 
that it is continuous (and even satisfying the Holder condition, see Lemma 1 
below), but nowhere differentiable if q > 1, see [6] or [7]. 

3 Preliminaries 

We say that f (X) satisfies the Holder condition of order X, 0 < X 5 1, on 
[a, b], -m < a < b < m, or f E HX([a ,  b] )  if I f ( x  + h )  - f(xJ1 < c(hlX with 
c not depending on h and X; X, X + h E [a, b]. In the case X = 1 the fu~iction 
f (X) is also called Lipschitzian. 

We will need the following known facts. 

Lemma 1 The Weierstrass function W,(x), 0 < a < 1, satisfies the Holder 
condition of order a if a < 1 and of any order X < 1 if a = 1. 
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The proof of this statement may be found in [6] ,  page 103, for an arbitrary 

. ~. . q > 1 and in [15], page 47, Theorem (4.9) and page 44, Theorem (3.4),  for an 
. .- .......... ........... 3 "?.. .. . ._ ... -. . . ,  integer g, where it is given for W,(x)  with cos(qnx) instead of exp( iqnx) .  

Lemma 2 Let f ( X )  be a 2~-periodic function and let f ( X )  E H X ( [ O ,  27r]), 0 < 
X 5 1. Then f ( X )  has the Weyl fractional derivatives of all orders v < X and 

. . . . . . . . . . . . .  .- - 
D(") f ( X )  E HA-"([0 ,  2 ~ 1 ) .  

.......... . . . .  -. . 
See the proof in [l l .] ,  page 365, Corollary of Theorem 19.7. 

_ . .  . . . . .  . . . .  ................. . . . .  .......... . . .  
. . .  

. . . . . .  . . . . . . . .  . . . . . . .  . . . . . . .  
Lemma 2' Let f ( X )  E H X ( [ a ,  b] ) ,  0 < X < 1. Then f ( X )  has the Riemann- 

... . . . . . .  
i..i~**-, .............. , . . . . . . .  -. =\7,.p>>*L.;%>,:,?.%t,~!.2,.:: . .  .... , c  .... :: 

Liouville fractional derivatives of all orders v < X and 

where $ ( X )  E HA-" ( [a ,  b]) .  

See [ l l ] ,  page 239, Lemma 13.1, and page 242, Corollary of Lemma 13.2. 

In the case of functions defined on the whole real line the following version 
of Lemma 2' holds. 

Lemma 2" Let If (x) l  5 c ( l +  I X ~ ) ~ ,  y < v ,  and ( f ( x +  h )  - f ( x ) l  L A h X  for 
all X E R' and h > 0. Then f (X) has the Marchaud fractional derivative of any 

2AX 1 
order v < X and / D u  f ( x  + h )  - D" f (x)I L B h'-" with B = - X - v r ( 1  - v ) '  

PROOF. Since y < v and X > v ,  the integral (12)  converges absolutely. 
Therefore, D" f ( X )  exists. Now, 

whence the second assertion of the lemma follows. 

Lemma 3 Let f ( X )  satisfy the assumptzons of Lemma 2. Then all the forms 
(4), (10) and (12) of fractzonal dzfferentzatzon of f ( X ) ,  (i.e. that of Lzou- 
vzlle, Weyl and Marchaud) coznczde wzth each other: D" f ( X )  = D(") f ( X )  = 
D" f ( x ) ,  0 < v  < l .  
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See [11], page 358, eq. (19.39). 

................... . . 
. - l  

Lemma 4 If l f n l  < W, then the Weyl integration (6) can be applied 
.............. . . . . . . . . . .  . .  - 

termwise and I(") f (X) = ~';=-,(in)-" fn exp(inx). 

The proof is easily derived from the definition. 

.. Lemma 5 Let fk(t) E C([a, b]), k = 1,2,3, .  ,-CO < a < b < CO. If the se- 
. . .  . .~ .. . . .  -., ........ - . . .  - . . . . . . . . . .  ries Czl fk(t)  converges uniformly on [a, b], then I:(C& fk) = C z l  IaVfk 

and the series in the right hand side converges uniformly on [a, b] as well. 
. \-A ..... ... . . . . . . . - . . . . . . . . . . . . .  . . -. . . . . . . . . .  

. . . .  - -  .. , . . . . .  .*..' 
PROOF. We have 

. . . . . . . .  .... . ..>. ......... :..~ .... 
a ~ :  7-X- :.,:+, ,? >.,:: Z..?2, 

-<7<:<5-.2+T"""'"" .--..c! 
, ,, *+.>4>->-:,??:A,z--. ,.; m 

HE, which proves the lemma. Hence, if ( ~ ~ = m + l  fk(t)l < c, we have A < vr(u) 

Lemma 6 Letg(x) = f( t )dt .  If f( t )  E LP([a,b]), --CO < a  < b 5 W, for 
all p > 1, then Ig(x + h) - g(x)( < ~ ( h ( ' - ~  for a11 X, X + h E [a, b], however 
small c > 0 is, c = c(p) not depending on X and h. 

Proof is obvious. 

We shall also need the following entire function 

known as the Mittag-Leffler function [2], page 210. I t  is known that 

The function El,q(z) has the representation 

where X > 0 and X may be complex, which may be verified by the termwise 
integration of the series expansion of ext. By analytic continuation, we can 
derive the analogous representation for 0 < 4 < 1: 
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It is known that the Riemann-Liouville fractional integral of an exponential 
function can be expressed in terms of the Mittag-Leffler function ElVp ([l].], 
page 173, eq.8): 

I:(eXz) = eXa(x - a)vE1,l+v(Xx - Xa), X > a, (20) 

which is, in fact, the reformulation of (18). 

4 The Weierstrass function and its Weyl, Liouville or 
Marchaud fractional derivatives 

We begin with the consideration of the Marchaud derivative of the Weier- 
strass function Wl(x) (=Weyl or Liouville derivative in the case of an integer 
g). In the next section we shall deal with the Riemann-Liouville derivative 
D," Wl(x), X > a, too. However, we would like to  emphasize that for a func- 
tion defined and studied on the whole line it is more natural t o  investigate its 
Liouville, Weyl or Marchaud derivative than that of Riemann-Liouville which 
is "tied" to  a fixed point X = a. 

Theorem 1 For any q > 1 the Weierstrass function Wl (X) has the Marchaud 
fractional derivative of any order U < 1: 

which is continuous and even satisfies the Holder condition of any order X < 
1 - U, but Wl(x) nowhere has the first order derivative. In  the case of integer 
q = 2,3 ,4 , .  .. the function Wl (X) has also Liouville and Weyl derivatives (4) 
and (10) which coincide with (21). 

PROOF. The fact that & w1(x) exists nowhere is well known. As for the 
fractional derivatives we consider first the case of an integer g. 

I. T h e  case of an integer g. In this case the proof is simpler because 
Wl(x) proves to be a 2~-periodic function. We consider the Weyl derivative. 
By the definition (10) and Lemma 4 we have D(") Wl(x) = &I('-")W~(X) = 
iv-l& 00 -n(2-v) 

dz Cn=O Q exp(iqnx). Here the termwise differentiation is possible 
since the series obtained after differentiation converges absolutely and uni- 
formly. Therefore, we arrive a t  (21). From (21) we see that D(") Wl(x) is 
a bounded continuous function as a sum of uniformly convergent series. To 
show that 
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. . we refer to  the 2~-periodocity of Wl(x) and to the fact that Wl(x) E H'-€ 
with an arbitrary small E > 0, by Lemma 1. Then, by Lemma 2 the assertion 

m . * e - l " d  
L*>... -+  .b... .+ - (22) holds. I t  remains t o  refer t o  Lemma 3. 

11. The case of a n  a r b i t r a r y  q > 1. To manage with this case we use 
the Marchaud derivative (12) and consider the following truncated Marchaud 

N f (2)-f (2-t derivative: DEN f = & iE dt. We have 

W 

Dz,N Wl(x) = dt. (23) 

.. . . . . 
.,-C, . - --  . . - .-. . ",- .. . . . . 

, ?> -:.--: :. .. . .. . . . , (The termwise integration in obtaining (23) is obviously justified). We have 
w,sj.",u-xy <-L.<-,--.-' 

~~:~~~~ the estimate: 

where c does not depend on E, N and n. Really, 

W 11 - exp(-iqnt) 1 (1 - cosqnt) 1 sin qnt l 
dt 

Hence, the change of the variable qnt = U yields (25) with 

e = LW [l - cos U + I sin u J ] ~ - ~ - " d u .  

Since the series C:=o q-"gn" converges, by (24) we may pass to  the limit 
in (23) termwise, which gives 

W 1 - exp(-iqnt) 

lim D:N Wl(x) = r(l 
C-0 tl+v dt. 

N - m  n=O (25) 

We use the formula 

which is easily obtained by integration by parts and using the known relation 
e dt  = r(v)/(-ix)", see e.g. [ll], page 138, eq.(7.6). By (26) Jgmtv-l -izt 

and(25) we have D" Wl(x) = C:=o q-"(iqn)" exp(iqnx) which coincides with 
(21). The Holder property for D" W, follows from Lemma 1 and Lemma 2". 
The theorem is proved. 

Remark 2 We remind that in Theorem I the Liouville derivative (4) should 
be interpreted in accordance with (5). 
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5 Riemann-Liouville derivatives of the Weierst rass func- 
t ion 

The Riemann-Liouville derivative ( 2 )  even of a very good function f ( X )  is 
infinite a t  the point X = a ,  if f ( a )  # 0. By this reason, considering the 
Riemann-Liouville derivative on [a,  W), we shall deal with the function 

m 

W(.) = Wl ( X )  - Wl ( a )  = C q-"(eiqnX - eiqna) (27)  
n=O 

In the theorem below El,l- ,(x)  is the Mittag-Leffler function, see (16).  

Theorem 2 The Weierstrass function W ( x ) ,  X > a,  has continuous and 
bounded fractional Riemann-Liouville derivatives of all orders v < 1, which 
can be calculated by the formula D," W ( x )  = x r = o q - n A n ( x ) ,  where 

l - exp(-iqn(x - a ) )  qn(x-a)  I - e-it 

An ( X )  = r(l - v )  ( X  - a)n 
9) 

so that 

IAn(x)I 1 qv* 

with c not depending on  X and n. 

PROOF. Since the series in (27) converges uniformly on [a,  m), by Lemma 5 
we have I:-"W(x) = q-n~:-"(e'qnZ - eiqna). Hence, by (20) we obtain 

The formal termwise differentiation of (31) yields 

with 

d 1 
A n ( x )  = .Iaqn - { ( X  - .)lp" ( iqn(x  - a ) )  - d x  v )  (33)  



To justify the differentiation we shall prove that the series in the right hand side 
of (32)  converges uniformly. Differentiating in (33)  and applying tlle formula 
(17) ,  we arrive at (28)  after casy calculations. Applying the representation 
(19)  in the right hand side of (28) ,  we obtain (29) .  

Since the integral t-'-"l1 - exp(-it)/ dt converges, the estimate (30)  
follows from (29).  By (30)  the series (32)  converges uniformly -and then 
D," W ( x )  is continuous and bounded. The theorem is proved. 

6 Fractional derivatives of the functions (14') and (14") 
and of the Riemann function 

I .  Functions (14 ' )  and (14") .  We consider the functions S ( x )  and C ( % )  
first. The function (14") is known ( [ 3 ] ,  page 433) as an elementary function: 

00 cosnx x Z  7r 
- 

7r2 ET--- 4 2 1 ~ 1  + F' - 2 ~  5 X 5 27r, 
n= l 

which may be obtained either by direct expansion of the right-hand side into 
- Fourier series or by the integration of the well known relation C:=l - 

7r-Z T, for 0 < X < 27r (see [15], page 5), with the formula C:=, nP2 = 7r2/6 
taken into account. We also remark that (34) may be rewritten as 

00 
cos n x  - T ~ B ~ ( - ) ,  X 0 5 x 1 2 7 r 1  ET- 

n= l 
2 7r 

where B z ( x )  is the Bernoulli polynomial of second degree. We remark that 
the relations (34)-(35) are particular cases of Fourier series expansions for the 
Bernoulli polynomials: 

00 cos n x  X E 7  - - (-1)-l+m12(2rr)mBm(-), if m is even 
m! 

n= l 
27r 

and 
00 sin n x  - (-].)-l+[mI21- X E7- (2")m B_(- 1, if m is odd, 

m! .n= l 27r 

see e.g. [ I  l ] ,  page 348, eq.(19.8) and (19.10). 
As regards the function (14'), it has the following integral representation: 

m sin nx 
- 1 ET-1 10g21sint121 d t ,  0 5 X 5 27r, 

n=l 

which follows from the known relation v -- - log 21 sin t / 2 ( ,  0 < t < 
27r, see [15], page 5. 
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Theorem 3 Functions C(x) and S(x) have the Riemann-Liouville fractional 
derivatives D; C(x) and D; S(x) of any order 0 < v < 1, which are continuous 
for all X > 0 and X > 0, respectively. For 0 < X < 27r they may be calculated 
as 

with P2(x) = 3x2 - 37r(2 - v)x + 7r2(2 - v)(l - v), and 

l 

JZ 

log 12 sin t/21 
dt. 

n = l  
r ( i  - U) (X - t)" (38) 

The first order derivatives of C(x) and S(x) exist and are continuous for all 
X > 0 except the points X = 2m7r, m = 1,2,3,.  . . 

PROOF. The existence of the first order derivatives is seen directly from (34) 
and (36); in particular, we see from (36) that $s(x) = - log 21 sinx/21 does 
not exist at the points X = 2m7r. 

To consider the frxtional derivatives we begin with the values 0 < X < 27r. 
Ram (34) we have D; C(x) = D;(X~) - D;(s) + ~ g ( 1 )  which yields 
(37) and proves the continuity of D; C(x) for 0 < X 5 27~. As for D; S(x), we 
have from (36) 

where f (x)  = -log21sint/21 and I,'f(x) = f ( t )d t .  By the index law we 
have from (39): D: S(x)  = I:-" f (X) which coincides with (38). 

I t  remains to make sure that D; S(x) and D; C(x)  are continuous for all 
X. We remark that C(x) is a continuous periodic function. So, by (34) it 
is a continuous piece-wise differentiable function and, therefore, Lipschitzian. 
Then, by Lemma 2' its fractional derivative D; S(x) is continuous (and even 
Holderian or order 1 - v) beyond the point X = 0. 

Now, by'(36) and Lemma 6 the function S(x)  is Holderian of order 1 - 
E,  E > 0. Since S(0) = 0, by Lemma 2' we have D; f E HIpE-", 0 < E < l -v. 
The theorem is proved. 

Remark 3 As follows from the proof of Theorem 3, the fractional derivatives 
of the functions C(x) - 7r2/6 and S(x) are not only continuous, but even 

n2 Holderian: D; C(x) - -- E H1-"(10, b]), D; S(x)  E H1-"-E([O, b]), 
whatever small E is, 0 < E < 1 - v; b > 0. 



14 
11. Riemann's function. The case of the function (p) is more difficult . . . . .  - - and we can manage here only with orders 0 < v  < 112 of fractional differenti- 

- - 
:m&&-*$-** ...... "C-;. ... ation. The following theorem is valid. ... 

Theorem 4 Let 0  < v  < 112. The fractzonal denvative D" R ( x )  of Liouville, ... 
that of Weyl D(") R ( x )  and that of Marchaud D" R ( x )  do exist, are continuous 
and coincide with each other. They may be calculated by the formula 

* . m 
cos(n2x + v7r/2) 

DV R ( x )  = C n2-2u 

n= l 
(40) 

- ,  . - - 
However, zf  v  > 314, the Weyl denvatzve D(") R ( x )  does not ezist at least for 

- -- all irratzonal values of *m m 
- 7 / 

PROOF. We shall show that 

R ( x )  E H ' / ~ ( [ o ,  2x1). (41)  

Following 1151, page 47, proof of Theorem (4.9), we have 

where N = [(2/h) ' l2]  is the largest integer such that N 2 h / 2  < 1,  h  > 0. So, 

and 
m - 

Taking h S 116, we have [ (2 /h ) ' l 2 ]  > ( 2 / h ) 1 / 2  - 1 > ( l / h ) ' / 2 ,  so that 

Therefore, (43)  and (44)  prove (41)  via (42).  
In view of (41)  and Lemmas 2 and 3 we see that the three fractional 

derivatives exist for v  < 112 and are equal. To prove (40) we remark that for 
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the real form of Fourier series f (X) - ( a ,  cos IZX + h, sin nx)  the \Veyl 
definition (11) of a fractional derivative is the following: 

which is easily derived from (11). So 

" . .  
. . - . p  

. X  -. *. 
Since the series in (46) converges absolutely and uniformly (for 0 < v < 1/2), - 5- - -- -- 
the sign W in (46) may be replaced by = and we arrive at (40). 

T; show  that'^(") R(x) does not exist almost everywhere' if v > 314, we 
refer to the following result due to G.H. ,, Hardy ([6], page 323): 

cosn'x sinn'x 
Neither of the functions C:="=, , C,=, 7, where p < 512, i s  

lap 
differentiable for any irrational multiple of n-. 

m 
sin(n2x + vn-12) 

By (46) I('-")R(x) = E n 4 - 2 ~  
. SO, D(") R(X) = &I('-~)R(X) 

n=l 

does not exist at irrational multiples of n- by the above Hardy's result since 
4 - 2v < 512 if v > 314. The theorem is proved. 

7 On Problem stated in Section 2. 

Here we discuss shortly the Problem formulated in Section 2 for arbitrary vo, 
not necessarily v0 = 1. This is just the Weierstrass function CVu,(x) defined 
in (15) which is a solution of this problem. The theorem below generalizes 
Theorem 1. We use here the standard extension of fractional derivatives (4), 
(10) and (12) to the case of orders v > 1, see [ll], page 95, 348 and 118, 
respectively. When v is an integer, either of these derivatives is an ordinary 
derivative of order v. 

Theorem 5 For any q > 1 the Weierstrass function W4,(x), v. > 0, has the 
Marchaud aAd Liouville (and Weyl, if q is an  integre) fractional derivative of 
any order v < vo. They coincide with each other o.nd are equal to 

Besides, D" bVV, (X)  i s  Holderian oforder X < vo-v. However, W,,, (X) nowhere 
has the Liouville fractional derivative of order vo. 
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PROOF. T h e  assertion on  the  existence o f  the  derivative o f  order v < v0 and 
the  relation (47)  are obtained following the  same lines as those o f  Theorem 1. 
W e  remark that  (47)  means that 

for all -CO < v < vo, 0 < v0 < CO, the  series in the  right-hand side being 
absolutely convergent. T o  demonstrate that W V o ( x )  nowhere h& fractional 
Liouville derivative o f  order vo, we remark that DVO = & Duo-' (independently 
o f  the  sign o f  v0 - 1).  Then ,  DVO W V o ( x )  = & DVO-' W V o ( x ) ,  i f  exists, should 
coincide, by  (48) ,  with iVO-'g w1 ( X ) ,  which is impossible. 

R e m a r k  4 The results similar to those stated i n  this paper for the Weierstrass 
function (15) are valid for its real valued version W,(x) = C:=o Q-,'' c o s ( ~ ~ x )  

R e m a r k  5 The following generalization 

of the Weierstrass function, with some restrictions on a and b, can be similarly 
studied. (See [ l ] ,  page 361, concerning the  nowhere differentiability o f  the  
function (49)) .  

Finally, we put as open the  following question inspired by  Theorem 4. 

O p e n  ques t ion .  Does the Riemann function C:==l c0z2z have continuous 
fractional derivatives of order 112 < v < 3 / 4 ?  

For reader's convenience we give t h e  following 

S u m m a r y  of resu l t s  

1. The Weierstrass function Wl ( X )  has continuous Liouuille fractional 
derivatives D V W 1  of any order v < 1, but nowhere has the first order deriva- 
tive. 

2. The Weierstrass function W l ( x )  - W l ( a )  for all X > a has continuous 
Riemann-tiouville fractional derivatives D,V[W,(x) - W l ( a ) ]  of any order v < 
1, but nowhere has the first order derivative. 

3. The functions C ( x )  and S ( x )  have continuous Riemann-Liouville frac- 
tional derivatives D g C ( x )  and D g S ( x ) ,  X > 0, while the first order derivatives 
do not exist at points X = 2m7r. 

4. Riemann's function R ( x )  has continuous Liouville fractional derivatives 
of any order v < 112, but fractional derivatives of order v > 314 do not exist 
almost everywhere. 
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5. The Weierstrass function W,,(z), v > 0, has continuous Liouville 
fractional derivatives of any order v < vo, but nowhere has the derivative of 
order vo. 

The above results are given in Theorems 1-5, respectively, where more 
detailed statements can also be found. 
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